導航:首頁 > 生物信息 > 高中生物必修二第二章是什麼

高中生物必修二第二章是什麼

發布時間:2022-07-26 04:58:39

『壹』 人教版高中生物必修二的目錄是什麼我忘了把課本帶回家了。。

必修2:遺傳與進化

科學家訪談 我贊嘆生命的魅力

第1章 遺傳因子的發現:

第1節 孟德爾的豌豆雜交實驗(一)

第2節 孟德爾的豌豆雜交實驗(二)

第2章 基因和染色體的關系

第1節 減數分裂和受精作用

一、減數分裂

二、受精作用

第2節 基因在染色體上

科學家的故事 染色體遺傳理論的奠基人——摩爾根

第3節 伴性遺傳

第3章 基因的本質

第1節 DNA是主要的遺傳物質

第2節 DNA分子的結構

第3節 DNA的復制

第4節 基因是有遺傳效應的DNA片段

科學·技術·社會 DNA指紋技術

第4章 基因的表達

第1節 基因指導蛋白質的合成

第2節 基因對性狀的控制

科學前沿 生物信息

第3節 遺傳密碼的破譯(選學)

第5章 基因突變及其他變異

第1節 基因突變和基因重組

第2節 染色體變異

第3節 人類遺傳病

科學·技術·社會 基因治療

第6章 從雜交育種到基因工程

第1節 雜交育種與誘變育種

生物學有關的職業 育種工作著

第2節 基因工程及其應用

與生物學有關的職業 生物技術產業的研發人員

第7章 現代生物進化理論

第1節 現代生物進化理論的由來

第2節 現代生物進化理論的主要內容

一、種群基因頻率的改變與生物進化

二、隔離與物種的形成

與生物學有關的職業 化學標本的製作

三、共同進化與生物多樣性的形成

科學·技術·社會 理想的「地質時鍾」

(1)高中生物必修二第二章是什麼擴展閱讀:

高中生物新大綱:

知識點的增刪與調整

新大綱刪除的知識點或知識項目共10個,它們是:

①基因的連鎖與交換定律

②生物進化的簡要過程界級分類(選學)

③人類的起源和發展,④生物對環境的適應與影響

⑤自然保護區(選學)

⑥環境污染的危害

⑦環境污染的防治

⑧營養與健康的關系

⑨原核生物基因表達的調控

⑩真核生物基因表達的調控

與此同時,新大綱新增加1個知識項目,那就是在《生態系統的類型》中增加了濕地生態系統。

新大綱中更有調整的知識項目8個,其中:

①「細胞的亞顯微結構和功能」改為「細胞主要的亞顯微結構和功能」

②「酶的概念和特性」改為「酶的性質」

③「植物的水分代謝」改為「植物對水分的吸收和利用」

④「植物的礦質代謝」改「植物的礦質營養」

⑤「生物的呼吸作用」改為「細胞呼吸」

⑥「基因突變和重組」改為「基因突變」

⑦「種群數量的變化」等改為「種群及數量的變化」

⑧「生態環境的保護」單元改為「人與生物圈」。

新大綱中對各知識點的教學要求也部分作了變更。其中「細胞主要的亞顯微結構」、「細胞分裂」、「酶的性質」等三個知識點均由D(應用)調整為C(理解)。

「現代免疫學的應用」、「酶工程簡介」均改為選學內容,「生態系統的類型」全調整為B(識記),「種群及數量的變化」全調整為C(理解),而「酸雨等全球環境問題」由A(知道)調整為C(理解)。

參考資料來源:網路-高中生物

『貳』 高中生物必修二知識點(很詳細的)

