1. 生物質的基本介紹是什麼
生物質是指利用大氣、水、土地等通過光合作用而產生的各種有機體,即一切有生命的可以生長的有機物質通稱為生物質。廣義概念:生物質包括所有的植物、微生物以及以植物、微生物為食物的動物及其生產的廢棄物。有代表性的生物質如農作物、農作物廢棄物、木材、木材廢棄物和動物糞便。狹義概念:生物質主要是指農林業生產過程中除糧食、果實以外的秸稈、樹木等木質纖維素(簡稱木質素)、農產品加工業下腳料、農林廢棄物及畜牧業生產過程中的禽畜糞便和廢棄物等物質。生物質包括植物、動物和微生物。生物質發電每千瓦時可補貼0.25元。生物質是指利用大氣、水、土地等通過光合作用而產生的各種有機體,即一切有生命的可以生長的有機物質通稱為生物質。
特點:可再生性。低污染性。廣泛分布性。
生物質包括植物、動物和微生物。
廣義概念:生物質包括所有的植物、微生物以及以植物、微生物為食物的動物及其生產的廢棄物。有代表性的生物質如農作物、農作物廢棄物、木材、木材廢棄物和動物糞便。狹義概念:生物質主要是指農林業生產過程中除糧食、果實以外的秸稈、樹木等木質纖維素(簡稱木質素)、農產品加工業下腳料、農林廢棄物及畜牧業生產過程中的禽畜糞便和廢棄物等物質。
2. 什麼細胞靜息狀態下有電位差人體細胞都有嗎微生物呢
任何動物細胞的細胞膜內外都有離子濃度的差別,也就是都會產生電位差,但是只有神經細胞和和神經細胞接觸的神經肌肉接頭處的肌肉細胞才會發生靜息電位和動作電位的變化。微生物分為單細胞微生物和多細胞微生物和病毒,病毒沒有電位差,有些細胞會產生一些芽孢或者孢子等結構,將細胞與外界完全隔絕,也不會產生電位差,單細胞微生物為水生,故細胞膜內外也有離子濃度差
3. 運動員所需能量來自於肌肉細胞的什麼部位中進行
糖原。
糖原(glycogen)(CHO)是一種動物澱粉,又稱肝糖或糖元,由葡萄糖結合而成的支鏈多糖,其糖苷鏈為α型。是動物的貯備多糖。[1]
哺乳動物體內,糖原主要存在於骨骼肌(約占整個身體的糖原的2/3)和肝臟(約佔1/3)中,其他大部分組織中,如心肌、腎臟、腦等,也含有少量糖原。低等動物和某些微生物(如:真菌)中,也含有糖原或糖原類似物。糖原結構與支鏈澱粉相似。
糖原貯藏於肝細胞及肌細胞漿中,其形狀為大小不等的顆粒,遇碘則變褐色,易溶於水,機體壞死後,糖原即受到破壞,因此須採取新鮮標本,並及時固定。糖原不等於糖類,只是糖類的一種。糖類從組織化學技術的角度分類與生物化學的分類並非一致。從組織化學的角度,糖類可略分為多糖、中性糖液物質和酸性粘液物質及粘蛋白和粘脂質。多糖主指糖原,是由許多葡萄糖分子以糖苷鍵組成的聚合體。當機體死亡,即很快分解為葡萄糖。
動物和細菌細胞內貯存的多糖,完全由葡萄糖組成。在動物體內以肝臟和骨骼肌中儲量最豐富,與澱粉在植物中的作用相當。糖原在體內酶促作用下的合成和分解可維持血糖正常水平,細菌中糖原用於供能和供碳。乾燥狀態下為白色無定形粉末,無臭,有甜味。與碘顯棕紅色,在430-490nm下呈現最大光吸收。部分溶於水而成膠體溶液,不溶於乙醇。結構與支鏈澱粉相似,主要是α-D-葡萄糖,按α(1→4)糖苷鍵縮合失水而成,另有一部分支鏈通過α(1→6)糖苷鍵連接。用細算後澱粉酶水解時生成麥芽糖和葡萄糖。可用30%氫氧化鈉處理動物肝臟,再加乙醇沉澱制備。
糖原是由多個葡萄糖組成的帶分枝的大分子多糖,分子量一般在106-107道爾頓,可高達108道爾頓,是體內糖的貯存形式,分子中葡萄糖主要以α-1,4-糖苷鍵相連形成直鏈,其中部分以α-1,6-糖苷鍵相連構成枝鏈,糖原主要貯存在肌肉和肝臟中,肌肉中糖原約占肌肉總重量的1-2%約為400克,肝臟中糖原占總量6-8%約為100克。肌糖原分解為肌肉自身收縮供給能量,肝糖原分解主要維持血糖濃度。
