㈠ 植物仿生學的例子
王蓮托起大跨度建築
在亞馬遜河的小河灣和支流里,生長著有「蓮花之王」盛譽的王蓮,東一簇,西一片。盛夏時節,從蓮葉之間探出直徑40厘米左右潔白的花朵,散發出淡淡的芳香。
王蓮的葉子很大,直徑有2米多,四周向上反卷,像一個大平底鍋。蓮葉向陽的一面淡綠色,非常光滑;背陰的一面土紅色,密布粗壯的葉脈和很長的刺毛。雖然只是一片巨大的葉子,但它的支撐和承重能力卻極不一般。在一片王蓮葉上,站一名35公斤的少年,它仍能像小船一樣穩穩地浮在水面上;即使是在葉面上均勻地平鋪一層75厘米厚的細沙,這個「大平底鍋」依然紋絲不動,決不會沉入水中。人們通過仔細研究發現,這異常強大的力量來自縱橫交錯、粗細不等的葉脈。蓮葉背面有許許多多粗大的呈放射狀的葉脈,之間還有鐮刀形的橫筋緊密聯結,構成了一種非常穩定的網狀骨架。蓮葉較強的承重能力由此而來。
自從1801年歐洲人發現王蓮以來,蓮葉的結構與功能便一直成為建築學家研究的課題,並試圖將其用於建築設計。經過努力,如今,這一美好的願望終於變為現實。我們時常見到的大跨度宏偉樓房建築工程,在房頂結構上都還能或多或少地看出王蓮葉片結構的輪廓。近年來,義大利工程學家以此還設計建造了一座跨度達95米的展覽大廳,既輕巧堅固,又造型大方,可謂仿生建築的傑作。
魯班是怎樣發明鋸子的呢?相傳有一次他進深山砍樹木時,一不小心,手被一種野草的葉子劃破了,他摘下葉片輕輕一摸,原來葉子兩邊長著鋒利的齒,他的手就是被這些小齒劃破的,他還看到在一棵野草上有條大蝗蟲,兩個大板牙上也排列著許多小齒,所以能很快地磨碎葉片。魯班就從這兩件事上得到了啟發。他想,要是這樣齒狀的工具,不是也能很快地鋸斷樹木了嗎!於是,他經過多次試驗,終於發明了鋒利的鋸子,大大提高了工效
㈡ 運用仿生學的動物
蒼蠅與宇宙飛船
令人討厭的蒼蠅,與宏偉的航天事業似乎風馬牛不相及,但仿生學卻把它們緊密地聯系起來了。
蒼蠅是聲名狼藉的「逐臭之夫」,凡是腥臭污穢的地方,都有它們的蹤跡。蒼蠅的嗅覺特別靈敏,遠在幾千米外的氣味也能嗅到。但是蒼蠅並沒有「鼻子」,它靠什麼來充當嗅覺的呢? 原來,蒼蠅的「鼻子」——嗅覺感受器分布在頭部的一對觸角上。
每個「鼻子」只有一個「鼻孔」與外界相通,內含上百個嗅覺神經細胞。若有氣味進入「鼻孔」,這些神經立即把氣味刺激轉變成神經電脈沖,送往大腦。大腦根據不同氣味物質所產生的神經電脈沖的不同,就可區別出不同氣味的物質。因此,蒼蠅的觸角像是一台靈敏的氣體分析儀。
仿生學家由此得到啟發,根據蒼蠅嗅覺器的結構和功能,仿製成一種十分奇特的小型氣體分析儀。這種儀器的「探頭」不是金屬,而是活的蒼蠅。就是把非常纖細的微電極插到蒼蠅的嗅覺神經上,將引導出來的神經電信號經電子線路放大後,送給分析器;分析器一經發現氣味物質的信號,便能發出警報。這種儀器已經被安裝在宇宙飛船的座艙里,用來檢測艙內氣體的成分。
這種小型氣體分析儀,也可測量潛水艇和礦井裡的有害氣體。利用這種原理,還可用來改進計算機的輸入裝置和有關氣體色層分析儀的結構原理中。
從螢火蟲到人工冷光
自從人類發明了電燈,生活變得方便、豐富多了。但電燈只能將電能的很少一部分轉變成可見光,其餘大部分都以熱能的形式浪費掉了,而且電燈的熱射線有害於人眼。那麼,有沒有隻發光不發熱的光源呢? 人類又把目光投向了大自然。
在自然界中,有許多生物都能發光,如細菌、真菌、蠕蟲、軟體動物、甲殼動物、昆蟲和魚類等,而且這些動物發出的光都不產生熱,所以又被稱為「冷光」。
在眾多的發光動物中,螢火蟲是其中的一類。螢火蟲約有1 500種,它們發出的冷光的顏色有黃綠色、橙色,光的亮度也各不相同。螢火蟲發出冷光不僅具有很高的發光效率,而且發出的冷光一般都很柔和,很適合人類的眼睛,光的強度也比較高。因此,生物光是一種人類理想的光。