1、遺傳的基本規律
(1)基因的分離定律
①豌豆做材料的優點:(1)豌豆能夠嚴格進行自花授粉,而且是閉花授粉,自然條件下能保持純種。(2)品種之間具有易區分的性狀。
②人工雜交試驗過程:去雄(留下雌蕊)→套袋(防干擾)→人工傳粉
③一對相對性狀的遺傳現象:具有一對相對性狀的純合親本雜交,後代表現為一種表現型,F1代自交,F2代中出現性狀分離,分離比為3:1。
④基因分離定律的實質:在雜合子的細胞中,位於一對同源染色體上的等位基因,具有一定的獨立性,生物體在進行減數分裂時,等位基因會隨同源染色體的分開而分離,分別進入到兩個配子中,獨立地隨配子遺傳給後代。
(2)基因的自由組合定律
①兩對等位基因控制的兩對相對性狀的遺傳現象:具有兩對相對性狀的純合子親本雜交後,產生的F1自交,後代出現四種表現型,比例為9:3:3:1。四種表現型中各有一種純合子,分別在子二代佔1/16,共佔4/16;雙顯性個體比例佔9/16;雙隱性個體比例佔1/16;單雜合子佔2/16×4=8/16;雙雜合子佔4/16;親本類型比例各佔9/16、1/16;重組類型比例各佔3/16、3/16
②基因的自由組合定律的實質:位於非同源染色體上的非等位基因的分離或組合是互不幹擾的。在進行減數分裂形成配子的過程中,同源染色體上的等位基因彼此分離,同時非同源染色體上的非等位基因自由組合。
③運用基因的自由組合定律的原理培育新品種的方法:優良性狀分別在不同的品種中,先進行雜交,從中選擇出符合需要的,再進行連續自交即可獲得純合的優良品種。
記憶點:
1.基因分離定律:具有一對相對性狀的兩個生物純本雜交時,子一代只表現出顯性性狀;子二代出現了性狀分離現象,並且顯性性狀與隱性性狀的數量比接近於3:1。
2.基因分離定律的實質是:在雜合子的細胞中,位於一對同源染色體,具有一定的獨立性,生物體在進行減數分裂形成配子時,等位基因會隨著的分開而分離,分別進入到兩個配子中,獨立地隨配子遺傳給後代。
3.基因型是性狀表現的內存因素,而表現型則是基因型的表現形式。表現型=基因型+環境條件。
4.基因自由組合定律的實質是:位於非同源染色體上的非等位基因的分離或組合是互不幹擾的。在進行減數分裂形成配子的過程中,同源染色體上的等位基因彼此分離,同時非同源染色體上的非等位基因自由組合。在基因的自由組合定律的范圍內,有n對等位基因的個體產生的配子最多可能有2n種。
2、 細胞增殖
(1) 細胞周期:指連續分裂的細胞,從一次分裂完成時開始,到下一次分裂完成時為止。
(2)有絲分裂:
分裂間期的最大特點:完成DNA分子的復制和有關蛋白質的合成
分裂期染色體的主要變化為:前期出現;中期清晰、排列;後期分裂;末期消失。特別注意後期由於著絲點分裂,染色體數目暫時加倍。
動植物細胞有絲分裂的差異:a.前期紡錘體形成方式不同;b.末期細胞質分裂方式不同。
(3)減數分裂:
對象:有性生殖的生物時期:原始生殖細胞形成成熟的生殖細胞特點:染色體只復制一次,細胞連續分裂兩次結果:新產生的生殖細胞中染色體數比原始生殖細胞減少一半。
精子和卵細胞形成過程中染色體的主要變化:減數第一次分裂間期染色體復制,前期同源染色體聯會形成四分體(非姐妹染色體單體之間常出現交叉互換),中期同源染色體排列在赤道板上,後期同源染色體分離同時非同源染色體自由組合;減數第二次分裂前期染色體散亂地分布於細胞中,中期染色體的著絲點排列在赤道板上,後期染色體的著絲點分裂染色體單體分離。
有絲分裂和減數分裂的圖形的鑒別:(檢索表以二倍體生物為例)
1.1細胞中沒有同源染色體……減數第二次分裂
1.2細胞中有同源染色體
2.1有同源染色體聯會、形成四分體、排列於赤道板或相互分離……減數第一次分裂
2.2同源染色體沒有上述特殊行為……有絲分裂
記憶點:
1.減數分裂的結果是,新產生的生殖細胞中的染色體數目比原始的生殖細胞的減少了一半。
2.減數分裂過程中聯會的同源染色體彼此分開,說明染色體具一定的獨立性;同源的兩個染色體移向哪一極是隨機的,則不同對的染色體(非同源染色體)間可進行自由組合。
3.減數分裂過程中染色體數目的減半發生在減數第一次分裂中。
4.一個精原細胞經過減數分裂,形成四個精細胞,精細胞再經過復雜的變化形成精子。
5. 一個卵原細胞經過減數分裂,只形成一個卵細胞。
6. 對於進行有性生殖的生物來說,減數分裂和受精作用對於維持每種生物前後代體細胞中染色體數目的恆定,對於生物的遺傳和變異,都是十分重要的
3、性別決定與伴性遺傳
(1)XY型的性別決定方式:雌性體內具有一對同型的性染色體(XX),雄性體內具有一對異型的性染色體(XY)。減數分裂形成精子時,產生了含有X染色體的精子和含有Y染色體的精子。雌性只產生了一種含X染色體的卵細胞。受精作用發生時,X精子和Y精子與卵細胞結合的機會均等,所以後代中出生雄性和雌性的機會均等,比例為1:1。
(2)伴X隱性遺傳的特點(如色盲、血友病、果蠅眼色、女婁菜葉形等遺傳)
①男性患者多於女性患者
②屬於交叉遺傳(隔代遺傳)即外公→女兒→外孫
③女性患者,其父親和兒子都是患者;男性患病,其母、女至少為攜帶者
(3)X染色體上隱性遺傳(如抗VD佝僂病、鍾擺型眼球震顫)
①女性患者多於男性患者。
②具有世代連續現象。
③男性患者,其母親和女兒一定是患者。
(4)Y染色體上遺傳(如外耳道多毛症)
致病基因為父傳子、子傳孫、具有世代連續性,也稱限雄遺傳。
(5)伴性遺傳與基因的分離定律之間的關系:伴性遺傳的基因在性染色體上,性染色體也是一對同源染色體,伴性遺傳從本質上說符合基因的分離定律。
記憶點:
1.生物體細胞中的染色體可以分為兩類:常染色體和性染色體。生物的性別決定方式主要有兩種:一種是XY型,另一種是ZW型。
2.伴性遺傳的特點:
(1)伴X染色體隱性遺傳的特點: 男性患者多於女性患者;具有隔代遺傳現象(由於致病基因在X染色體上,一般是男性通過女兒傳給外孫);女性患者的父親和兒子一定是患者,反之,男性患者一定是其母親傳給致病基因。
(2)伴X染色體顯性遺傳的特點:女性患者多於男性患者,大多具有世代連續性即代代都有患者,男性患者的母親和女兒一定是患者。
(3)伴Y染色體遺傳的特點: 患者全部為男性;致病基因父傳子,子傳孫(限雄遺傳)。
4、基因的本質
(1)DNA是主要的遺傳物質
① 生物的遺傳物質:在整個生物界中絕大多數生物是以DNA作為遺傳物質的。有DNA的生物(細胞結構的生物和DNA病毒),DNA就是遺傳物質;只有少數病毒(如艾滋病毒、SARS病毒、禽流感病毒等)沒有DNA,只有RNA,RNA才是遺傳物質。
②證明DNA是遺傳物質的實驗設計思想:設法把DNA和蛋白質分開,單獨地、直接地去觀察DNA的作用。
(2)DNA分子的結構和復制
①DNA分子的結構
a.基本組成單位:脫氧核苷酸(由磷酸、脫氧核糖和鹼基組成)。
b.脫氧核苷酸長鏈:由脫氧核苷酸按一定的順序聚合而成
c.平面結構:
d.空間結構:規則的雙螺旋結構。
e.結構特點:多樣性、特異性和穩定性。
②DNA的復制
a.時間:有絲分裂間期或減數第一次分裂間期
b .特點:邊解旋邊復制;半保留復制。
c.條件:模板(DNA分子的兩條鏈)、原料(四種游離的脫氧核苷酸)、酶(解旋酶,DNA聚合酶,DNA連接酶等),能量(ATP)
d.結果:通過復制產生了與模板DNA一樣的DNA分子。
e.意義:通過復制將遺傳信息傳遞給後代,保持了遺傳信息的連續性。
(3)基因的結構及表達
①基因的概念:基因是具有遺傳效應的DNA分子片段,基因在染色體上呈線性排列。
②基因控制蛋白質合成的過程:

轉錄:以DNA的一條鏈為模板通過鹼基互補配對原則形成信使RNA的過程。
翻譯:在核糖體中以信使RNA為模板,以轉運RNA為運載工具合成具有一定氨基酸排列順序的蛋白質分子
記憶點:
1.DNA是使R型細菌產生穩定的遺傳變化的物質,而噬菌體的各種性狀也是通過DNA傳遞給後代的,這兩個實驗證明了DNA 是遺傳物質。
2.一切生物的遺傳物質都是核酸。細胞內既含DNA又含RNA和只含DNA的生物遺傳物質是DNA,少數病毒的遺傳物質是RNA。由於絕大多數的生物的遺傳物質是DNA,所以DNA是主要的遺傳物質。