4. 什麼是萬物皆有的能量傳遞者從微生物到人在所有的生物體內都能發現它它為肌肉
ATP是萬物皆有的能量傳遞者,從微生物到人,在所有的生物體內都發現有ATP,它為肌肉細胞提供機械能,為神經細胞提供電能。精子細胞、能夠產生激素的細胞等,所有這一切都是由ATP提供能量的。ATP的少部分能量用在了線粒體內部,而大部分能量立即被釋放到細胞中,為細胞的其他各種活動提供能量。
5. 什麼叫微生物
微生物是包括細菌、病毒、真菌以及一些小型的原生動物等在內的一大類生物群體,它個體微小,卻與人類生活密切相關。微生物在自然界中可謂「無處不在,無處不有」,涵蓋了有益有害的眾多種類,廣泛涉及健康、醫葯、工農業、環保等諸多領域。
微生物對人類最重要的影響之一是導致傳染病的流行。在人類疾病中有50%是由病毒引起。世界衛生組織公布資料顯示:傳染病的發病率和病死率在所有疾病中占據第一位。微生物導致人類疾病的歷史,也就是人類與之不斷斗爭的歷史。在疾病的預防和治療方面,人類取得了長足的進展,但是新現和再現的微生物感染還是不斷發生,像大量的病毒性疾病一直缺乏有效的治療葯物。一些疾病的致病機制並不清楚。大量的廣譜抗生素的濫用造成了強大的選擇壓力,使許多菌株發生變異,導致耐葯性的產生,人類健康受到新的威脅。一些分節段的病毒之間可以通過重組或重配發生變異,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都與前次導致感染的株型發生了變異,這種快速的變異給疫苗的設計和治療造成了很大的障礙。而耐葯性結核桿菌的出現使原本已近控制住的結核感染又在世界范圍內猖獗起來。
微生物能夠致病,能夠造成食品、布匹、皮革等發霉腐爛,但微生物也有有益的一面。最早是弗萊明從青黴菌抑制其它細菌的生長中發現了青黴素,這對醫葯界來講是一個劃時代的發現。後來大量的抗生素從放線菌等的代謝產物中篩選出來。抗生素的使用在第二次世界大戰中挽救了無數人的生命。一些微生物被廣泛應用於工業發酵,生產乙醇、食品及各種酶制劑等;一部分微生物能夠降解塑料、處理廢水廢氣等等,並且可再生資源的潛力極大,稱為環保微生物;還有一些能在極端環境中生存的微生物,例如:高溫、低溫、高鹽、高鹼以及高輻射等普通生命體不能生存的環境,依然存在著一部分微生物等等。看上去,我們發現的微生物已經很多,但實際上由於培養方式等技術手段的限制,人類現今發現的微生物還只佔自然界中存在的微生物的很少一部分。
微生物間的相互作用機制也相當奧秘。例如健康人腸道中即有大量細菌存在,稱正常菌群,其中包含的細菌種類高達上百種。在腸道環境中這些細菌相互依存,互惠共生。食物、有毒物質甚至葯物的分解與吸收,菌群在這些過程中發揮的作用,以及細菌之間的相互作用機制還不明了。一旦菌群失調,就會引起腹瀉。
隨著醫學研究進入分子水平,人們對基因、遺傳物質等專業術語也日漸熟悉。人們認識到,是遺傳信息決定了生物體具有的生命特徵,包括外部形態以及從事的生命活動等等,而生物體的基因組正是這些遺傳信息的攜帶者。因此闡明生物體基因組攜帶的遺傳信息,將大大有助於揭示生命的起源和奧秘。在分子水平上研究微生物病原體的變異規律、毒力和致病性,對於傳統微生物學來說是一場革命。
以人類基因組計劃為代表的生物體基因組研究成為整個生命科學研究的前沿,而微生物基因組研究又是其中的重要分支。世界權威性雜志《科學》曾將微生物基因組研究評為世界重大科學進展之一。通過基因組研究揭示微生物的遺傳機制,發現重要的功能基因並在此基礎上發展疫苗,開發新型抗病毒、抗細菌、真菌葯物,將對有效地控制新老傳染病的流行,促進醫療健康事業的發展產生巨大影響。牛痘疫苗的應用使人類歷史上首次成功消滅了一種疾病——天花,而目前的基因工程疫苗也為疾病的有效預防發揮了巨大作用,如乙肝病毒的預防等。
