1. 羧酸的衍生物有哪些,試舉例說明
取代羧酸羧酸衍物化性質何異同
取代羧酸看羧酸烴基氫原其官能團取代物.見氫原別鹵素、羥基、氧原或氨基取代,鹵代酸、羥基酸、氧代酸或氨基酸.氯乙酸:ClCH2COOH
二.羧酸衍物主要包括:
1.
酯
2.
2.醯鹵,乙醯氯:CH3-COCl
3.
3.酸酐,乙酸酐:(CH3CO)2O
4.
4.醯胺,乙醯胺:CH3CONH2
5.
看,羧酸衍物,化所涉及酯酸酐
2. 羧酸衍生物和取代羧酸化學性質有哪些相同點和不同點
你好
前提機化 應機羧酸 機羧酸衍物見酯 醯氯 醯胺 羧酸鹽再屬於羧酸 表徵縮酸離解質已經其基團取代 再具酸性質
3. 羧基有什麼性質
羧基的性質有:
1、酸性;
2、羥基被取代,生成醯鹵、酸酐、酯和醯胺等羧酸衍生物;
3、還原反應;
4、脫羧反應和脫水反應。
羧基中的羰基在羥基的影響下變得很不活潑,不跟HCN、NaHSO3等親核試劑發生加成反應,而它的羥基氫比醇羥基氫更容易解離,顯示弱酸性。在羧酸鹽的陰離子中,由於電子的離域作用,發生鍵的平均化。
(3)羧酸衍生物的主要化學性質有哪些擴展閱讀:
羥基檢驗方法:
可以用新制醋酸或氫氧化亞銅檢驗羧基的存在.現象:藍色絮狀沉澱消失,變成無色溶液即可。
HOOC--即是--COOH即羧基,--OH是羥基
羧基的檢驗方法,即為檢驗酸的通性的方法(如使石蕊變紅等),檢驗羧基還可以用與醇類酯化的方法,但現象不一定很明顯。
驗證有機物中是否含有羧基一般只需 加乙醇和濃硫酸,加熱。現象:會產生有香味的油狀物時即可。但最保險的方法還是用核磁共振。
4. 取代羧酸和羧酸衍生物化學性質有何異同
取代羧酸和羧酸衍生物化學性質有何異同
取代羧酸可以看成是羧酸分子中「烴基上」的氫原子被其他官能團取代後的生成物.最常見的是氫原子分別被鹵素、羥基、氧原子或氨基取代,生成鹵代酸、羥基酸、氧代酸或氨基酸.如氯乙酸:ClCH2COOH
二.羧酸衍生物主要包括:
1.酯
2.醯鹵,如乙醯氯:CH3-COCl
3.酸酐,如乙酸酐:(CH3CO)2O
4.醯胺,如乙醯胺:CH3CONH2
...可以看出,在羧酸衍生物中,中學化學所涉及的是酯和酸酐
5. 羧酸的重要衍生物
羧酸是非常重要的一類化學物質,還可以衍生出不少常見的其他化學物質,主要有:醯鹵、酸酐、酯和醯胺等。這幾類羧酸衍生物各具特性,並均在化學工業中有重要的應用。
6. 羧酸,醇,酚的主要性質有什麼,羧酸的化學反應是什麼
由烴基和羧基相連構成的有機化合物稱為羧酸。飽和一元羧酸的沸點甚至比相對分子質量相似的醇還高。
化學描述
在羧酸分子中,羧基碳原子以sp2雜化軌道分別與烴基和兩個氧原子形成3個σ鍵,這3個σ鍵在同一個平面上,剩餘的一個p電子與氧原子形成π鍵,構成了羧基中C=O的π鍵,但羧基中的-OH部分上的氧有一對未共用電子,可與π鍵形成p-π共軛體系。由於p-π共軛,-OH基上的氧原子上的電子雲向羰基移動,O-H間的電子雲更靠近氧原子,使得O-H鍵的極性增強,有利於H原子的離解。所以羧酸的酸性強於醇。當羧酸離解出H後,p-π共軛更加完全,鍵長發生平均化,-COOˉ基團上的負電荷不再集中在一個氧原子上,而是平均分配在兩個氧原子上。
反應類型
⑴羧酸是弱酸,可以跟鹼反應生成鹽和水。如:CH3COOH+NaOH→CH3COONa+H2O
⑵羧基上的OH的取代反應。如:
①酯化反應:R-COOH+R′OH→RCOOR′+H2O
②成醯鹵反應:3RCOOH+PCl3→3RCOCl+H3PO3
③成酸酐反應:RCOOH+RCOOH (加熱)→R-COOCO-R+H2O