3.鹼基對排列順序的千變萬化,構成了DNA分子的多樣性,而鹼基對的特定的排列順序,又構成了每一個DNA分子的特異性。這從分子水平說明了生物體具有多樣性和特異性的原因。
4.遺傳信息的傳遞是通過DNA分子的復制來完成的。基因的表達是通過DNA控制蛋白質的合成來實現的。
5.DNA分子獨特的雙螺旋結構為復制提供了精確的模板;通過鹼基互補配對,保證了復制能夠准確地進行。在兩條互補鏈中 的比例互為倒數關系。在整個DNA分子中,嘌呤鹼基之和=嘧啶鹼基之和。整個DNA分子中, 與分子內每一條鏈上的該比例相同。
6.子代與親代在性狀上相似,是由於子代獲得了親代復制的一份DNA的緣故。
7.基因是有遺傳效應的DNA片段,基因在染色體上呈直線排列,染色體是基因的載體。
8.由於不同基因的脫氧核苷酸的排列順序(鹼基順序)不同,因此,不同的基因含有不同的遺傳信息。(即:基因的脫氧核苷酸的排列順序就代表遺傳信息)。
9.DNA分子的脫氧核苷酸的排列順序決定了信使RNA中核糖核苷酸的排列順序,信使RNA中核糖核苷酸的排列順序又決定了氨基酸的排列順序,氨基酸的排列順序最終決定了蛋白質的結構和功能的特異性,從而使生物體表現出各種遺傳特性。基因控制蛋白質的合成時:基因的鹼基數:mRNA上的鹼基數:氨基酸數=6:3:1。氨基酸的密碼子是信使RNA上三個相鄰的鹼基,不是轉運RNA上的鹼基。轉錄和翻譯過程中嚴格遵循鹼基互補配對原則。注意:配對時,在RNA上A對應的是U。
10.生物的一切遺傳性狀都是受基因控制的。一些基因是通過控制酶的合成來控制代謝過程;基因控制性狀的另一種情況,是通過控制蛋白質分子的結構來直接影響性狀。
5、生物的變異
(1 )基因突變
①基因突變的概念:由於DNA分子中發生鹼基對的增添、缺失或改變,而引起的基因結構的改變。
②基因突變的特點: a.基因突變在生物界中普遍存在 b.基因突變是隨機發生的 c.基因突變的頻率是很低的 d.大多數基因突變對生物體是有害的 e.基因突變是不定向的
③基因突變的意義:生物變異的根本來源,為生物進化提供了最初的原材料。
④基因突變的類型:自然突變、誘發突變
⑤人工誘變在育種中的應用:通過人工誘變可以提高變異的頻率,可以大幅度地改良生物的性狀。
(2) 染色體變異
①染色體結構的變異:缺失、增添、倒位、易位。如:貓叫綜合征。
②染色體數目的變異:包括細胞內的個別染色體增加或減少和以染色體組的形式成倍地增加減少。
③染色體組特點:a、一個染色體組中不含同源染色體 b、一個染色體組中所含的染色體形態、大小和功能各不相同 c、一個染色體組中含有控制生物性狀的一整套基因
④二倍體或多倍體:由受精卵發育成的個體,體細胞中含幾個染色體組就是幾倍體;由未受精的生殖細胞(精子或卵細胞)發育成的個體均為單倍體(可能有1個或多個染色體組)。⑤人工誘導多倍體的方法:用秋水仙素處理萌發的種子和幼苗。原理:當秋水仙素作用於正在分裂的細胞時,能夠抑制細胞分裂前期紡錘體形成,導致染色體不分離,從而引起細胞內染色體數目加倍。
⑥多倍體植株特徵:莖桿粗壯,葉片、果實和種子都比較大,糖類和蛋白質等營養物質的含量都有所增加。
⑦單倍體植株特徵:植株長得弱小而且高度不育。單倍體植株獲得方法:花葯離休培養。單倍體育種的意義:明顯縮短育種年限(只需二年)。
記憶點:
1.染色體組是細胞中的一組非同源染色體,它們在形態和功能上各不相同,但是攜帶者控制一種生物生長發育、遺傳和變異的全部信息,這樣的一組染色體叫染色體組。
2.可遺傳變異是遺傳物質發生了改變,包括基因突變、基因重組和染色體變異。基因突變最大的特點是產生新的基因。它是染色體的某個位點上的基因的改變。基因突變既普遍存在,又是隨機發生的,且突變率低,大多對生物體有害,突變不定向。基因突變是生物變異的根本來源,為生物進化提供了最初的原材料。基因重組是生物體原有基因的重新組合,並沒產生新基因,只是通過雜交等使本不在同一個體中的基因重組合進入一個個體。通過有性生殖過程實現的基因重組,為生物變異提供了極其豐富的來源。這是形成生物多樣性的重要原因之一,對於生物進化具有十分重要的意義。上述二種變異用顯微鏡是看不到的,而染色體變異就是染色體的結構和數目發生改變,顯微鏡可以明顯看到。這是與前二者的最重要差別。其變化涉及到染色體的改變。如結構改變,個別數目及整倍改變,其中整倍改變在實際生活中具有重要意義,從而引伸出一系列概念和類型,如:染色體組、二倍體、多倍體、單倍體及多倍體育種等。