科學家研究發現,螢火蟲的發光器位於腹部。這個發光器由發光層、透明層和反射層三部分組成。發光層擁有幾千個發光細胞,它們都含有熒光素和熒光酶兩種物質。在熒光酶的作用下,熒光素在細胞內水分的參與下,與氧化合便發出熒光。螢火蟲的發光,實質上是把化學能轉變成光能的過程。
早在40年代,人們根據對螢火蟲的研究,創造了日光燈,使人類的照明光源發生了很大變化。近年來,科學家先是從螢火蟲的發光器中分離出了純熒光素,後來又分離出了熒光酶,接著,又用化學方法人工合成了熒光素。由熒光素、熒光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充滿爆炸性瓦斯的礦井中當閃光燈。由於這種光沒有電源,不會產生磁場,因而可以在生物光源的照明下,做清除磁性水雷等工作。
現在,人們已能用摻和某些化學物質的方法得到類似生物光的冷光,作為安全照明用。
電魚與伏特電池
自然界中有許多生物都能產生電,僅僅是魚類就有500餘種 。人們將這些能放電的魚,統稱為「電魚」。
各種電魚放電的本領各不相同。放電能力最強的是電鰩、電鯰和電鰻。中等大小的電鰩能產生70伏左右的電壓,而非洲電鰩能產生的電壓高達220伏;非洲電鯰能產生350伏的電壓;電鰻能產生500伏的電壓,有一種南美洲電鰻竟能產生高達880伏的電壓,稱得上電擊冠軍,據說它能擊斃像馬那樣的大動物。
電魚放電的奧秘究竟在哪裡?經過對電魚的解剖研究, 終於發現在電魚體內有一種奇特的發電器官。這些發電器是由許多叫電板或電盤的半透明的盤形細胞構成的。由於電魚的種類不同,所以發電器的形狀、位置、電板數都不一樣。電鰻的發電器呈棱形,位於尾部脊椎兩側的肌肉中;電鰩的發電器形似扁平的腎臟,排列在身體中線兩側,共有200萬塊電板;電鯰的發電器起源於某種腺體,位於皮膚與肌肉之間,約有500萬塊電板。單個電板產生的電壓很微弱,但由於電板很多,產生的電壓就很大了。
電魚這種非凡的本領,引起了人們極大的興趣。19世紀初,義大利物理學家伏特,以電魚發電器官為模型,設計出世界上最早的伏打電池。因為這種電池是根據電魚的天然發電器設計的,所以把它叫做「人造電器官」。對電魚的研究,還給人們這樣的啟示:如果能成功地模仿電魚的發電器官,那麼,船舶和潛水艇等的動力問題便能得到很好的解決。
水母的順風耳
「燕子低飛行將雨,蟬鳴雨中天放晴。」生物的行為與天氣的變化有一定關系。沿海漁民都知道,生活在沿岸的魚和水母成批地游向大海,就預示著風暴即將來臨。
水母,又叫海蜇,是一種古老的腔腸動物,早在5億年前,它就漂浮在海洋里了。這種低等動物有預測風暴的本能,每當風暴來臨前,它就游向大海避難去了。
原來,在藍色的海洋上,由空氣和波浪摩擦而產生的次聲波 (頻率為每秒8—13次),總是風暴來臨的前奏曲。這種次聲波人耳無法聽到,小小的水母卻很敏感。仿生學家發現,水母的耳朵的共振腔里長著一個細柄,柄上有個小球,球內有塊小小的聽石,當風暴前的次聲波沖擊水母耳中的聽石時,聽石就刺激球壁上的神經感受器,於是水母就聽到了正在來臨的風暴的隆隆聲。
仿生學家仿照水母耳朵的結構和功能,設計了水母耳風暴預測儀,相當精確地模擬了水母感受次聲波的器官。把這種儀器安裝在艦船的前甲板上,當接受到風暴的次聲波時,可令旋轉360°的喇叭自行停止旋轉,它所指的方向,就是風暴前進的方向;指示器上的讀數即可告知風暴的強度。這種預測儀能提前15小時對風暴作出預報,對航海和漁業的安全都有重要意義。
-- 結構構件
