1. 生物膜的主要功能
1、物質運輸
生物膜因其半通透性而成為具有高度選擇性的通透屏障。細胞生長所需要的水、氧及其他營養物質被運進細胞,細胞內產生的激素、毒素和某些酶被運出細胞,細胞內代謝產生的CO2、NH3等廢物被運出細胞,這些過程都與生物膜的物質運輸機制有關。
2、信息傳遞
在生物體的生命活動過程中,細胞內的各部位之間、細胞之間,以及細胞與外界環境之間時刻都有物質、能量和信息的交流,使生命過程得以協調有序地進行,而這是由生物膜實現的。
3、能量轉換
生物膜在生物體內光能和代謝能的轉化過程中發揮了重要作用。ATP是生物體內重要的能量「通貨」。生物體內代謝過程中產生的能量轉移先以ATP的形式「儲存」起來,待需要時再由ATP釋放出來。植物體內ATP的主要生成方式是通過光合磷酸化和氧化磷酸化過程。
(1)生物膜能使哪些離子通過擴展閱讀:
生物膜的組成:
生物膜的主要化學成分是脂類和蛋白質,糖類次之,另外還有微量的核酸、金屬離子和水。膜脂和膜蛋白以及糖類所佔的比例因膜的種類而異。
例如,神經鞘膜中脂類含量佔75%,而蛋白質只佔18%,這利於膜在神經興奮傳導中的絕緣作用;而線粒體膜蛋白質含量佔75%以上,脂類則占約20%,這與該膜含有豐富的酶有關。膜的功能越復雜,蛋白質含量越高。膜中蛋白質與脂類之比一般為4:1到1:4之間。
參考資料來源:網路-生物膜
2. 生物膜對物質的運輸有哪些方式,各方式間有何區別
生物膜離子通道(ion channels of biomembrane)是各種無機離子跨膜被動運輸的通路。生物膜對無機離子的跨膜運輸有被動運輸(順離子濃度梯度)和主動運輸(逆離子濃度梯度)兩種方式。被動運輸的通路稱離子通道,主動運輸的離子載體稱為離子泵。生物膜對離子的通透性與多種生命活動過程密切相關。
3. 細胞膜可以讓什麼自由通過
細胞膜可以讓水,一些離子和小分子自由通過
A、細胞膜可以讓水分子自由通過,細胞要選擇吸收的離子和小分子也可以通過,而其他的離子、小分子和大分子則不能通過,因此細胞膜是一種選擇透過性膜,A正確;
B、因為細胞膜具有選擇透過性,小分子物質進出細胞膜可以進行跨膜運輸,大分子物質可以通過胞吞、胞吐進出細胞,B錯誤;
C、原生質層包括細胞膜、液泡膜以及兩層膜之間的細胞質,沒有細胞核,C錯誤;
D、植物細胞一般不會吸水脹破,是因為細胞最外層有細胞壁,D錯誤.
4. 生物膜對可以自由擴散通過的膜的物質有沒有選擇透過性就是生物膜是不是對任何物質都有選擇透過性
可以自由擴散通過生物膜的物質,在兩側濃度不同時,順濃度梯度進行擴散,穿過生物膜。因為既定為可以自由擴散通過生物膜的物質,生物膜自然對其不存在選擇性。
當然,生物膜不是對任何物質都有選擇透過性,因為生物膜通常是指人工合成的脂雙層,其中沒有蛋白質作為載體。因此,一些小分子是可以自由通過的,如氧氣、氮氣、二氧化碳、水分子、甘油、乙醇等;一些較大的分子,如葡萄糖、甘油小分子氨基酸,以及一些大分子,如蛋白質等,還有無機鹽離子就不能通過。
希望能有所幫助。
5. 生物膜有哪些結構和功能
生物膜在結構與功能上都具有兩側不對稱性。以物質傳送為例,某些物質能以很高速度通過膜,另一些則不能。像海帶能從海水中把碘濃縮3萬倍。生物膜的選擇性通透使細胞內pH和離子組成相對穩定,保持了產生神經、肌肉興奮所必需的離子梯度,保證了細胞濃縮營養物和排除廢物的功能。
生物膜的另一重要功能是細胞間或細胞膜內外的信息傳遞。在細胞表面,廣泛地存在著一類稱為受體的蛋白質。激素和葯物的作用都需通過與受體分子的特異性結合而實現。癌變細胞表面受體物質的分布有明顯變化。細胞膜的表面性質還對細胞分裂繁殖有重要的調節作用。
細胞內具有膜包被結構的總稱,包括細胞質膜、核膜、內質網、高爾基體、溶酶體、線粒體和葉綠體等.