④成醯胺反應:CH3COOH+NH3→CH3COONH4 ;
CH3COONH4(加熱)→CH3CONH2+H2O
⑤與金屬反應:2CH3COOH+2Na→2CH3COONa+H2↑
2CH3COOH+Mg→(CH3COO)2Mg+H2↑
⑶脫羧反應:除甲酸外,乙酸的同系物直接加熱都不容易脫去羧基(失去CO2),但在特殊條件下也可以發生脫羧反應,如:無水醋酸鈉與鹼石灰混合強熱生成甲烷:CH3COONa+NaOH(熱熔)→CH4↑+Na2CO3(CaO做催化劑)
HOOC-COOH(加熱)→HCOOH+CO2↑
註:脫羧反應是一類重要的縮短碳鏈的反應。
(4)還原反應
RCOOH→(LiAlH4) RCH2OH
醇,有機化合物的一大類,是脂肪烴、脂環烴或芳香烴側鏈中的氫原子被羥基取代而成的化合物。
醇的酸性和鹼性
醇羥基的氧上有兩對孤對電子,氧能利用孤對電子與質子結合。所以醇具有鹼性。在醇羥基中,由於氧的電負性大於氫的電負性,因此氧和氫共用的電子對偏向於氧,氫表現出一定的活性,所以醇也具有酸性。醇的酸性和鹼性與和氧相連的烴基的電子效應相關,烴基的吸電子能力越強,醇的鹼性越弱,酸性越強。相反,烴基的給電子能力越強,醇的鹼性越強,酸性越弱。烴基的空間位阻對醇的酸鹼性也有影響,因此分析烴基的電子效應和空間位阻影響是十分重要的。[1]
烴基的電子效應
在氣相下研究一系列醇的酸性次序,其排列情況如下:
(CH3)3CCH2OH > (CH3)3COH > (CH3)2CHOH > C2H5OH > CH3OH > H2O
這說明烷基是吸電子基團。醇在氣態時,分子處於隔離狀態。因此烷基吸電子反映了分子內在的本質。
烴基的空間效應
在液相中測定的醇的酸性次序與電子效應方面正好相反:
CH3OH > RCH2OH > R2CHOH > R3COH
這是因為在液相中有溶劑化作用,R3CO-由於R3C體積增大,溶劑化作用小,負電荷不易被分散,穩定性差,因此R3COH中的質子不易解離,酸性小。而RCH2O-體積小,溶劑化作用大。因此RCH2OH中的質子易於解離,酸性大。一般pKa值是在液相測定的,很多反應也是在液相中進行的。因此根據液相中各類醇的酸性的大小順序,認為烷基是給電子的。
各類醇的共軛酸在水中酸性的強弱,也由它們的共軛酸在水中的穩定性來決定,共軛酸的空間位阻小,與水形成氫鍵而溶劑化的程度愈大,酸性就愈低。如空間位阻大,溶劑化作用小,質子易離去,酸性強。[1]
醇羥基中氫的反應
由於醇羥基中的氫具有一定的活性,因此醇可以和金屬鈉反應,氫氧鍵斷裂,形成醇鈉(CH3CH2ONa)和放出氫氣。
由於在液相中,水的酸性比醇強,所以醇與金屬鈉的反應沒有水和金屬鈉的反應強烈。若將醇鈉放入水中,醇鈉會全部水解,生成醇和氫氧化鈉。雖然如此,在工業上制甲醇鈉或乙醇鈉還是用醇與氫氧化鈉反應,然後設法把水除去,使平衡有利於醇鈉一方。常用的方法是利用形成共沸混合物將水帶走轉移平衡。所沸共合物是指幾種沸點不同而又完全互溶的液體混合物,由於分子間的作用力,它們在蒸餾過程中因氣相和液相組成相同而不能分開,得到具最低沸點(比所有組分沸點都低)或最高沸點(比所有組分沸點都高)的餾出物。這些餾出物的組成與溶液的組成相同,直到蒸完沸點一直恆定,如乙醇一苯一水組成三元共沸混合物,其沸點為64.9℃(乙醇18. 5%,苯74%,水7.5%),苯一乙醇組成二元共沸混合物,其沸點為68.3℃(乙醇32.4%,苯67. 6%)。由於乙醇一水形成共沸混合物,其沸點為78℃(乙醇95. 57%,水4. 43%),所以乙醇中含有少量的水不能通過蒸餾方法除去,可計算加入比形成乙醇苯一水三元共沸混合物稍過量的苯,先將水除去,然後過量苯與乙醇形成二元共沸混合物除去,剩下為無水乙醇。醇鈉的醇溶液,可通過上述去水方法得到。醇鈉及其類似物在有機合成中是一類重要的試劑,並常作為鹼使用。[1]