對於構件,在截面面積相同的情況下,把材料盡可能放到遠離中和軸的位置上,是有效的截面形狀。有趣的是,在自然界許多動植物的組織中也體現了這個結論。例如:「疾風知勁草」,許多能承受狂風的植物的莖部是維管狀結構,其截面是空心的。支持人承重和運動的骨骼,其截面上密實的骨質分布在四周,而柔軟的骨髓充滿內腔。在建築結構中常被採用的空心樓板、箱形大梁、工形截面鈑梁以及折板結構、空間薄壁結構等都是根據這條結論得來的。
-- 斑馬
斑馬生活在非洲大陸,外形與一般的馬沒有什麼兩樣,它們身上的條紋是為適應生存環境而衍化出來的保護色。在所有斑馬中,細斑馬長得最大最美。它的肩高140-160厘米,耳朵又圓又大,條紋細密且多。斑馬常與草原上的牛羚、旋角大羚羊、瞪羚及鴕鳥等共外,以抵禦天敵。人類將斑馬條紋應用到軍事上是一個是很成功仿生學例子。。
㈢ 植物仿生學有那些
附:部分「仿生學」實例
蒼蠅與宇宙飛船
令人討厭的蒼蠅,與宏偉的航天事業似乎風馬牛不相及,但仿生學卻把它們緊密地聯系起來了。
蒼蠅是聲名狼藉的「逐臭之夫」,凡是腥臭污穢的地方,都有它們的蹤跡。蒼蠅的嗅覺特別靈敏,遠在幾千米外的氣味也能嗅到。但是蒼蠅並沒有「鼻子」,它靠什麼來充當嗅覺的呢? 原來,蒼蠅的「鼻子」——嗅覺感受器分布在頭部的一對觸角上。
每個「鼻子」只有一個「鼻孔」與外界相通,內含上百個嗅覺神經細胞。若有氣味進入「鼻孔」,這些神經立即把氣味刺激轉變成神經電脈沖,送往大腦。大腦根據不同氣味物質所產生的神經電脈沖的不同,就可區別出不同氣味的物質。因此,蒼蠅的觸角像是一台靈敏的氣體分析儀。
仿生學家由此得到啟發,根據蒼蠅嗅覺器的結構和功能,仿製成功一種十分奇特的小型氣體分析儀。這種儀器的「探頭」不是金屬,而是活的蒼蠅。就是把非常纖細的微電極插到蒼蠅的嗅覺神經上,將引導出來的神經電信號經電子線路放大後,送給分析器;分析器一經發現氣味物質的信號,便能發出警報。這種儀器已經被安裝在宇宙飛船的座艙里,用來檢測艙內氣體的成分。
這種小型氣體分析儀,也可測量潛水艇和礦井裡的有害氣體。利用這種原理,還可用來改進計算機的輸入裝置和有關氣體色層分析儀的結構原理中。
從螢火蟲到人工冷光
自從人類發明了電燈,生活變得方便、豐富多了。但電燈只能將電能的很少一部分轉變成可見光,其餘大部分都以熱能的形式浪費掉了,而且電燈的熱射線有害於人眼。那麼,有沒有隻發光不發熱的光源呢? 人類又把目光投向了大自然。
在自然界中,有許多生物都能發光,如細菌、真菌、蠕蟲、軟體動物、甲殼動物、昆蟲和魚類等,而且這些動物發出的光都不產生熱,所以又被稱為「冷光」。
在眾多的發光動物中,螢火蟲是其中的一類。螢火蟲約有1 500種,它們發出的冷光的顏色有黃綠色、橙色,光的亮度也各不相同。螢火蟲發出冷光不僅具有很高的發光效率,而且發出的冷光一般都很柔和,很適合人類的眼睛,光的強度也比較高。因此,生物光是一種人類理想的光。
科學家研究發現,螢火蟲的發光器位於腹部。這個發光器由發光層、透明層和反射層三部分組成。發光層擁有幾千個發光細胞,它們都含有熒光素和熒光酶兩種物質。在熒光酶的作用下,熒光素在細胞內水分的參與下,與氧化合便發出熒光。螢火蟲的發光,實質上是把化學能轉變成光能的過程。
早在40年代,人們根據對螢火蟲的研究,創造了日光燈,使人類的照明光源發生了很大變化。近年來,科學家先是從螢火蟲的發光器中分離出了純熒光素,後來又分離出了熒光酶,接著,又用化學方法人工合成了熒光素。由熒光素、熒光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充滿爆炸性瓦斯的礦井中當閃光燈。由於這種光沒有電源,不會產生磁場,因而可以在生物光源的照明下,做清除磁性水雷等工作。