膜結構體系的基本作用是為細胞提供保護.質膜將整個細胞的生命活動保護起來,並進行選擇性的物質交換;核膜將遺傳物質保護起來,使細胞核的活動更加有效;線粒體和葉綠體的膜將細胞的能量發生同其它的生化反應隔離開來,更好地進行能量轉換.
膜結構體系為細胞提供較多的質膜表面,使細胞內部結構區室化.由於大多數酶定位在膜上,大多數生化反應也是在膜表面進行的,膜表面積的擴大和區室化使這些反應有了相應的隔離,效率更高.
另外,膜結構體系為細胞內的物質運輸提供了特殊的運輸通道,保證了各種功能蛋白及時准確地到位而又互不幹擾.例如溶酶體的酶合成之後不僅立即被保護起來,而且一直處於監護之下被運送到溶酶體小泡.
6. 生物膜上物質出入的通道有哪些並簡述其運輸物質的機理
物質運輸 物質的跨膜運輸大體可分為被動運輸、主動運輸和膜動運輸 3大類(見生物膜離子通道)。
被動運輸包括單純擴散及促進擴散,兩者都是在濃度梯度(或更廣義地在電化學位梯度)的驅動下,向平衡態進行的跨膜擴散運動。用脂質分子旋轉異構化所導致的「空腔」的形式和傳播,可部分解釋小分子、脂溶性物質的跨膜單純擴散;而用膜中蛋白質「通道」的存在則能解釋生物膜中單純擴散的高效性,如大腸桿菌外膜中脂蛋白形成的通道、細胞之間「縫隙聯結」處蛋白質形成的通道。促進擴散是膜上載體蛋白通過與被運輸物質的可逆結合而促進物質的跨膜運輸,表現出比單純擴散高得多的運輸速率和選擇性。人紅細胞膜對葡萄糖的運輸、氧化磷酸化的解偶聯劑對H+的運輸及一些離子載體對特定離子的運輸等,都屬於促進擴散之列。纈氨酶素對K+的運輸、奈及利亞菌素對K+/H+的交換運輸都屬於「移動型離子載體」。哺乳類細胞的運輸系統中,膜上載體蛋白要比纈氨黴素等大得多,往往嵌入整個膜中,因此不能在膜的兩側之間來回移動。此時形成門控通道,靠蛋白質構象轉換跨膜運輸物質;而門控特性保證了和被運輸物質的選擇結合性。紅細胞膜上帶3蛋白對HC婣/Cl-的交換跨膜擴散即是一個很好的例子。
主動運轉是物質逆著電化學位梯度跨膜運輸的過程,必須有其他能量偶聯輸入。例如,動物細胞膜上的 Na+、K+-ATP酶靠ATP的水解,逆濃度梯度驅動Na+從細胞內向外運輸,同時使K+向細胞內運輸,從而維持正常生理條件下細胞內、外的 Na+、K+濃度梯度。主動運輸的能量來源除 ATP外,還可來自光能、氧化磷酸化釋放的能量、質子電化學位梯度以及Na+梯度等。主動運輸中尚有一種在運輸過程中被運輸物質在膜上被轉化的「基團轉移」。如膜上γ-谷氨醯轉肽酶使氨基酸轉化成二肽,再進入細胞;細菌磷酸烯醇丙酮酸轉磷酸化酶運輸系統使糖轉化成磷酸糖而進入細胞。
膜動運輸是借膜的變形將大分子、配體、菌體等物質攝入細胞而將蛋白質、多糖等分泌出細胞的過程。其中通過膜上受體中介的內吞作用是個很重要的細胞學過程。以細胞攝入膽固醇為例:體液中的LDL(低密度脂蛋白)先和質膜上被膜穴處的LDL受體結合,然後被膜穴內凹形成被膜囊泡,在細胞內脫被膜後形成內含體,內含體很快酸性化使配體和受體解離,進而分裂成帶配體及帶受體的囊泡,帶配體的囊泡以後和溶酶體融合。此時,LDL被水解,釋放出膽固醇供細胞之用。帶受體的囊泡則和質膜融合,使受體再次被利用。鐵傳遞蛋白、胰島素、上皮生長因子、許多毒素和病毒等亦是通過這一途徑進入細胞的(見內吞與外排)。