6、 人類遺傳病與優生
(1)優生的措施:禁止近親結婚、進行遺傳咨詢、提倡適齡生育、產前診斷。
(2)禁止近親結婚的原因:近親結婚的夫婦從共同祖先那裡繼承同一種致病基因的機會大大增加,所生子女患隱性遺傳病的概率大大增加。
記憶點:
1. 多指、並指、軟骨發育不全是單基因的常染色體顯性遺傳病;抗維生素D佝僂病是單基因的X染色體顯性遺傳病;白化病、苯丙酮尿症、先天性聾啞是單基因的常染色體隱性遺傳病;進行性肌營養不良、紅綠色盲、血友病是單基因的X染色體隱性遺傳病;唇裂、無腦兒、原發性高血壓、青少年型糖尿病等屬於對基因遺傳病;另外染色體遺傳病中常染色體病有21三體綜合症、貓叫綜合症等;性染色體病有性腺發育不良等。
7、細胞質遺傳
①細胞質遺傳的特點:母系遺傳(原因:受精卵中的細胞質幾乎全部來自母細胞);後代沒有一定的分離比(原因:生殖細胞在減數分裂時,細胞質中的遺傳物質隨機地、不均等地分配到子細胞中去)。
②細胞質遺傳的物質基礎:在細胞質內存在著DNA分子,這些DNA分子主要位於線粒體和葉綠體中,可以控制一些性狀。
記憶點:
1.卵細胞中含有大量的細胞質,而精子中只含有極少量的細胞質,這就是說受精卵中的細胞質幾乎全部來自卵細胞,這樣,受細胞質內遺傳物質控制的性狀實際上是由卵細胞傳給子代,因此子代總表現出母本的性狀。
2.細胞質遺傳的主要特點是:母系遺傳;後代不出現一定的分離比。細胞質遺傳特點形成的原因:受精卵中的細胞質幾乎全部來自卵細胞;減數分裂時,細胞質中的遺傳物質隨機地、不均等地分配到卵細胞中。細胞質遺傳的物質基礎是:葉綠體、線粒體等細胞質結構中的DNA。
3.細胞核遺傳和細胞質遺傳各自都有相對的獨立性。這是因為,盡管在細胞質中找不到染色體一樣的結構,但質基因和核基因一樣,可以自我復制,可以通過轉錄和翻譯控制蛋白質的合成,也就是說,都具有穩定性、連續性、變異性和獨立性。但細胞核遺傳和細胞質遺傳又相互影響,很多情況是核質互作的結果。
8、基因工程簡介
(1)基因工程的概念
標准概念:在生物體外,通過對DNA分子進行人工「剪切」和「拼接」,對生物的基因進行改造和重新組合,然後導入受體細胞內進行無性繁殖,使重組細胞在受體細胞內表達,產生出人類所需要的基因產物。
通俗概念:按照人們的意願,把一種生物的個別基因復制出來,加以修飾改造,然後放到另一種生物的細胞里,定向地改造生物的遺傳性狀。
(2)基因操作的工具
A.基因的剪刀——限制性內切酶(簡稱限制酶)。
①分布:主要在微生物中。
②作用特點:特異性,即識別特定核苷酸序列,切割特定切點。
③結果:產生黏性未端(鹼基互補配對)。
B.基因的針線——DNA連接酶。
①連接的部位:磷酸二酯鍵,不是氫鍵。
②結果:兩個相同的黏性未端的連接。
C.基困的運輸工具——運載體
①作用:將外源基因送入受體細胞。
②具備的條件:a、能在宿主細胞內復制並穩定地保存。b、 具有多個限制酶切點。
c、有某些標記基因。
③種類:質粒、噬菌體和動植物病毒。
④質粒的特點:質粒是基因工程中最常用的運載體。
(3)基因操作的基本步驟
A.提取目的基因
目的基因概念:人們所需要的特定基因,如人的胰島素基因、抗蟲基因、抗病基因、干擾素基因等。
提取途徑:
B.目的基因與運載體結合
用同一種限制酶分別切割目的基因和質粒DNA(運載體),使其產生相同的黏性末端,將切割下的目的基因與切割後的質粒混合,並加入適量的DNA連接酶,使之形成重組DNA分子(重組質粒)
C.將目的基因導入受體細胞
常用的受體細胞:大腸桿菌、枯草桿菌、土壤農桿菌、酵母菌、動植物細胞
D.目的基因檢測與表達
檢測方法如:質粒中有抗菌素抗性基因的大腸桿菌細胞放入到相應的抗菌素中,如果正常生長,說明細胞中含有重組質粒。
表達:受體細胞表現出特定性狀,說明目的基因完成了表達過程。如:抗蟲棉基因導入棉細胞後,棉鈴蟲食用棉的葉片時被殺死;胰島素基因導入大腸桿菌後能合成出胰島素等。
(4)基因工程的成果和發展前景 A.基因工程與醫葯衛生B.基因工程與農牧業、食品工業

C.基因工程與環境保護
記憶點:
1. 作為運載體必須具備的特點是:能夠在宿主細胞中復制並穩定地保存;具有多個限制酶切點,以便與外源基因連接;具有某些標記基因,便於進行篩選。質粒是基因工程最常用的運載體,它存在於許多細菌以及酵母菌等生物中,是能夠自主復制的很小的環狀DNA分子。
2.基因工程的一般步驟包括:①提取目的基因 ②目的基因與運載體結合 ③將目的基因導入受體細胞 ④目的基因的檢測和表達。
3.重組DNA分子進入受體細胞後,受體細胞必須表現出特定的性狀,才能說明目的基因完成了表達過程。
4.區別和理解常用的運載體和常用的受體細胞,目前常用的運載體有:質粒、噬菌體、動植物病毒等,目前常用的受體細胞有大腸桿菌、枯草桿菌、土壤農桿菌、酵母菌和動植物細胞等。
5.基因診斷是用放射性同位素、熒光分子等標記的DNA分子做探針,利用DNA分子雜交原理,鑒定被檢測標本的遺傳信息,達到檢測疾病的目的。
6.基因治療是把健康的外源基因導入有基因缺陷的細胞中,達到治療疾病的目的。
9 、生物的進化
(1)自然選擇學說內容是:過度繁殖、生存斗爭、遺傳變異、適者生存。
(2)物種:指分布在一定的自然區域,具有一定的形態結構和生理功能,而且在自然狀態下能夠相互交配和繁殖,並能產生出可育後代的一群個體。
種群:是指生活在同一地點的同種生物的一群個體。
種群的基因庫:一個種群的全部個體所含有的全部基因。
(3)現代生物進化理論的基本觀點:種群是生物進化的基本單位,生物進化的實質在於種群基因頻率的改變。突變和基因重組、自然選擇及隔離是物種形成過程的三個基本環節,通過它們的綜合作用,種群產生分化,最終導致新物種的形成。
(4)突變和基因重組產生生物進化的原材料,自然選擇使種群的基因頻率定向改變並決定生物進化的方向,隔離是新物種形成的必要條件(生殖隔離的形成標志著新物種的形成)。
現代生物進化理論的基礎:自然選擇學說。
記憶點:
1.生物進化的過程實質上就是種群基因頻率發生變化的過程。
2.以自然選擇學說為核心的現代生物進化理論,其基本觀點是:種群是生物進化的基本單位,生物進化的實質在於種群基因頻率的改變。突變和基因重組、自然選擇及隔離是物種形成過程的三個基本環節,通過它們的綜合作用,種群產生分化,最終導致新物種的形成。
3. 隔離就是指同一物種不同種群間的個體,在自然條件下基因不能自由交流的現象。包括地理隔離和生殖隔離。其作用就是阻斷種群間的基因交流,使種群的基因頻率在自然選擇中向不同方向發展,是物種形成的必要條件和重要環節。
4.物種形成與生物進化的區別:生物進化是指同種生物的發展變化,時間可長可短,性狀變化程度不一,任何基因頻率的改變,不論其變化大小如何,都屬進化的范圍,物種的形成必須是當基因頻率的改變在突破種的界限形成生殖隔離時,方可成立。
5.生物體的每一個細胞都有含有該物種的全套遺傳物質,都有發育成為完整個體所必需的全部基因。
6.在生物體內,細胞沒有表現出全能性,而是分化為不同的組織器官,這是基因在特定的時間和空間條件下選擇性表達的結果。