從分子水平上對微生物進行基因組研究為探索微生物個體以及群體間作用的奧秘提供了新的線索和思路。為了充分開發微生物(特別是細菌)資源,1994年美國發起了微生物基因組研究計劃(MGP)。通過研究完整的基因組信息開發和利用微生物重要的功能基因,不僅能夠加深對微生物的致病機制、重要代謝和調控機制的認識,更能在此基礎上發展一系列與我們的生活密切相關的基因工程產品,包括:接種用的疫苗、治療用的新葯、診斷試劑和應用於工農業生產的各種酶制劑等等。通過基因工程方法的改造,促進新型菌株的構建和傳統菌株的改造,全面促進微生物工業時代的來臨。
工業微生物涉及食品、制葯、冶金、采礦、石油、皮革、輕化工等多種行業。通過微生物發酵途徑生產抗生素、丁醇、維生素C以及一些風味食品的制備等;某些特殊微生物酶參與皮革脫毛、冶金、採油采礦等生產過程,甚至直接作為洗衣粉等的添加劑;另外還有一些微生物的代謝產物可以作為天然的微生物殺蟲劑廣泛應用於農業生產。通過對枯草芽孢桿菌的基因組研究,發現了一系列與抗生素及重要工業用酶的產生相關的基因。乳酸桿菌作為一種重要的微生態調節劑參與食品發酵過程,對其進行的基因組學研究將有利於找到關鍵的功能基因,然後對菌株加以改造,使其更適於工業化的生產過程。國內維生素C兩步發酵法生產過程中的關鍵菌株氧化葡萄糖酸桿菌的基因組研究,將在基因組測序完成的前提下找到與維生素C生產相關的重要代謝功能基因,經基因工程改造,實現新的工程菌株的構建,簡化生產步驟,降低生產成本,繼而實現經濟效益的大幅度提升。對工業微生物開展的基因組研究,不斷發現新的特殊酶基因及重要代謝過程和代謝產物生成相關的功能基因,並將其應用於生產以及傳統工業、工藝的改造,同時推動現代生物技術的迅速發展。
農業微生物基因組研究認清致病機制發展控制病害的新對策
據資料統計,全球每年因病害導致的農作物減產可高達20%,其中植物的細菌性病害最為嚴重。除了培植在遺傳上對病害有抗性的品種以及加強園藝管理外,似乎沒有更好的病害防治策略。因此積極開展某些植物致病微生物的基因組研究,認清其致病機制並由此發展控制病害的新對策顯得十分緊迫。
經濟作物柑橘的致病菌是國際上第一個發表了全序列的植物致病微生物。還有一些在分類學、生理學和經濟價值上非常重要的農業微生物,例如:胡蘿卜歐文氏菌、植物致病性假單胞菌以及我國正在開展的黃單胞菌的研究等正在進行之中。日前植物固氮根瘤菌的全序列也剛剛測定完成。借鑒已經較為成熟的從人類病原微生物的基因組學信息篩選治療性葯物的方案,可以嘗試性地應用到植物病原體上。特別像柑橘的致病菌這種需要昆蟲媒介才能完成生活周期的種類,除了殺蟲劑能阻斷其生活周期以外,只能通過遺傳學研究找到毒力相關因子,尋找抗性靶位以發展更有效的控制對策。固氮菌全部遺傳信息的解析對於開發利用其固氮關鍵基因提高農作物的產量和質量也具有重要的意義。
環境保護微生物基因組研究找到關鍵基因降解不同污染物
在全面推進經濟發展的同時,濫用資源、破壞環境的現象也日益嚴重。面對全球環境的一再惡化,提倡環保成為全世界人民的共同呼聲。而生物除污在環境污染治理中潛力巨大,微生物參與治理則是生物除污的主流。微生物可降解塑料、甲苯等有機物;還能處理工業廢水中的磷酸鹽、含硫廢氣以及土壤的改良等。微生物能夠分解纖維素等物質,並促進資源的再生利用。對這些微生物開展的基因組研究,在深入了解特殊代謝過程的遺傳背景的前提下,有選擇性的加以利用,例如找到不同污染物降解的關鍵基因,將其在某一菌株中組合,構建高效能的基因工程菌株,一菌多用,可同時降解不同的環境污染物質,極大發揮其改善環境、排除污染的潛力。美國基因組研究所結合生物晶元方法對微生物進行了特殊條件下的表達譜的研究,以期找到其降解有機物的關鍵基因,為開發及利用確定目標。
