Ⅰ 中心法則是什麼
中心法則(英語:genetic central dogma),又譯成分子生物學的中心教條(英語:The central dogma of molecular biology),首先由佛朗西斯·克里克於1958年提出。
中心法則是指:遺傳信息的標准流程大致可以描述為DNA製造RNA,RNA製造蛋白質,蛋白質反過來協助前兩項流程,並協助DNA自我復制」,或者更簡單的「DNA → RNA →蛋白質」。所以整個過程可以分為三大步驟:轉錄、翻譯和DNA復制。
1、轉錄。
轉錄(Transcription)是遺傳信息由DNA轉換到RNA的過程。轉錄是信使RNA(mRNA)以及非編碼RNA(tRNA、rRNA等)的合成步驟。
轉錄中,一個基因會被讀取、復制為mRNA;這個過程由RNA聚合酶(RNA polymerase)和轉錄因子(transcription factor)所共同完成。
2、剪接。
在真核細胞中,原始轉錄產物(mRNA前體Pre-mRNA)還要被加工:一個或多個序列(內含子)被剪出除去。
選擇性剪接的機制使之可產生出不同的成熟的mRNA分子,這取決於哪段序列被當成內含子而哪段又作為存留下來的外顯子。並非全部有mRNA的活細胞都要經歷這種剪接;剪接在原核細胞中是不存在的。
3、轉譯。
最終,成熟的mRNA接近核糖體,並在此處被翻譯。原核細胞沒有細胞核,其轉錄和翻譯可同時進行。而在真核細胞中,轉錄的場所和翻譯的場所通常是分開的(前者在細胞核,後者在細胞質),所以mRNA必須從細胞核轉移到細胞質,並在細胞質中與核糖體結合。
核糖體會以三個密碼子來讀取mRNA上的信息,一般是從AUG開始,或是核糖體連接位下游的啟始甲硫氨酸密碼子開始。
啟始因子及延長因子的復合物會將氨醯tRNA(tRNAs)帶入核糖體-mRNA復合物中,只要mRNA上的密碼子能與tRNA上的反密碼子配對,即可按照mRNA上的密碼序列加入氨基酸。當一個個氨基酸串連成多肽的肽鏈後,就會開始折疊成正確的構形。
這個折疊的過程會一直進行,直到原先的多肽的肽鏈從核糖體釋出,並形成成熟的蛋白質。在一些情況下,新合成的多肽的肽鏈需要經過額外的處理才能成為成熟的蛋白質。
正確的折疊過程是相當復雜的,且可能需要其他稱為分子伴侶的幫忙。有時蛋白質本身會進一步被切割,此時內部被「舍棄」的部分即稱為內含肽。
4、DNA復制。
作為中心法則的最後一步,DNA必須忠實地進行復制才能使遺傳密碼從親代轉移至子代。復制是由一群復雜的蛋白質完成的;這些蛋白質打開超螺旋結構、DNA雙螺旋結構,並利用DNA聚合酶及其相關蛋白。
拷貝或復制原模板,以使新代細胞或機體能重復「DNA → RNA →蛋白質」的過程。 DNA分子存在著構型多樣性,在遺傳信息的傳遞和表達過程中,DNA構象存在著左手螺旋及右手螺旋向右手螺旋的轉變過程,因此應賦有核酸構象的轉換形式。
5、只有RNA基因組的病毒。
有些病毒含有整套以RNA形式編碼的基因組,因此他們只有RNA→蛋白質的編譯形式。
6、擬逆轉錄(病毒DNA整合到宿主DNA)。
近年在植物體內發現了擬逆轉錄病毒(pararetrovirus),這種病毒的遺傳物質是雙鏈DNA,能像逆轉錄病毒一樣,通過把自己的DNA整合到寄主的基因組DNA中去,再進行復制。
(1)生物學生的中心法則是什麼擴展閱讀:
克里克在上述那篇1970年的文章中指出,中心法則雖然對指導實驗很有用,但不應該被當成教條。自從克里克發表1970年那篇文章以來,很多新發現說明了中心法則補充和發展的必要。
1、轉譯後修飾
對於大部分的蛋白質來說,這是蛋白質生物合成的最後步驟。蛋白質的翻譯後修飾會附上其他的生物化學官能團、改變氨基酸的化學性質,或是造成結構的改變來擴闊蛋白質的功能。酶可以從蛋白質的N末端移除氨基酸,或從中間將肽鏈剪開。
舉例來說,胰島素是肽的激素,它會在建立雙硫鍵後被剪開兩次,並在鏈的中間移走多肽前體,而形成的蛋白質包含了兩條以雙硫鍵連接的多肽鏈。其他修飾,就像磷酸化,是控制蛋白質活動機制的一部分。蛋白質活動可以是令酶活性化或鈍化。
2、蛋白質的內含子
蛋白質有自剪接現象,與mRNA相同,一些蛋白質前體具有內含子(intein)序列,多肽序列中間的某些區域被加工切除,剩餘部分的蛋白質外顯子(extein)重新連接為蛋白質分子。