『叄』 高中生物必修二的主要內容

第一章 遺傳因子的發現
第一節 孟德爾的豌豆雜交試驗(一)
第二節 孟德爾的豌豆雜交試驗(二)
第二章 基因和染色體的關系
第一節 減數分裂和受精作用
第二節 基因在染色體上
第三節 伴性遺傳
第三章 基因的本質
第一節 DNA是主要的遺傳物質
第二節 DNA分子的結構
第三節 DNA的復制
第四節 基因是有遺傳效應的DNA片段
第四章 基因的表達
第一節 基因指導蛋白質的合成
第二節 基因對性狀的控制
第三節 遺傳密碼的破譯(選學)
第五章 基因突變及其他變異
第一節 基因突變和基因重組
第二節 染色體變異
第三節 人類遺傳病
第六章 從雜交育種到基因工程
第一節 雜交育種與誘變育種
第二節 基因工程及其應用
第七章 現代生物進化理論
第一節 現代生物進化理論的由來
第二節 現代生物進化理論的主要內容

『肆』 高中生物必修二全部知識點圖文版

第一章 遺傳因子的發現

隱性遺傳因子 隱性性狀
性狀分離 雜合子 相對性狀
顯性遺傳因子 顯性性狀

一、孟德爾簡介

二、雜交實驗(一) 1956----1864------1872

1.選材:豌豆 自花傳粉、閉花受粉 純種
性狀易區分且穩定 真實遺傳

2.過程:人工異花傳粉 一對相對性狀的 正交
P(親本) 高莖 DD X 矮莖dd 互交 反交
F1(子一代) 高莖 Dd 純合子、雜合子
F2(子二代) 高莖 DD :高莖 Dd :矮莖dd
1 : 2 : 1 分離比為3:1

3.解釋
①性狀由遺傳因子決定。(區分大小寫) ②因子成對存在。
③配子只含每對因子中的一個。 ④配子的結合是隨機的。

4.驗證 測交 ( F1) Dd X dd F1是否產生兩種
高 1 : 1 矮 比例為1:1的配子

5.分離定律
在生物的體細胞中,控制同一性狀的遺傳因子成對存在,不相融合;在形成配子時,成對的遺傳因子發生分離,分離後的遺傳因子分別進入不同的配子中,隨配子遺傳給後代。

三、雜交實驗(二)
1. 黃圓 YYRR X 綠皺yyrr
黃圓YyRr
黃圓Y_R_ :黃皺Y_rr :綠圓yyR_ :綠皺yyrr 親組合
9 : 3 : 3 : 1 重組合

2.自由組合定律
控制不同性狀的遺傳因子的分離和組合是互不幹擾的;在形成配子時,決定同一性狀的成對的遺傳因子彼此分離,決定不同性狀的遺傳因子自由組合。

四、孟德爾遺傳定律史記
①1866年發表 ②1900年再發現
③1909年約翰遜將遺傳因子更名為「基因」 基因型、表現型、等位基因

△基因型是性狀表現的內在因素,而表現型則是基因型的表現形式。表現型=基因型+環境條件。

五、小結

後代性狀分離比 說明
3 : 1 雜合子 X 雜合子
1 : 1 雜合子 X 隱性純合子
1 : 0 純合子 X 純合子 ;純合子 X 顯性雜合子
1.

2.
n對基因雜交 F1形成配子數 F1配子可能的結合數 F2的基因型數 F2的表現型數 F2的表型分離比
1
2
…… 2
4
…… 4
16
…… 3
9
…… 2
4
…… 3:1
9:3:3:1
……
2n 2n 4n 3n 2n (3+1)n

第二章 基因與染色體的關系
依據:基因與染色體行為的平行關系 減數分裂與受精作用
基因在染色體上 證據:果蠅雜交(白眼) 伴性遺傳:色盲與抗VD佝僂病
現代解釋:遺傳因子為一對同源染色體上的一對等位基因

一、減數分裂

1.進行有性生殖的生物在產生成熟生殖細胞時,進行的染色體數目減半的細胞分裂。在減數分裂過程中,染色體只復制一次,而細胞分裂兩次。減數分裂的結果是,成熟生殖細胞中的染色體數目比原始生殖細胞的減少一半。

2.過程
染色體 同源染色體聯會成 著絲點分裂
精原 復制 初級四分體(交叉互換)次級 單體分開 精 變形 精
細胞 精母 分離(自由組合) 精母 細胞 子

染色體 2N 2N N 2N N N
DNA 2C 4C 4C 2C 2C C C

3.同源染色體
A a Bb ① 形狀(著絲點位置)和大小(長度)相同,分別來自父方與母方的
②一對同源染色體是一個四分體,含有兩條染色體,四條染色單體
③區別:同源與非同源染色體;姐妹與非姐妹染色單體
④交叉互換

4.判斷分裂圖象
奇數 減Ⅱ或生殖細胞 散亂 中央 分極
染色體 不 有絲
有 配對 前 中 後
偶數 同源染色體 有 減Ⅰ 期 期 期
無 減Ⅱ
二、薩頓假說
1.內容:基因在染色體上 (染色體是基因的載體)
2.依據:基因與染色體行為存在著明顯的平行關系。
①在雜交中保持完整和獨立性 ②成對存在
③一個來自父方,一個來自母方 ④形成配子時自由組合
3.證據: 果蠅的限性遺傳
紅眼 XWXW X 白眼XwY
XW Y 紅眼 XWXw
紅眼XWXW :紅眼XWXw:紅眼XW Y:白眼XwY
①一條染色體上有許多個基因;②基因在染色體上呈線性排列。
4.現代解釋孟德爾遺傳定律
①分離定律:等位基因隨同源染色體的分開獨立地遺傳給後代。
②自由組合定律:非同源染色體上的非等位基因自由組合。