能量轉換 雖然ATP也可在可溶性酶系統中合成,但極大多數是產生在一些特定的膜上,它們稱為「能量轉換膜」──線粒體內膜、類囊體膜以及細菌、藍綠藻等原核細胞的質膜。盡管這些膜在進行 ATP合成及離子運輸過程中最初的能源是各種各樣的,但機制卻很相近。1961年P.米切爾提出「化學滲透偶聯」假說,認為膜兩側H+濃度差所貯存的滲透能量能夠用來產生 ATP。這一假說將膜上電子傳遞、離子運輸及 ATP合成這三方面統一起來解釋。對於線粒體,細胞呼吸時電子傳遞過程中游離出來的能量,以內膜兩側液相間H+的電化學位梯度(Δ)的物理能量貯存。Δ使膜上的pi+H+-ATP 酶逆轉合成 ATP。植物的光合作用則是光能滲透能化學能。Δ包括兩部分:H+的濃度差ΔpH和膜兩邊電位差Δψ,其關系為:
Δ=F·Δψ-2.303RTΔpH
式中F是法拉弟常數。若至少2克離子 H+的Δ合成1克分子ATP,則有關系式:
式中ΔP稱為質子動力。
Δ......
7. 哪些分子能通過生物膜,哪些不能
這個嘛,生物膜是具有選擇透過性的,由它的糖蛋白進行識別,然後再由它的流動性讓它需要或者不需要的分子流進或者流出,其特點是水分子可以自由通過,被選擇的小分子和離子可以通過,不被選擇的小分子和離子及大分子物質不能通過。小分子:水、氨基酸、核苷酸、單糖、脂類、維生素 大分子:蛋白質、核酸、多糖。
8. 像細胞膜和其他生物膜可以讓_______自由通過,一些_______和________也可以通過,
水分子,離子,小分子,其他的離子,小分子,大分子
9. 生物膜離子通道的其它相關
離子通道研究的前沿是試圖從分子水平揭示通道蛋白的空間構象、構象變化與通道門控動力學之間的關系。
N-AchR通道
已測定了受體蛋白質分子量是250000,並測定了它的全部氨基酸序列,確證該受體通道由、α、γ和δ5個亞基組成,這4種亞基有相似的氨基酸順序,但只有α亞基上有 α-BGTX的特異結合位點。一種構象模型是:5個亞基各有若干個α螺旋跨膜排列,共同形成五瓣狀的蛋白質復合物,兩個α亞基間是親水的離子通道,通道開口約25埃,中間是6~7埃的狹窄孔道,其中排列有負電性氨基酸殘基側鏈。當兩個 Ach分子分別結合於兩個α亞基特定位點後,引起局部構象變化,使通道開放。
鈉通道