現在,人們已能用摻和某些化學物質的方法得到類似生物光的冷光,作為安全照明用。
電魚與伏特電池
自然界中有許多生物都能產生電,僅僅是魚類就有500餘種 。人們將這些能放電的魚,統稱為「電魚」。
各種電魚放電的本領各不相同。放電能力最強的是電鰩、電鯰和電鰻。中等大小的電鰩能產生70伏左右的電壓,而非洲電鰩能產生的電壓高達220伏;非洲電鯰能產生350伏的電壓;電鰻能產生500伏的電壓,有一種南美洲電鰻竟能產生高達880伏的電壓,稱得上電擊冠軍,據說它能擊斃像馬那樣的大動物。
電魚放電的奧秘究竟在哪裡?經過對電魚的解剖研究, 終於發現在電魚體內有一種奇特的發電器官。這些發電器是由許多叫電板或電盤的半透明的盤形細胞構成的。由於電魚的種類不同,所以發電器的形狀、位置、電板數都不一樣。電鰻的發電器呈棱形,位於尾部脊椎兩側的肌肉中;電鰩的發電器形似扁平的腎臟,排列在身體中線兩側,共有200萬塊電板;電鯰的發電器起源於某種腺體,位於皮膚與肌肉之間,約有500萬塊電板。單個電板產生的電壓很微弱,但由於電板很多,產生的電壓就很大了。
電魚這種非凡的本領,引起了人們極大的興趣。19世紀初,義大利物理學家伏特,以電魚發電器官為模型,設計出世界上最早的伏打電池。因為這種電池是根據電魚的天然發電器設計的,所以把它叫做「人造電器官」。對電魚的研究,還給人們這樣的啟示:如果能成功地模仿電魚的發電器官,那麼,船舶和潛水艇等的動力問題便能得到很好的解決。
水母的順風耳
「燕子低飛行將雨,蟬鳴雨中天放晴。」生物的行為與天氣的變化有一定關系。沿海漁民都知道,生活在沿岸的魚和水母成批地游向大海,就預示著風暴即將來臨。
水母,又叫海蜇,是一種古老的腔腸動物,早在5億年前,它就漂浮在海洋里了。這種低等動物有預測風暴的本能,每當風暴來臨前,它就游向大海避難去了。
原來,在藍色的海洋上,由空氣和波浪摩擦而產生的次聲波 (頻率為每秒8—13次),總是風暴來臨的前奏曲。這種次聲波人耳無法聽到,小小的水母卻很敏感。仿生學家發現,水母的耳朵的共振腔里長著一個細柄,柄上有個小球,球內有塊小小的聽石,當風暴前的次聲波沖擊水母耳中的聽石時,聽石就剌激球壁上的神經感受器,於是水母就聽到了正在來臨的風暴的隆隆聲。
仿生學家仿照水母耳朵的結構和功能,設計了水母耳風暴預測儀,相當精確地模擬了水母感受次聲波的器官。把這種儀器安裝在艦船的前甲板上,當接受到風暴的次聲波時,可令旋轉360°的喇叭自行停止旋轉,它所指的方向,就是風暴前進的方向;指示器上的讀數即可告知風暴的強度。這種預測儀能提前15小時對風暴作出預報,對航海和漁業的安全都有重要意義 回答者: liuyifei2372 | 三級 | 2007-3-28 17:53
蒼蠅,是細菌的傳播者,誰都討厭它。可是蒼蠅的楫翅(又叫平衡棒)是「天然導航儀」,人們模仿它製成了「振動陀螺儀」。這種儀器目前已經應用在火箭和高速飛機上,實現了自動駕駛。蒼蠅的眼睛是一種「復眼」,由30O0多隻小眼組成,人們模仿它製成了「蠅眼透鏡」。「蠅眼透鏡」是用幾百或者幾千塊小透鏡整齊排列組合而成的,用它作鏡頭可以製成「蠅眼照相機」,一次就能照出千百張相同的相片。這種照相機已經用於印刷製版和大量復制電子計算機的微小電路,大大提高了工效和質量。「蠅眼透鏡」是一種新型光學元件,它的用途很多。
魚兒在水中有自由來去的本領,人們就模仿魚類的形體造船,以木槳仿鰭。相傳早在大禹時期,我國古代勞動人民觀察魚在水中用尾巴的搖擺而游動、轉彎,他們就在船尾上架置木槳。通過反復的觀察、模仿和實踐,逐漸改成櫓和舵,增加了船的動力,掌握了使船轉彎的手段。這樣,即使在波濤滾滾的江河中,人們也能讓船隻航行自如。