三、伴性遺傳的特點與判斷

遺傳病的遺傳方式 遺傳特點 實例
常染色體隱性遺傳病 隔代遺傳,患者為隱性純合體 白化病、苯丙酮尿症、
常染色體顯性遺傳病 代代相傳,正常人為隱性純合體 多/並指、軟骨發育不全
伴X染色體隱性遺傳病 隔代遺傳,交叉遺傳,患者男性多於女性 色盲、血友病
伴X染色體顯性遺傳病 代代相傳,交叉遺傳,患者女性多於男性 抗VD佝僂病
伴Y染色體遺傳病 傳男不傳女,只有男性患者沒有女性患者 人類中的毛耳

四、遺傳圖的判斷
致病基因檢索表
A1 圖中有隔代遺傳現象……………………………隱性基因
B1 與性別無關(男女發病幾率相等) ………… 常染色體
B2 與性別有關
C1男性都為患者……………………………Y染色體
C2男多於女…………………………………X染色體
A2 圖中無隔代遺傳現象(代代發生)……………… 顯性基因
D1與性別無關………………………………… 常染色體
D2與性別有關
E1男性均為患者……………………………Y染色體
E2女多於男(約為男患者2倍) ……………X染色體
第三章 基因的本質

肺炎雙球菌轉化實驗
證據
噬菌體侵染細菌實驗 基因是有遺傳效應的DNA片段;
基因的 是控制生物性狀的最基本單位;
雙螺旋 DNA的結構 本質 其中四種脫氧核苷酸的排列順
序代表的遺傳信息。
半保留 DNA的復制

一、DNA是主要的遺傳物質

1.肺炎雙球菌轉化實驗
(1) 體內轉化 1928年 英國 格里菲思
① 活R,無毒 活小鼠
② 活S,有毒 小鼠 死小鼠;分離出活S
③ △殺死的S,無毒 活小鼠
④ 活R + △殺死的S,無毒 死小鼠;分離出活S
轉化因子是什麼?
(2)體外轉化 1944年 美國 艾弗里
多糖或蛋白質 R型
活S DNA + R型 培養基 R型 + S型
DNA水解物 R型
轉化因子是DNA 。

2.噬菌體侵染細菌實驗 1952年赫爾希、蔡明 電鏡觀察和同位素示蹤
32P標記DNA
35S標記蛋白質 DNA具有連續性,是遺傳物質。

3.煙草花葉病毒實驗 RNA也是遺傳物質。

二、DNA的分子結構

1.核酸 核苷酸 核苷 含氮鹼基:A、T、G、C、U
磷酸 戊糖:核糖、脫氧核糖

2.1950年鮑林 1951年威爾金斯 + 富蘭克林 1952年查哥夫
3.DNA的結構
①(右手)雙螺旋
② 骨架
③ 配對:A = T/U
G = C

4.特點
①穩定性:脫氧核糖與磷酸交替排列的順序穩定不變
②多樣性:鹼基對的排列順序各異
③特異性:每個DNA都有自己特點的鹼基對排列順序

5.計算
1.在兩條互補鏈中 的比例互為倒數關系。
2.在整個DNA分子中,嘌呤鹼基之和=嘧啶鹼基之和。
3.整個DNA分子中, 與分子內每一條鏈上的該比例相同。

三、DNA的復制

1.場所:細胞核; 時間:細胞分裂間期。
2.特點:① 邊解旋邊復制 ②半保留復制
3.基本條件:① 模板:開始解旋的DNA分子的兩條單鏈;
② 原料:是游離在核液中的脫氧核苷酸;
③ 能量:是通過水解ATP提供;
④ 酶:酶是指一個酶系統,不僅僅是指一種解旋酶。
4.意義:將遺傳信息從親代傳給子代,從而保持遺傳信息的連續性。

四、基因是有遺傳效應的DNA片段

基因是DNA片段,是不連續分布在DNA上,是由鹼基序列將其分隔開;
它能控制性狀,具有特定的遺傳效應。

△原核細胞和真核細胞基因結構
①聯系:編碼區+非編碼區
②區別 原核:編碼區是連續的、不間隔的。
真核:編碼區可分為外顯子和內含子,故是間隔的、不連續的。第四章 基因的表達

有遺傳效應 控制 mRNA 蛋白質
的DNA片段 基 蛋白質結構 性狀 影響 環境
是控制生物 因 酶的合成 控制代謝
的基本單位 中心法則

一、基因指導蛋白質的合成

1.轉錄
(1)在細胞核中,以DNA雙鏈中的一條為摸板合成mRNA的過程。
(2) ① 信使(mRN A),將基因中的遺傳信息傳遞到蛋白質上,是鏈狀的;
RNA ② 轉運RNA(tRNA),三葉草結構,識別遺傳密碼和運載特定的氨基酸;
(單鏈) ③ 核糖體RNA(rRNA),是核糖體中的RNA。
(3)過程 (場所、摸板、條件、原料、產物、去向等)

2.翻譯
(1)在細胞質的核糖體上,氨基酸以mRNA為摸板合成具有一定氨基酸順序的蛋白質的過程。
(2)實質:將mRNA中的鹼基序列翻譯成蛋白質的氨基酸序列。
(3)(64個)密碼子:mRNA上決定一個氨基酸的3個相鄰鹼基。
其中AUG,這是起始密碼;UAG、UAA、AGA為終止密碼。
(4)遺傳信息
① 狹:基因中控制遺傳性狀的脫氧核苷酸順序。
②廣:子代從親代獲得的控制遺傳性狀的訊號,以染色體上DNA的脫氧核苷酸順序為代表。
③ 中心法則:

(5)翻譯過程

三、基因對性狀的控制
1.
DNA RNA 蛋白質(性狀)
脫氧核苷酸序列 核糖核苷酸序列 氨基酸序列
遺傳信息 遺傳密碼

2.基因、蛋白質和性狀的關系
(1)基因通過控制酶的合成來控制代謝過程,進而控制生物體的性狀,如白化病等。
(2)基因還能通過控制蛋白質的結構直接控制生物體的性狀,如鐮刀型細胞貧血等。

第五章 基因突變及其他變異
不可遺傳的
變異 基因突變 物、化、生 誘變育種
可遺傳的 基因重組 雜交育種
染色體變異 多倍體、單倍體育種
一、基因突變
1.定義:DNA分子中發生鹼基對的替換、增添和缺失而引起的基因結構的改變。
2. 時間:有絲分裂間期或減數第一次分裂間期的DNA復制時
3.外因:物理、化學、生物因素 內因:可變性
4.特點:①普遍性 ②隨機,無方向性 ③頻率低 ④有害性
5.意義:①產生新基因 ②變異的根本來源 ③進化的原始材料
6.實例:鐮刀型細胞貧血