從電鰻電板分離的鈉通道蛋白質分子量是208321,是由1820個氨基酸組成的多肽序列,可分為4個相似的區段,每個區段中分別有較集中的正電性和負電性的氨基酸序列節段。多種鈉通道構象模型的共同特徵是:由多個α螺旋跨膜排列組成通道,通道內側應富含極性的氨基酸殘基側鏈,每個通道的控制部分由離子選擇性濾器、活化閘門和失活閘門3部分組成,其實體是氨基酸側鏈的極性基團。膜電位變化時,電場誘導極性基團運動,使通道局部構象發生變化,導致通道的開放、失活或關閉,並產生門控電流。關於關閉、活化和失活3種狀態之間的轉化,有兩種觀點:一種認為通道從關閉態必須經活化態才能轉化為失活態(偶聯方式),另一種認為從關閉態可以直接轉化為失活態(非偶聯方式),目前非偶聯方式得到較多的實驗事實支持。 1、選擇性:指一種通道優先讓某種離子通過,而另一些離子則不容易通過該種通道的特性。例如鈉通道開放時,鈉離子可通過,而鉀離子則不能通過。
2、開關性:離子通道存在兩種狀態,即開放和關閉狀態。多數情況時,離子通道是關閉的,只在一定的條件下開放。通道由關閉狀態轉為開放的過程稱為激活,由開放轉為關閉狀態的過程稱為失活。通道的開放與激活過程有一定的速率,通常很快,以毫秒(ms) 計算。 離子通道的開放和關閉,稱為門控。根據門控機制的不同,將離子通道分為三大類:
⑴電壓門控性,又稱電壓依賴性或電壓敏感性離子通道:因膜電位變化而開啟和關閉,以最容易通過的離子命名,如鉀、鈉、鈣、氯通道四種主要類型,各型又分若干亞型。
⑵配體門控性,又稱化學門控性離子通道。由遞質與通道蛋白質受體分子上的結合位點結合而開啟,以遞質受體命名,如乙醯膽鹼受體通道、谷氨酸受體通道、門冬氨酸受體通道等非選擇性陽離子通道一系由配體作用於相應受體而開放,同時允許鈉、鈣 或鉀通過。
⑶機械門控性又稱機械敏感性離子通道是一類感受細胞膜表面應力變化,實現胞外機械信號向胞內轉導的通道,根據通透性分為離子選擇性和非離子選擇性通道,根據功能作用分為張力激活型和張力失活型離子通道。
此外,還有細胞器離子通道,如廣泛分布於哺乳動物細胞線粒體外膜上的電壓依賴性陰離子通道,位於細胞器肌質網或內質網,膜上的受體通道、受體通道。
電壓門控鈣通道(VGC) 分為L 型(Long - lasting) 、N 型(No - Long lasting,non - tsansient) 、T 型(Transient) 和P/ Q 四個亞型.
L 型通道:電導較大、失活慢、持續時間長、需要強的去極化才能激活,在心血管、內分泌和神經等多種組織中表達,參與電- 收縮耦聯和調控代謝。
T型通道:電導小、失活快、弱的去極化電流即能激活,它主要分布在心臟和血管平滑肌,觸發起搏電活動。
N 型通道:失活較快、需強的去極化電流激活,目前僅在神經組織中發現,主要觸發交感神經遞質的釋放。
P/ Q 通道:具有相同的α1亞單位(α1A) 統稱為P/ Q 型鈣通道。P/ Q 型鈣通道在神經遞質釋放過程中有重要作用。
鉀通道:一種廣泛存在於細胞膜上的鉀離子選擇性通過的蛋白復合體,在結構和功能上形成通道的一大家庭。鉀離子通道一般可分為四個基本類型:電壓門控鉀通道(Voltage - gated K+ Channels,KV) 、鈣激活鉀通道(Calcium - activated K+ Channels,KCa) 、三磷酸腺苷敏感性鉀通道(ATP – Sensitive K+ Channels,KATP) .