醇與含氧無機酸的反應
醇與含氧無機酸反應失去一分子水,生成無機酸酯。
醇與硝酸的反應過程如下:醇分子作為親核試劑進攻酸或其衍生物的帶正電荷部分,氮氧雙鍵打開,而後醇分子的氫氧鍵斷裂,硝酸部分失去一分子水重新形成氮氧雙鍵。
該類反應主要用於無機酸一級醇酯的制備。無機酸三級醇酯的制備不宜用此法,因為三級醇與無機酸反應時易發生消除反應。
醇與含氧無機酸的醯氯和酸酐反應,也能生成無機酸酯。
含氧無機酸酯有許多用途。乙二醇二硝酸酯和甘油三硝酸酯(俗稱硝化甘油)都是烈性炸葯。硝化甘油還能用於血管舒張、治療心絞痛和膽絞痛。科學家發現:硝化甘油能治療心臟病的原因是它能釋放出信使分子「NO」,並闡明了「NO」在生命活動中的作用機理。為此,他們榮獲了1998年諾貝爾生理學和醫學獎。
生命體的核苷酸中有磷酸酯,例如甘油磷酸酯與鈣離子的反應可用來控制體內鈣離子的濃度,如果這個反應失調,會導致佝僂病。[1]
醇羥基的取代反應
醇中,碳氧鍵是極性共價鍵,由於氧的電負性大於碳,所以其共用電子對偏向於氧,當親核試劑進攻正性碳時,碳氧鍵異裂,羥基被親核試劑取代。其中最重要的一個親核取代反應是羥基被鹵原子取代。常採用的方法如下:
1.與氫鹵酸的反應
(1)一般情況
氫鹵酸與醇反應生成鹵代烷,反應中醇羥基被鹵原子取代。
ROH+HX——>RX+H20
醇羥基不是一個好的離去基團,需要酸的幫助,使羥基質子化後以水的形式離去。各種醇的反應性為3°>2°>1°,三級醇易反應,只需濃鹽酸在室溫振盪即可反應,氫溴酸在低溫也能與三級醇進行反應。如用氯化氫、溴化氫氣體在0℃通過三級醇,反應在幾分鍾內就可完成,這是制三級鹵代烷的常用方法。
在氫鹵酸中,氫碘酸酸性最強,氫溴酸其次,濃鹽酸相對最弱,而鹵離子的親核能力又是I->Br->Cl-,故氫鹵酸的反應性為HI> HBr>HCl。若用一級醇分別與這三種氫鹵酸反應,氫碘酸可直接反應,氫溴酸需用硫酸來增強酸性,而濃鹽酸需與無水氯化鋅混合使用,才能發生反應。氯化鋅是強的路易斯酸,在反應中的作用與質子酸類似。
羥基直接和苯的sp2雜化碳原子相連的分子稱為酚,這種結構與脂肪烯醇有相似之處,故也會發生互變異構,稱為酚式結構互變。
酚(phenol),通式為ArOH,是芳香烴環上的氫被羥基(—OH)取代的一類芳香族化合物。最簡單的酚為苯酚。酚類化合物是指芳香烴中苯環上的氫原子被羥基取代所生成的化合物,根據其分子所含的羥基數目可分為一元酚和多元酚
酚的羥基直接與苯環的sp2雜化的碳原子相連,這與脂肪族化合物中的烯醇很相似。另外,由於
酚的羥基氧原子的未共用電子對與苯環的共軛作用,不但使苯酚成穩定化合物,而且也有利苯酚的離解。值得注意的是,酚的羥基氧原子雜化類型為不等性sp2雜化,不同於醇羥基氧原子的不等性sp3雜化。
弱酸性
酸性比較:碳酸>苯酚>碳酸氫根>水。
酚比醇的酸性強,是由於酚式羥基的O-H鍵易斷裂,生成的苯氧基負離子比較穩定,使苯酚的離解平衡趨向右側,而表現弱酸性。酚式羥基的氫除能被金屬取代外,還能與強鹼溶液生成鹽(如酚鈉)和水。
若在苯酚鈉的水溶液中通入二氧化碳,即有游離苯酚析出。這是因為苯酚酸性比碳酸弱,所以酚鹽能被碳酸所分解。