二、基因重組
1.在生物體進行有性生殖的過程中,控制不同性狀的基因的重新組合。
2. 時間:減數第一次分裂前期或後期
2.意義:①產生新的基因型 ②生物變異的來源之一 ③對進化有意義

三、染色體變異

1. 缺失 1917年 貓叫綜合症 果蠅的缺刻翅
結構的變異 重復 1919年 果蠅的棒狀翅
易位 1923年 慢性粒細胞白血病
倒位
數目結構的變異 : 個別染色體;染色體組的增加與減少
2.染色體組
細胞中的一組非同源染色體,在形態和功能上各不相同,攜帶著控制生物生長發育、遺傳和變異的全部遺傳信息的染色體。如:人的為22常+X或22常+Y
△染色體組型(核型),是指某一種生物體細胞種全部染色體的數目、大小和形態特徵;如:人的核型:46、XX或XY

3.
一倍體 雌性配子 二倍體
單倍體 直接發育 合子 生物體
多單倍體 雄性配子 多倍體(秋水仙素)

四、人類遺傳病
1. 常染色體 性染色體
隱性基因 鐮刀型貧血、白化病、先天聾啞 紅綠色盲
單基因遺傳病 顯性基因 多指、並指、軟骨發育不全 抗VD佝僂病
多基因遺傳病 : 原發性高血壓、冠心病、哮喘病、青少年糖尿病
染色體異常 :21三體綜合症
2. 危害 婚前檢測與預防 遺傳咨詢
監測與預防 產前診斷 :羊水、B超、孕婦血細胞檢查、基因診斷

3.人類基因組計劃(HGP) :人體DNA所攜帶的全部遺傳信息
①提出:1986年美國的生物學家杜爾貝利
②主要內容:繪制人類基因組四張圖:遺傳圖、物理圖、序列圖、轉錄圖
③1990年10月啟動
④1999年7月中國參與,解讀3號染色體短臂上3000萬個鹼基,佔1%。
⑤2000年6月20日,初步完成工作草圖
⑥2001年2月,草圖公開發表 ⑥2003年圓滿完成

△直系血親是指從自己算起向上推數三代和向下推數三代;,
△旁系血親是指與(外)祖父母同源而生的、除直系親屬以外的其他親屬。
△基因診斷是用放射性同位素、熒光分子等標記的DNA分子做探針,利用DNA分子雜交原理,
鑒定被檢測標本的遺傳信息,達到檢測疾病的目的。
△基因治療是把健康的外源基因導入有基因缺陷的細胞中,達到治療疾病的目的。

第六章 育種方法

單倍體
選擇育種 雜交育種 誘變育種 多倍體 轉基因

一、比較四中育種
常規育種 誘變育種 多倍體育種 單倍體育種
處理 P F1 F2
在F2中選育 用射線、激光、
化學葯物處理 用秋水仙素處理
萌發後的種子或幼苗 花葯離體培養
原理 基因重組,
組合優良性狀 人工誘發基因
突變 破壞紡錘體的形成,
使染色體數目加倍 誘導花粉直接發育,
再用秋水仙素


點 方法簡單,
可預見強,
但周期長 加速育種,改良性狀,但有利個體不多,需大量處理 器官大,營養物質
含量高,但發育延遲,結實率低 縮短育種年限,
但方法復雜,
成活率較低
例子 水稻的育種 高產量青黴素菌株 無籽西瓜 抗病植株的育成
二、基因工程
提取目的基因 剪刀:限制性內切酶
目的基因與運載體結合 :質粒、噬菌體、病毒
將目的基因導入受體細胞 :大腸桿菌、枯草桿菌、土壤農桿菌、酵母菌和細胞等
目的基因的檢測與表達 :受體細胞表現出特定的性狀

第七章 進化論

拉馬克 : 用進廢退、獲得性遺傳
達爾文 : 適者生存,不適者淘汰(自然選擇學說)
基本單位:種群
實質:基因頻率的改變
原材料:突變與重組
現代進化理論 形成物種 決定方向:自然選擇
必要條件:隔離
生物多樣性:基因、物種、生態系統
協同論(殘酷競爭VS協同進化) 中性學說(偶然VS必然)
補充 間斷平衡(漸進VS突進) 災變論(漸滅VS突滅)
一、生物進化

研究生物界歷史發展的一般規律,如
① 生物界的產生與發展:生命、物種、人類起源
② 進化機制與理論:遺傳、變異、方向、速率
③ 進化與環境的關系 ④ 進化論的歷史:流派與論點

二、現代進化理論的由來

1.神創論 + 物種不變論(上帝造物說)

2. 法國 拉馬克 1809年《動物哲學》
①生物由古老生物進化而來的 ②由低等到高等逐漸進化的
③生物各種適應性特徵的形成是由於用進廢退與獲得性遺傳。

3.英國 達爾文 1859年《物種起源》自然選擇學說
過度繁殖與群體的恆定性 + 有限的生活條件
生存斗爭 + 遺傳和變異
自然選擇即適者生存 + 獲得性遺傳
新類型生物
4.現代進化理論:以自然選擇學說為核心內容

三、現代進化理論的內容

突變 等位基因 有性生殖 基因重組 不定向變異 選擇 微小有利變異
多次選擇、遺傳積累 顯著有利變異 基因頻率的改變 新物種 定向進化

基本觀點:種群是生物進化的基本單位,生物進化的實質是種群基因頻率的改變。突變和基因重組,自然選擇及隔離是物種形成過程的三個基本環節,通過它們的綜合作用,種群產生分化,最終導致新物種形成。在這個過程中,突變和基因重組產生生物進化的原材料,自然選擇使種群的基因頻率定向改變並決定生物進化的方向,隔離是新物種形成的必要條件。

4.物種:能在自然條件下相互交配並且產生可育後代的一群生物。

種群 小種群(產生許多變異) 新物種

全書小結
一、 從亞顯微結構水平到分子水平

細胞核→染色體→DNA→基因→遺傳信息→mRNA→蛋白質(性狀)