3、DNA甲基化
表觀遺傳學研究在沒有細胞核DNA序列改變的情況時,基因功能的可逆的、可遺傳的改變。這些改變包括DNA的修飾(如甲基化修飾)、RNA干擾、組蛋白的各種修飾等。
也指生物發育過程中包含的程序的研究。在這兩種情況下,研究的對象都包括在DNA序列中未包含的基因調控信息如何傳遞到(細胞或生物體的)下一代這個問題。
其主要研究內容包括大致兩方面內容。一類為基因選擇性轉錄表達的調控,有DNA甲基化,基因印記,組蛋白共價修飾,染色質重塑。另一類為基因轉錄後的調控,包含基因組中非編碼的RNA,微小RNA,反義RNA,內含子及核糖開關等。
4、DNA甲基化
DNA甲基化為DNA化學修飾的一種形式,能在不改變DNA序列的前提下,改變遺傳表現。為外遺傳編碼(epigenetic code)的一部分,是一種外遺傳機制。
DNA甲基化過程會使甲基添加到DNA分子上,例如在胞嘧啶環的5'碳上:這種5'方向的DNA甲基化方式可見於所有脊椎動物。
5、蛋白質可作為合成DNA的模板
來自美國Mount.Sinai醫院的研究人員發現了一種叫Rev1 DNA聚合酶的蛋白質,它可以為DNA復制提供編碼信息。許多致癌物質會傾向於破壞DNA的鳥嘌呤(G),或者是破壞鳥嘌呤與胞嘧啶(C)的配對,這些都會導致DNA錯配的發生。
新發現的蛋白質可以以自身為模板在復制鏈上加一個胞嘧啶,這個胞嘧啶無論鳥嘌呤是否在DNA鏈中存在都會被Rev1加上去的,在DNA復制時可以利用一條單鏈,根據鹼基配對原則復制出新的DNA鏈。
細胞利用這種嶄新的機制在含有致癌物質的情況下對受損的DNA進行復制。這是第一次發現蛋白質可以作為一種合成DNA的模板。
6、朊病毒。
朊病毒是通過改變其他蛋白質的構象來進行自身精確復制的一類蛋白質。也就是:蛋白質→蛋白質。這種具有感染性的因子主要由蛋白質組成。
具有感染性的因子PrpSC與正常因子PrPC在形狀上有一點不同。科學家推測這種變形的蛋白質會引起正常的PrPC轉變成具有感染性的蛋白質,這種連鎖反應使得正常的蛋白質和致病的蛋白質因子都成為新病毒。
Ⅱ 請問誰知道中心法則的內容和其生物學意義
是指遺傳信息從DNA傳遞給RNA,再從RNA傳遞給蛋白質,即完成遺傳信息的轉錄和翻譯的過程。也可以從DNA傳遞給DNA,即完成DNA的復制過程。這是所有有細胞結構的生物所遵循的法則。在某些病毒中的RNA自我復制(如煙草花葉病毒等)和在某些病毒中能以RNA為模板逆轉錄成DNA的過程(某些致癌病毒)是對中心法則的補充。RNA的自我復制和逆轉錄過程,在病毒單獨存在時是不能進行的,只有寄生到寄主細胞中後才發生。逆轉錄酶在基因工程中是一種很重要的酶,它能以已知的mRNA為模板合成目的基因。在基因工程中是獲得目的基因的重要手段。 遺傳物質可以是DNA,也可以是RNA。細胞的遺傳物質都是DNA,只有一些病毒的遺傳物質是RNA。這種以RNA為遺傳物質的病毒稱為反轉錄病毒(retrovirus),在這種病毒的感染周期中,單鏈的RNA分子在反轉錄酶(reverse transcriptase)的作用下,可以反轉錄成單鏈的DNA,然後再以單鏈的DNA為模板生成雙鏈DNA。雙鏈DNA可以成為宿主細胞基因組的一部分,並同宿主細胞的基因組一起傳遞給子細胞。在反轉錄酶催化下,RNA分子產生與其序列互補的DNA分子,這種DNA分子稱為互補DNA(complementary DNA),簡寫為cDNA,這個過程即為反轉錄(reverse transcription)。 由此可見,遺傳信息並不一定是從DNA單向地流向RNA,RNA攜帶的遺傳信息同樣也可以流向DNA。但是DNA和RNA中包含的遺傳信息只是單向地流向蛋白質,迄今為止還沒有發現蛋白質的信息逆向地流向核酸。這種遺傳信息的流向,就是克里克概括的中心法則(central dogma)的遺傳學意義。 任何一種假設都要經受科學事實的檢驗。反轉錄酶的發現,使中心法則對關於遺傳信息從DNA單向流入RNA做了修改,遺傳信息是可以在DNA與RNA之間相互流動的。那麼,對於DNA和RNA與蛋白質分子之間的信息流向是否只有核酸向蛋白質分子的單向流動,還是蛋白質分子的信息也可以流向核酸,中心法則仍然肯定前者。