電壓門控鉀通道又分為:內向整流鉀離子通道(Inward rectifier K+ Channds,Kir)、延遲外向整流鉀通道、瞬時外向鉀通道。 ⑴提高細胞內鈣濃度,從而觸發肌肉收縮、細胞興奮、腺體分泌、鈣依賴性離子通道開放和關閉、蛋白激酶的激活和基因表達的調節等一系列生理效應。
⑵在神經、肌肉等興奮性細胞,鈉和鈣通道主要調控去極化,鉀主要調控復極化和維持靜息電位,從而決定細胞的興奮性、不應性和傳導性。
⑶調節血管平滑肌舒縮活動,其中有鉀、鈣、氯通道和某些非選擇性陽離子通道與參與。
⑷參與突觸傳遞。
⑸維持細胞正常體積,在高滲環境中,離子通道和轉運系統激活使鈉、氯和水分進入細胞內而調節細胞體積增大。在低滲環境中,鈉、氯和水分流出細胞而調節細胞體積減少。 編碼離子通道亞單位的基因發生突變/ 表達異常或體內出現針對通道的病理性內源性物質時,使通道的功能出現不同程度的削弱或增強,從而導致機體整體生理功能的紊亂,出現某些先天性和後天獲得性疾病。
可分為先天性離子通道病(geneticchannelopathy) 和獲得性離子通道病(acquiredchannelopathy),其中後者既可由基因表達異常引起,又可由出現抗體等物質導致。
根據通道的類型可分為電壓門控性離子通道病(voltage-gated channelopat hy) 和配體門控性離子通道(ligandgatedchannelopathy) 等,後者也是「受體病(receptor diseases) 」的一種。
根據離子通道功能的改變不同可分為:功能增益性離子通道病和功能削弱性離子通道病等;
根據離子通道病變累及的系統可分為:神經肌肉系統離子通道病(如鉀通道突變所致的BFNC(benign familial neonatal convulsions)等) 、心血管系統離子通道病(如長Q T 綜合征) 、泌尿系統離子通道病(如Bartter 綜合征) 、呼吸系統離子通道病(如肺囊性纖維化等) 等。
1、鉀通道病:鉀離子通道在所有可興奮性和非興奮性細胞的重要信號傳導過程中具有重要作用,其家族成員在調節神經遞質釋放、心率、胰島素分泌、神經細胞分泌、上皮細胞電傳導、骨骼肌收縮、細胞容積等方 面發揮重要作用。已經發現的鉀通道病有良性家族性新生兒驚厥、1型發作性共濟失調、陣發性舞蹈手足徐動症伴發作性共濟失調、癲癇、長QT綜合征等。
2、鈉通道病:鈉離子通道在大多數興奮細胞動作電位的起始階段起重要作用,已經發現的鈉通道病有高鉀型周期性麻痹、正常血鉀型周期性麻痹、先天性肌無力等。
3、鈣通道病鈣離子通道廣泛存在於機體的不同類型組織細胞中,參與神經、肌肉、分泌、生殖等系統的生理過程。已經發現的鈣通道病有家族性偏癱型偏頭痛、低鉀型周期性癱瘓、共濟失調、肌無力綜合征等。
4、氯通道病:氯離子通道廣泛分布於機體的興奮性細胞和非興奮性細胞膜及溶酶體、線粒體、內質網等細胞器的質膜,在細胞興奮性調節、跨上皮物質轉運、細胞容積調節和細胞器酸化等方面具有重要作用。已經發現的氯通道病有先天性肌強直、隱性遺傳全身性肌強直、囊性纖維化病、遺傳性腎結石病。 病變中的離子通道改變是指由於某一疾病或葯物引起某一種或幾種離子通道的數目、功能甚至結構變化。