C6H5ONa+CO2+H2O→C6H5OH+NaHCO3
由於酚的酸性弱於碳酸,所以酚只能溶於氫氧化鈉而不溶於碳酸氫鈉。實驗室里常根據酚的這一特性,而與既溶於氫氧化鈉又能溶於碳酸氫鈉的羧酸相區別。此方法也可用於中草葯中酚類成分與羧酸類成分的分離。
傅-克反應
苯酚也容易發生傅 -
克醯基化和烷基化反應。但是,酚羥基要三氯化鋁作用形成鋁鹽,因此需要用較多的三氯化鋁來催化反應,得到對和鄰醯基苯酚。鄰醯基酚中酚羥基的氫與醯基氧原子之間可以形成氫鍵,這使它在非極性溶液中的溶解度較大,利用該特性採用重結晶的方法能分離這個異構體。
傅 -
克反應需要以硝基苯或二硫化碳為溶劑,若以三氟化硼為催化劑,酚和羧酸也能直接反應得到醯基代酚。
苯酚與鄰苯二甲酸酐在濃硫酸或無水氯化鋅作用下發生上述的醯基化反應,兩分子苯酚與一分子酸酐縮合後得到酚酞這一最為常用的酸鹼指示劑。酚酞在
pH 小於 8.5 的溶液中為無色液體,當 pH 大於 9
時,形成電荷離域范圍很大的粉紅色的共軛雙負離子。酚的烷基化反應一般以醇或烯烴在濃硫酸催化下進行,反應不容易控制在單取代階段。
氧化反應
酚類易被氧化,但產物復雜。純苯酚系無色結晶,在空氣中放置後,就能逐漸氧化變為粉紅色、紅色或暗紅色。苯酚如用酸性重鉻酸鉀強烈氧化,則生成對苯醌。
鄰苯二酚和對苯二酚比苯酚更容易被氧化成相應的醌,但間苯二酚不能被氧化為相應的醌。醌是一般都具有顏色。
顯色反應
大多數的酚能與氯化鐵的稀水溶液發生顯色反應。不同的酚與氯化鐵反應呈顯不同的顏色。例如,苯酚、間苯二酚、1,3,5-苯三酚與氯化鐵溶液作用,均顯紫色;甲苯酚呈藍色;鄰苯二酚、對苯二酚呈綠色;1,2,3-苯三酚呈紅色,α-萘酚為紫色沉澱,β-萘酚則為綠色沉澱等。此顯色反應常用以鑒別酚類的存在。
具有羥基與sp2雜化碳原子相連的結構( —C=C—OH
)結構的化合物能與FeCl3的水溶液顯示特殊的顏色一般的醇式羥基無此反應,故也可用來區別醇與烯醇。
7. 羧酸的化學性質
羧酸能微弱電離,羧酸水溶液顯酸性,羧酸能與鹼、鹼性氧化物、部分弱酸鹽反應。羧基中的氫原子能與金屬鈉反應,生成氫氣。羧酸能與醇發生酯化反應;羧酸能與三氯化磷、氨氣發生反應,羧基中的羥基被氯原子、氨基取代;羧酸能發生分子間脫水生成羧酸酐。
8. 羧酸衍生物是什麼
醯鹵、酸酐、酯 是羧酸衍生物,因為他們是羧酸中的羥基被鹵素和一些有 機 基團取代的產物。
9. 羧酸及其衍生物的性質實驗報告
將甲酸和冰醋酸各1 mL及草酸1g分別放入3支帶導管的小試管中,導管的末端分別伸入3支各自盛有1~2mL石灰水的試管中(導管要插入石灰水中)。加熱試樣,當有連續氣泡發生時觀察現象。
不同的羧酸失去羧基的難易並不相同,除甲酸外,乙酸的同系物直接加熱都不容易脫去羧基(失去CO2),但在特殊條件下也可以發生脫羧反應,一元羧酸的α-碳原子上有強拉電子基團時,使得羧酸變得不穩定,當加熱到100~200℃時,容易發生脫羧反應。
(9)羧酸衍生物的主要化學性質有哪些擴展閱讀:
注意事項:
聚羧酸系減水劑的宣傳材料中往往對其超強的減水效果進行了特意的宣傳,比如減水率達35%甚至40%等。有時實驗室檢測時減水率也確實很高,但到了工程現場,卻經常讓人大跌眼鏡,有時減水率只有不到20%。
其實減水率是一個十分嚴格的定義,僅是指按照《混凝土外加劑》GB8076標准,採用基準水泥、一定的配合比,一定的攪拌工藝、控制混凝土坍落度為(80+10)mm時測得的數據。但人們總是在很多不同場合借用這個詞語來表徵產品的減水效果,以致於經常產生誤會。