四百多年前,義大利人利奧那多·達·芬奇和他的助手對鳥類進行仔細的解剖,研究鳥的身體結構並認真觀察鳥類的飛行。設計和製造了一架撲翼機,這是世界上第一架人造飛行器。
在第一次世界大戰時期,出於軍事上的需要,為使艦艇在水下隱蔽航行而製造出潛水艇。當工程技術人員在設計原始的潛艇時,是先用石塊或鉛塊裝在潛艇上使它下沉,如果需要升至水面,就將攜帶的石塊或鉛塊扔掉,使艇身回到水面來。以後經過改進,在潛艇上採用浮箱交替充水和排水的方法來改變潛艇的重量。以後又改成壓載水艙,在水艙的上部設放氣閥,下面設注水閥,當水艙灌滿海水時,艇身重量增加使可它潛入水中。需要緊急下潛時,還有速潛水艙,待艇身潛入水中後,再把速潛水艙內的海水排出。如果一部分壓載水艙充水,另一部分空著,潛水艇可處於半潛狀態。潛艇要起浮時,將壓縮空氣通入水艙排出海水,艇內海水重量減輕後潛艇就可以上浮。如此優越的機械裝置實現了潛艇的自由沉浮。但是後來發現魚類的沉浮系統比人們的發明要簡單得多,魚的沉浮系統僅僅是充氣的魚鰾。鰾內不受肌肉的控制,而是依靠分泌氧氣進入鰾內或是重新吸收鰾內一部分氧氣來調節魚鰾中氣體含量,促使魚體自由沉浮。然而魚類如此巧妙的沉浮系統,對於潛艇設計師的啟發和幫助已經為時過遲了。
聲音是人們生活中不可缺少的要素。通過語言,人們交流思想和感情,優美的音樂使人們獲得藝術的享受,工程技術人員還把聲學系統應用在工業生產和軍事技術中,成為頗為重要的信息之一。自從潛水艇問世以來,隨之而來的就是水面的艦船如何發現潛艇的位置以防偷襲;而潛艇沉入水中後,也須准確測定敵船方位和距離以利攻擊。因此,在第一次世界大戰期間,在海洋上,水面與水中敵對雙方的斗爭採用了各種手段。海軍工程師們也利用聲學系統作為一個重要的偵察手段。首先採用的是水聽器,也稱雜訊測向儀,通過聽測敵艦航行中所發出的雜訊來發現敵艦。只要周圍水域中有敵艦在航行,機器與螺旋槳推進器便發出雜訊,通過水聽器就能聽到,能及時發現敵人。但那時的水聽器很不完善,一般只能收到本身艦只的雜訊,要偵聽敵艦,必須減慢艦只航行速度甚至完全停車才能分辨潛艇的噪音,這樣很不利於戰斗行動。不久,法國科學家郎之萬(1872~1946)研究成功利用超聲波反射的性質來探測水下艦艇。用一個超聲波發生器,向水中發出超聲波後,如果遇到目標便反射回來,由接收器收到。根據接收回波的時間間隔和方位,便可測出目標的方位和距離,這就是所謂的聲納系統。人造聲納系統的發明及在偵察敵方潛水艇方面獲得的突出成果,曾使人們為之驚嘆不已。豈不知遠在地球上出現人類之前,蝙蝠、海豚早已對「回聲定位」聲納系統應用自如了。
㈣ 動物仿生學都有哪些例子
1.人們根據蛙眼的視覺原理,已研製成功一種電子蛙眼。這種電子蛙眼能像真的蛙眼那樣,准確無誤地識別出特定形狀的物體。把電子蛙眼裝入雷達系統後,雷達抗干擾能力大大提高。這種雷達系統能快速而准確地識別出特定形狀的飛機、艦船和導彈等。特別是能夠區別真假導彈,防止以假亂真。 電子蛙眼還廣泛應用在機場及交通要道上。在機場,它能監視飛機的起飛與降落,若發現飛機將要發生碰撞,能及時發出警報。在交通要道,它能指揮車輛的行駛,防止車輛碰撞事故的發生。 2。根據蝙蝠超聲定位器的原理,人們還仿製了盲人用的「探路儀」。這種探路儀內裝一個超聲波發射器,盲人帶著它可以發現電桿、台階、橋上的人等。如今,有類似作用的「超聲眼鏡」也已製成。 3。模擬藍藻的不完全光合器,將設計出仿生光解水的裝置,從而可獲得大量的氫氣。 4。根據對人體骨胳肌肉系統和生物電控制的研究,已仿製了人力增強器——步行機。 5。現代起重機的掛鉤起源於許多動物的爪子。 6。屋頂瓦楞模仿動物的鱗甲。 7。船槳模仿的是魚的鰭。 8。鋸子學的是螳螂臂,或鋸齒草。 9。蒼耳屬植物獲取靈感發明了尼龍搭扣。 10。嗅覺靈敏的龍蝦為人們製造氣味探測儀提供了思路。 11。壁虎腳趾對製造能反復使用的粘性錄音帶提供了令人鼓舞的前景。 12。貝用它的蛋白質生成的膠體非常牢固,這樣一種膠體可應用在從外科手術的縫合到補船等一切事情上。13。飛機模仿鳥類。