可是,病原體朊粒(Prion)的行為曾對中心法則提出了嚴重的挑戰。 朊粒是一種蛋白質傳染顆粒(proteinaceous infectious particle),它最初被認識到是羊的瘙癢病的病原體。這是一種慢性神經系統疾病,在200多年前就已發現。1935年法國研究人員通過接種發現這種病可在羊群中傳染,意味著這種病原體是能在宿主動物體內自行復制的感染因子。朊粒同時又是人類的中樞神經系統退化性疾病如庫魯病(Kuru)和克—傑氏綜合征(Creutzfeldt-Jacobdisease,CJD)的病原體,也可引起瘋牛病即牛腦的海綿狀病變(bovin spongiform encephalopathy,BSE)。以後的研究證明,這種朊粒不是病毒,而是不含核酸的蛋白質顆粒。一個不含DNA或RNA的蛋白質分子能在受感染的宿主細胞內產生與自身相同的分子,且實現相同的生物學功能,即引起相同的疾病,這意味著這種蛋白質分子也是負載和傳遞遺傳信息的物質。這是從根本上動搖了遺傳學的基礎。 實驗證明,朊粒確實是不含DNA和RNA的蛋白質顆粒,但它不是傳遞遺傳信息的載體,也不能自我復制,而仍是由基因編碼產生的一種正常蛋白質的異構體。 哺乳動物細胞里的基因編碼產生一種糖蛋白PrP。人的PrP基因位於20號染色體短臂,PrP由253個氨基酸殘基組成,在氨基端有22個氨基酸組成的信號 肽。在正常腦組織中的PrP稱為PrPc,相對分子質量為33 000~35 000,對蛋白酶敏感。在病變腦組織中的PrP稱為PrPsc,相對分子質量為27 000~30 000,是PrPc中的一段,蛋白酶對其不起作用。現在知道,PrPc和PrPsc是PrP的兩種異構體,氨基酸組分和線性排列次序相同,但是三維構象不同。PrPc的結構中。螺旋佔42%,β片層佔30%;PrPsc則是。螺旋佔30%,β片層佔43%。PrPc的4條。螺旋可以排列成一個緻密的球狀結構,這個結構的隨機漲落(stochastic fluctua—tion)會長成部分折疊的單體PrP*,這是一種中間體,即PrP*可以生成PrPc,也可以生成PrPsc。一般情況下,PrP*的含量極少,所以生成的PrPsc極少。可是外源的PrPsc可以促使PrP*變成PrPsc。PrPsc的不溶性使生成PrPsc過程成為不可逆轉。PrPsc在神經細胞里大量沉積,引起神經細胞的病變,破壞了神經細胞功能。因此,PrPsc感染正常細胞後,可以促使細胞內生成更多的PrPsc,PrPsc逐漸積累,需要有一個時間過程才會引發疾病,這也就是這種神經退化性疾病有一個很長的潛伏期的原因。所以說,PrPsc進入宿主細胞並不是自我復制,而是將細胞內基因編碼產生的PrPc變成PrPsc。由此可見,中心法則是正確的,至少在目前還是無需修正的。
Ⅲ 高一生物的「中心法則」是
遺傳學上把遺傳信息從DNA到RNA再到蛋白質的轉錄和翻譯的過程,以及遺傳信息從DNA到DNA的復制過程叫中心法則!
後來的逆轉錄是對中心法則的補充。
Ⅳ 什麼是生物中心法則
是指遺傳信息從DNA傳遞給RNA,再從RNA傳遞給蛋白質,即完成遺傳信息的轉錄和翻譯的過程。也可以從DNA傳遞給DNA,即完成DNA的復制過程。這是所有有細胞結構的生物所遵循的法則。在某些病毒中的RNA自我復制(如煙草花葉病毒等)和在某些病毒中能以RNA為模板逆轉錄成DNA的過程(某些致癌病毒)是對中心法則的補充。
Ⅳ 生物中心法則
中心法則(genetic central dogma),是指遺傳信息從DNA傳遞給RNA,再從RNA傳遞給蛋白質,即完成遺傳信息的轉錄和翻譯的過程。也可以從DNA傳遞給DNA,即完成DNA的復制過程。這是所有有細胞結構的生物所遵循的法則。
Ⅵ 什麼是生物中的中心法則基因表達過程為何叫中心法則
就是從DNA到信使RNA到蛋白質的過程叫做中心法則,當然RNA可以反轉錄為DNA也算進去的
基因的表達不就是上面的一個過程么
Ⅶ 什麼是中心法則在生物學上有什麼意義
中心法則講的是DNA RNA 和蛋白質之間的關系
DNA復制---->DNA-->RNA--->蛋白質,這是最初的中心法則,不過現在有RNA--->DNA了 意義:①高度概括遺傳物質的作用原理 ②提出分子遺傳學研究課題