如老年性痴呆症(AD):大量的研究發現患者體內的一些內源性致病物質如β澱粉樣蛋白、β澱粉樣蛋白前體、早老素蛋白 與鉀通道、鈣通道功能異常密切相關,可能通過影響鉀通道、鈣通道的本身結構和或調節過程等,參與患者早期記憶損失、認知功能下降等症狀的出現。
如腦缺血:缺血後能量代謝紊亂,細胞內ATP合成下降,突觸間隙的谷氨酸劇增,谷氨酸作用NMDA受體,引起受體依賴性鈣通道開放,鈣內流增加,導致神經細胞內鈣超載谷氨酸還可經非NMDA途徑使鈉通道開放,引起鈉內流增加,隨即引起氯和水內流,導致神經細胞急性滲透性腫脹。 絕大多數鈉通道為電壓門控性通道,主要是維持細胞膜的興奮性和傳導性。
分布密度不等,每平方微米幾百個到幾千個。
重要特性:對鈉高度選擇性、電壓依賴性、激活和失活速度快
有激活閘門、失活閘門、電壓感受器
葯物有3類:
鈉通道阻滯劑:河豚素(TTX)、甲藻毒素等
促進激活的葯物:箭毒蛙毒素、藜蘆鹼等
促進失活的葯物:局麻葯、聚L-精氨酸等
阻滯或促進鈉通道失活的葯物抑制快鈉內流,促進激活或抑制失活的葯物增大鈉內向電流。 鉀通道分布廣泛,有數十種類型;
⑴瞬時外向鉀通道:廣泛存在心肌細胞
生理特性:電壓依賴性、時間依賴性、頻率依賴性、失活。表現為瞬時外向電流(Ito),隨後關閉。Ito是參與心肌復極主要離子流。
⑵延遲外向整流鉀通道:延遲外向整流鉀通道電流(Ik)可分為快激活整流鉀電流(Ikr)和慢激活整流鉀電流(Iks)
生理特性:延遲整流性、時間依賴性、電壓依賴性。參與心肌動作到位復極化過程,是抗心律失常葯物作用重要分子靶標,如Ⅲ類抗心律失常葯胺碘酮等
⑶內向整流鉀通道(Kir)
分布心肌、骨骼肌、平滑肌、內分泌細胞等
生理功能:維持細胞靜息電位、調節血管平滑肌舒縮等。
四乙胺、Zn、Cd、Cs、Ba等離子為非特異性阻斷劑;苯吡喃的衍生物是特異性阻斷劑。
⑷鈣激活鉀通道(Kca)
廣泛分布於除心肌以外的各組織細胞,是一個大家族,分3個亞類:大電導型(BKca) 、中電導型(IKca)和小電導型(SKca)。BKca調節血管平滑肌起重要作用,其阻斷劑有:iberiotoxin,charybdotoxin。
⑸ATP敏感性鉀通道(KATP)
分布於胰腺細胞、神經元、平滑肌等
阻斷劑:磺醯脲類降糖葯等.
KATP可能抗缺血損傷的葯物作用靶標。 鈣通道阻滯劑和鈣通道激活劑。
⑴鈣通道阻滯劑
發展極其迅速,有數十種,主要用於心血管病治療。國際葯理學會分類:
一類:選擇性作用於L-型鈣通道明確位點的葯物,根據化學結構又分為:Ia類:二氫吡啶類如硝笨地平;Ib類:地爾硫桌類如地爾硫卓類;Ic類:苯烷胺類如維拉帕米;Id類如粉防己鹼等。
二類:選擇性作用於其它電壓門控鈣通道的葯物;如作用於T通道葯物苯妥英、右美沙芬等;作用於N通道的芋螺毒素,作用於P通道的蜘蛛毒素
⑵鈣通道激活劑
增加鈣內流、促進遞質和激素分泌,引起心肌和平滑肌收縮。主要作為工具葯。 電壓依賴性氯通道、容積激活性氯通道、鈣激活性氯通道、配體激活性氯通道等。