㈤ 植物仿生學有哪些
仿生學一詞是1960年由美國斯蒂爾根據拉丁文「bios」(生命方式的意思)和字尾「nlc」(「具有……的性質」的意思)構成的。他認為「仿生學是研究以模仿生物系統的方式、或是以具有生物系統特徵的方式、或是以類似於生物系統方式工作的系統的科學」。盡管人類在文明進化中不斷從生物界受到新的啟示,但仿生學的誕生,一般以1960年全美第一屆仿生學討論會的召開為標志。
仿生學的研究范圍主要包括:力學仿生、分子仿生、能量仿生、信息與控制仿生等。
力學仿生,是研究並模仿生物體大體結構與精細結構的靜力學性質,以及生物體各組成部分在體內相對運動和生物體在環境中運動的動力學性質。例如,建築上模仿貝殼修造的大跨度薄殼建築,模仿股骨結構建造的立柱,既消除應力特別集中的區域,又可用最少的建材承受最大的載荷。軍事上模仿海豚皮膚的溝槽結構,把人工海豚皮包敷在船艦外殼上,可減少航行揣流,提高航速;
分子仿生,是研究與模擬生物體中酶的催化作用、生物膜的選擇性、通透性、生物大分子或其類似物的分析和合成等。例如,在搞清森林害蟲舞毒蛾性引誘激素的化學結構後,合成了一種類似有機化合物,在田間捕蟲籠中用千萬分之一微克,便可誘殺雄蟲;
能量仿生,是研究與模仿生物電器官生物發光、肌肉直接把化學能轉換成機械能等生物體中的能量轉換過程;
信息與控制仿生,是研究與模擬感覺器官、神經元與神經網路、以及高級中樞的智能活動等方面生物體中的信息處理過程。例如根據象鼻蟲視動反應製成的「自相關測速儀」可測定飛機著陸速度。根據鱟復眼視網膜側抑制網路的工作原理,研製成功可增強圖像輪廓、提高反差、從而有助於模糊目標檢測的—些裝置。已建立的神經元模型達100種以上,並在此基礎上構造出新型計算機。
模仿人類學習過程,製造出一種稱為「感知機」的機器,它可以通過訓練,改變元件之間聯系的權重來進行學習,從而能實現模式識別。此外,它還研究與模擬體內穩態,運動控制、動物的定向與導航等生物系統中的控制機制,以及人-機系統的仿生學方面。
某些文獻中,把分子仿生與能量仿生的部分內容稱為化學仿生,而把信息和控制仿生的部分內容稱為神經仿生。
仿生學的范圍很廣,信息與控制仿生是一個主要領域。一方面由於自動化向智能控制發展的需要,另一方面是由於生物科學已發展到這樣一個階段,使研究大腦已成為對神經科學最大的挑戰。人工智慧和智能機器人研究的仿生學方面——生物模式識別的研究,大腦學習記憶和思維過程的研究與模擬,生物體中控制的可靠性和協調問題等——是仿生學研究的主攻方面。
控制與信息仿生和生物控制論關系密切。兩者都研究生物系統中的控制和信息過程,都運用生物系統的模型。但前者的目的主要是構造實用人造硬體系統;而生物控制論則從控制論的一般原理,從技術科學的理論出發,為生物行為尋求解釋。
最廣泛地運用類比、模擬和模型方法是仿生學研究方法的突出特點。其目的不在於直接復制每一個細節,而是要理解生物系統的工作原理,以實現特定功能為中心目的。—般認為,在仿生學研究中存在下列三個相關的方面:生物原型、數學模型和硬體模型。前者是基礎,後者是目的,而數學模型則是兩者之間必不可少的橋梁。
由於生物系統的復雜性,搞清某種生物系統的機制需要相當長的研究周期,而且解決實際問題需要多學科長時間的密切協作,這是限制仿生學發展速度的主要原因。
其他生物學分支學科