極端環境微生物基因組研究深入認識生命本質應用潛力極大
在極端環境下能夠生長的微生物稱為極端微生物,又稱嗜極菌。嗜極菌對極端環境具有很強的適應性,極端微生物基因組的研究有助於從分子水平研究極限條件下微生物的適應性,加深對生命本質的認識。
有一種嗜極菌,它能夠暴露於數千倍強度的輻射下仍能存活,而人類一個劑量強度就會死亡。該細菌的染色體在接受幾百萬拉德a射線後粉碎為數百個片段,但能在一天內將其恢復。研究其DNA修復機制對於發展在輻射污染區進行環境的生物治理非常有意義。開發利用嗜極菌的極限特性可以突破當前生物技術領域中的一些局限,建立新的技術手段,使環境、能源、農業、健康、輕化工等領域的生物技術能力發生革命。來自極端微生物的極端酶,可在極端環境下行使功能,將極大地拓展酶的應用空間,是建立高效率、低成本生物技術加工過程的基礎,例如PCR技術中的TagDNA聚合酶、洗滌劑中的鹼性酶等都具有代表意義。極端微生物的研究與應用將是取得現代生物技術優勢的重要途徑,其在新酶、新葯開發及環境整治方面應用潛力極大。
6. 人體中有什麼微生物
有數以萬億的微生物個體活躍在人體內部或體表,包括細菌、古細菌、真菌、寄生蟲和病毒等。這些微生物占人體總重量的1%-2%,其中許多微生物對人體健康維持有重要作用,幫助我們消化食物,製造維生素,甚至幫助我們塑造肌肉系統。而同時還有一些微生物則可能導致人體疾病。然而,目前對健康和疾病狀態下這些細菌、真菌和其他微生物的作用還所知甚少。
7. 脊柱區肌肉分為幾層,以及各層的肌肉是什麼
脊柱區肌肉分為幾層,以及各層的肌肉是什麼
皮膚由表皮、真皮和皮下組織構成,並含有附屬器官(汗腺、皮脂腺、指甲、趾甲)以及血管、淋巴管、神經和肌肉
皮膚指身體表麵包在肌肉外面的組織,是人體最大的器官,主要承擔著保護身體、排汗、感覺冷熱和壓力等功能。皮膚覆蓋全身,它使體內各種組織和器官免受物理性、機械性、化學性和病原微生物性的侵襲。人和高等動物的皮膚由表皮、真皮(中胚層)、皮下組織三層組成。
8. 肌肉細胞里的蛋白質和核酸屬於生命系統的分子層次對嗎
這句話是錯誤的。生命系統的最低層次是細胞,蛋白質和核酸屬於分子,不是生命系統的結構層次。
生命系統是指能獨立與其所處的環境進行物質與能量交換,並在此基礎上實現內部的有序性、發展與繁殖的系統。由大到小依次為生物圈、生態系統、群落、種群、個體、(消化、呼吸、循環等)系統、器官、組織、細胞。
而肌肉細胞中的蛋白質和核酸屬於生物大分子,是構成細胞的物質,但是不屬於生命系統,因為其級別低於生命系統的最低層次——細胞。
(8)肌肉處是什麼微生物擴展閱讀
生命系統共有九個層次,從低到高分別是:
①細 胞:細胞是生物體的基本結構和功能單位,也是最基本的生命系統。
②組 織:由形態相似、結構和功能相同的一群細胞和細胞間質聯合在一起構成。
③器 官:不同的組織按照一定的次序結合在一起。
④系 統:指彼此間互相作用、互相依賴的組分有規律地結合而形成的整體。能夠共同完成一種或幾種生理功能的多個器官按照一定的次序組合在一起。
⑤個 體:由不同的器官或系統協調配合共同完成復雜的生命活動的生物,是最直觀的,例如:一個人,一匹馬。
⑥種 群:在一定的自然區域內,同種生物的所有個體是一個種群,例如:同一魚塘內的鯉魚或同一樹林內的楊樹。
⑦群 落:在一定的自然區域內,所有的種群組成一個群落,例如:一片樹林中的所有生物是一個群落,一片草地上的所有生物也是一個群落。
⑧生態系統:可以體現生命現象和生命活動規律的整體,是分層次的。在一定的自然區域內,生物群落與無機環境相互形成的統一整體,例如:森林生態系統、草原生態系統、海洋生態系統、淡水生態系統。
⑨生物圈:由地球上所有的生物和這些生物生活的無機環境共同組成。是最大的生命系統。