生物學概述、植物學、孢粉學、動物學、微生物學、細胞生物學、分子生物學、生物分類學、習性學、生理學、細菌學、微生物生理學、微生物遺傳學、土壤微生物學、細胞學、細胞化學、細胞遺傳學、免疫學、胚胎學、優生學、悉生生物學、遺傳學、分子遺傳學、生態學、仿生學、生物物理學、生物力學、生物力能學、生物聲學、生物化學、生物數學
附:部分「仿生學」實例
蒼蠅與宇宙飛船
令人討厭的蒼蠅,與宏偉的航天事業似乎風馬牛不相及,但仿生學卻把它們緊密地聯系起來了。
蒼蠅是聲名狼藉的「逐臭之夫」,凡是腥臭污穢的地方,都有它們的蹤跡。蒼蠅的嗅覺特別靈敏,遠在幾千米外的氣味也能嗅到。但是蒼蠅並沒有「鼻子」,它靠什麼來充當嗅覺的呢? 原來,蒼蠅的「鼻子」——嗅覺感受器分布在頭部的一對觸角上。
每個「鼻子」只有一個「鼻孔」與外界相通,內含上百個嗅覺神經細胞。若有氣味進入「鼻孔」,這些神經立即把氣味刺激轉變成神經電脈沖,送往大腦。大腦根據不同氣味物質所產生的神經電脈沖的不同,就可區別出不同氣味的物質。因此,蒼蠅的觸角像是一台靈敏的氣體分析儀。
仿生學家由此得到啟發,根據蒼蠅嗅覺器的結構和功能,仿製成功一種十分奇特的小型氣體分析儀。這種儀器的「探頭」不是金屬,而是活的蒼蠅。就是把非常纖細的微電極插到蒼蠅的嗅覺神經上,將引導出來的神經電信號經電子線路放大後,送給分析器;分析器一經發現氣味物質的信號,便能發出警報。這種儀器已經被安裝在宇宙飛船的座艙里,用來檢測艙內氣體的成分。
這種小型氣體分析儀,也可測量潛水艇和礦井裡的有害氣體。利用這種原理,還可用來改進計算機的輸入裝置和有關氣體色層分析儀的結構原理中。
從螢火蟲到人工冷光
自從人類發明了電燈,生活變得方便、豐富多了。但電燈只能將電能的很少一部分轉變成可見光,其餘大部分都以熱能的形式浪費掉了,而且電燈的熱射線有害於人眼。那麼,有沒有隻發光不發熱的光源呢? 人類又把目光投向了大自然。
在自然界中,有許多生物都能發光,如細菌、真菌、蠕蟲、軟體動物、甲殼動物、昆蟲和魚類等,而且這些動物發出的光都不產生熱,所以又被稱為「冷光」。
在眾多的發光動物中,螢火蟲是其中的一類。螢火蟲約有1 500種,它們發出的冷光的顏色有黃綠色、橙色,光的亮度也各不相同。螢火蟲發出冷光不僅具有很高的發光效率,而且發出的冷光一般都很柔和,很適合人類的眼睛,光的強度也比較高。因此,生物光是一種人類理想的光。
科學家研究發現,螢火蟲的發光器位於腹部。這個發光器由發光層、透明層和反射層三部分組成。發光層擁有幾千個發光細胞,它們都含有熒光素和熒光酶兩種物質。在熒光酶的作用下,熒光素在細胞內水分的參與下,與氧化合便發出熒光。螢火蟲的發光,實質上是把化學能轉變成光能的過程。
早在40年代,人們根據對螢火蟲的研究,創造了日光燈,使人類的照明光源發生了很大變化。近年來,科學家先是從螢火蟲的發光器中分離出了純熒光素,後來又分離出了熒光酶,接著,又用化學方法人工合成了熒光素。由熒光素、熒光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充滿爆炸性瓦斯的礦井中當閃光燈。由於這種光沒有電源,不會產生磁場,因而可以在生物光源的照明下,做清除磁性水雷等工作。
現在,人們已能用摻和某些化學物質的方法得到類似生物光的冷光,作為安全照明用。
電魚與伏特電池
自然界中有許多生物都能產生電,僅僅是魚類就有500餘種 。人們將這些能放電的魚,統稱為「電魚」。
各種電魚放電的本領各不相同。放電能力最強的是電鰩、電鯰和電鰻。中等大小的電鰩能產生70伏左右的電壓,而非洲電鰩能產生的電壓高達220伏;非洲電鯰能產生350伏的電壓;電鰻能產生500伏的電壓,有一種南美洲電鰻竟能產生高達880伏的電壓,稱得上電擊冠軍,據說它能擊斃像馬那樣的大動物。
電魚放電的奧秘究竟在哪裡?經過對電魚的解剖研究, 終於發現在電魚體內有一種奇特的發電器官。這些發電器是由許多叫電板或電盤的半透明的盤形細胞構成的。由於電魚的種類不同,所以發電器的形狀、位置、電板數都不一樣。電鰻的發電器呈棱形,位於尾部脊椎兩側的肌肉中;電鰩的發電器形似扁平的腎臟,排列在身體中線兩側,共有200萬塊電板;電鯰的發電器起源於某種腺體,位於皮膚與肌肉之間,約有500萬塊電板。單個電板產生的電壓很微弱,但由於電板很多,產生的電壓就很大了。
電魚這種非凡的本領,引起了人們極大的興趣。19世紀初,義大利物理學家伏特,以電魚發電器官為模型,設計出世界上最早的伏打電池。因為這種電池是根據電魚的天然發電器設計的,所以把它叫做「人造電器官」。對電魚的研究,還給人們這樣的啟示:如果能成功地模仿電魚的發電器官,那麼,船舶和潛水艇等的動力問題便能得到很好的解決。
水母的順風耳
「燕子低飛行將雨,蟬鳴雨中天放晴。」生物的行為與天氣的變化有一定關系。沿海漁民都知道,生活在沿岸的魚和水母成批地游向大海,就預示著風暴即將來臨。
水母,又叫海蜇,是一種古老的腔腸動物,早在5億年前,它就漂浮在海洋里了。這種低等動物有預測風暴的本能,每當風暴來臨前,它就游向大海避難去了。
原來,在藍色的海洋上,由空氣和波浪摩擦而產生的次聲波 (頻率為每秒8—13次),總是風暴來臨的前奏曲。這種次聲波人耳無法聽到,小小的水母卻很敏感。仿生學家發現,水母的耳朵的共振腔里長著一個細柄,柄上有個小球,球內有塊小小的聽石,當風暴前的次聲波沖擊水母耳中的聽石時,聽石就剌激球壁上的神經感受器,於是水母就聽到了正在來臨的風暴的隆隆聲。
仿生學家仿照水母耳朵的結構和功能,設計了水母耳風暴預測儀,相當精確地模擬了水母感受次聲波的器官。把這種儀器安裝在艦船的前甲板上,當接受到風暴的次聲波時,可令旋轉360°的喇叭自行停止旋轉,它所指的方向,就是風暴前進的方向;指示器上的讀數即可告知風暴的強度。這種預測儀能提前15小時對風暴作出預報,對航海和漁業的安全都有重要意義
㈥ 仿生動物有哪些
1、蝙蝠與雷達
原理:蝙蝠「回聲定位」。
蝙蝠本領:蝙蝠發射出的超聲波碰到飛舞的昆蟲能立刻反射回來,這時,蝙蝠就知道:周圍有吃的了。
仿生運用:根據蝙蝠發明的雷達能及時探測出敵機的方位和距離,以便發出警報,然後進行狙擊。
2、蒼蠅與照相機
原理:蒼蠅復眼。
蒼蠅本領:蒼蠅復眼觀察物體比人類還要仔細和全面,當看到目標後,蒼蠅能夠立刻出動。
仿生運用:根據蒼蠅復眼原理發明的「蠅眼」航空照相機一次能拍攝1000多張高清照片。天文學也有能在無月光的夜晚探測到空氣簇射光線的 「蠅眼」光學儀器。
3、蝴蝶與防偽紙幣
原理:蝴蝶翅膀顏色根據光的折射發生變化。
蝴蝶本領:蝴蝶翅膀上有很多小坑,當陽光照射在蝴蝶翅膀上的時候,由於發生光的折射,人眼看到的蝴蝶是綠色的。
仿生運用:紙幣或信用卡上設置了許多小坑,這樣,無論假幣有多麼逼真,都難逃光學設備的「法眼」。
4、螢火蟲與人工冷光
原理:螢火蟲自帶「發光器」。
螢火蟲本領:螢火蟲自身的熒光素和熒光酶與氧氣發生反應,將化學能轉化成光能。氧氣越充分,螢火蟲發出的光越強烈。
仿生運用:由熒光素和水等一些物質混合而成的生物光源,可在充滿爆炸性瓦斯的礦井中充當閃光燈,且不會引爆瓦斯。
5、電魚與伏特電池
原理:電魚發電原理。
電魚本領:電魚體內有一種奇特的發電器官,它由許多叫電板或電盤的半透明盤形細胞構成。
仿生運用:以電魚發電器官為模型設計了世界上最早的伏打電池,這種伏打電池被叫做「人造電器官」。