[例] 間要論述染色體、DNA、基因、遺傳信息、遺傳密碼、蛋白質(性狀)和生物多樣性之間的關系。



染色體由DNA和蛋白質組成,是DNA的主要載體,而不是全部載體,因其還存在於真核細胞的葉綠體和線粒體,原核生物和病毒中的DNA不位於染色體上,DNA是染色體的主要組成成分。
DNA分子上具有遺傳效應的、控制生物性狀的片段叫基因,DNA分子也存在沒有遺傳效應的片段叫基因間區,DNA上有成百上千個基因。基因位於DNA分子上,也位於染色體上,並在染色體上呈線性排列,占據一定的「座位」(位點),在減數分裂和有絲分裂過程中,隨染色體的移動而移動,減數分裂過程中染色體互換,同源染色體的分離,非同源染色體自由組合是基因的三個遺傳規律和伴性遺傳的細胞學基礎。
DNA分子基因上的脫氧核苷酸的排列順序叫遺傳信息,並不是DNA分子上所有脫氧核苷酸的排列順序叫遺傳信息(基因間區不含有遺傳信息),基因所在的DNA片段有兩條鏈,只有一條鏈攜帶遺傳信息叫有義鏈,另一條配對鏈叫無義鏈,DNA雙鏈中的一條鏈對某個基因來說是有義鏈,而對另一個基因來說,可能是無義鏈。
遺傳密碼是指在DNA的轉錄過程中,以DNA(基因)上一條有義鏈(攜帶遺傳信息)為模板,按照鹼基互補配對原則(A—U,G—C)形成的信使RNA單鏈上的鹼基排列順序,遺傳學上把信使RNA上決定一個氨基酸的三個相鄰的鹼基叫「密碼子」,也叫「三聯體密碼子」,和遺傳密碼的含義是一致的,應當注意,20種氨基酸密碼表中每個氨基酸所對應三個字母的鹼基排序是指定位在信使RNA上的,並不是位於DNA或轉運RNA(叫反密碼子)上鹼基排列順序。
性狀是指一個生物的任何可以鑒別的形態或生理特徵,是遺傳和環境相互作用的結果,主要由蛋白質體現出來。生物的性狀受基因控制,是基因通過控制蛋白質的合成來體現的。
DNA分子中鹼基的排列順序千變萬化,一個DNA分子中的一條多核苷酸鏈有100個四種不同的鹼基,它們的可能排列方式是4100種。而事實上DNA分子中鹼基數量是成千上萬,其可能的排列方式幾乎是無限的。DNA分子的多樣性,可以從分子水平上說明生物的多樣性和個體之間的差異的原因。

二、以人類遺傳病為例分析遺傳的三個基本規律和伴性遺傳之間的區別和聯系

[例] 下圖是六個家族的遺傳圖譜,請據圖回答:

(1)可判斷為 X 染色體的顯性遺傳的是圖 ;
(2)可判斷為 X 染色體的隱性遺傳的是圖 ;
(3)可判斷為 Y 染色體遺傳的是圖 ;
(4)可判斷為常染色體遺傳的是圖 。

[解析] 按Y染色體遺傳→X染色體顯性遺傳→X染色體隱性遺傳→常染色體顯性遺傳→常染色體隱性遺傳的順序進行假設求證。
D圖屬Y染色體遺傳,因為其病症是由父傳子,子傳孫,只要男性有病,所有的兒子都患病。
B圖為X染色體顯性遺傳,因為只要父親有病,所有的女兒都是患病者。 C和E圖是X染色體隱性遺傳,因為C圖中,母親患病,所有的兒子患病,而父親正常,所有的女兒都正常;E圖中,男性將病症通過女兒傳給他的外孫。
A和F圖是常染色體遺傳,首先通過父母無病而子女有患病者判斷出是隱性遺傳,再根據父母無病,而兩個家系中都有女兒患病而判斷出是常染色體遺傳。

[例] 下圖為某家族性疾病的遺傳圖譜。請據圖回答:若Ⅲ1與Ⅲ5近親婚配,他們的孩子患此病的概率為 (基因符號用A、a)表示。

[解析] 本題主要考查對系譜圖的分析判斷和簡單概率計算能力,解題關鍵為運用多種遺傳病的遺傳特點去分析人手。
(1)在該遺傳系譜中,發病率比較高,占子代的1/2,且子代之中有患者,則雙親之中必定有患者,兒子是患者則其母必定是患者,且患者中女性多於男性。所以該病的遺傳為顯性伴性遺傳。
(2)Ⅲ1個體的父親表現型正常,是隱性個體,基因型為XaY,他的X染色體上的基因必定遺傳給他女兒Ⅲ1個體,Ⅲ1個體又表現為患者,所以Ⅲ1個體的基因為XAXa,Ⅲ5個體為隱性個體,基因型XaY。
(3)畫遺傳圖解(略),Ⅲl與Ⅲ5婚配,他們孩子患病的概率為1/2。

三、以染色體概念系統為例,分析染色體與遺傳變異進化之間的內在聯系

[例] 下圖是我國育種專家鮑文奎等培育出的異源八倍體小黑麥的過程圖。

(1)A、B、D、R四個字母代表 。
(2)Fl之所以不育,是因為 。
(3)F1人工誘變成多倍體的常用方法是 。
(4)八倍體小黑麥的優點是 。
(5)試從進化角度,談談培育成功的重要生物學意義。

[解析] 解答本題的關鍵是運用染色體組整倍性變異的原理,聯系減數分裂、受精作用、遠緣雜交、秋水仙素作用機制,自然選擇和人工選擇等眾多相應知識點綜合分析解答。闡明有利變異為進化提供原材料,通過人工選擇加快培育新物種的進程這一觀點。

答案 (1)4個染色體組 (2)F1產生配子時,染色體不能兩兩配對形成四分體 (3)秋水仙素處理植物萌發的種子或幼苗生長點,使其染色體加倍 (4)耐土地貧瘠、耐寒冷、麵粉白、蛋白含量高 (5)我國育種專家鮑文奎教授培育成功的小黑麥品種,是人工創造異源多倍體很成功的實例。小黑麥本來是自然界沒有的物種,科學家利用遠緣雜交,通過人工選擇在短短的十幾年就創造出這個新物種。若靠大自然的恩賜,通過自然選擇形成高等植物的一個新物種需要漫長的時間。由此可見,人工選擇大大地加快了物種的進化。
☆生物的遺傳是細胞核與細胞質共同作用的結果。

1.細胞質遺傳

①主要特點:母系遺傳;後代不出現一定的分離比。
②原因:受精卵中的細胞質幾乎全部來自卵細胞;減數分裂時,細胞質中的遺傳物質
隨機地、不均等地分配到卵細胞中。
③物質基礎:葉綠體、線粒體等細胞質結構中的DNA。

2.從性遺傳是指由常染色體上基因控制的性狀,在表現型上受個體性別影響的現象。

①是指由常染色體上基因控制的性狀,在表現型上受個體性別影響的現象。
②如綿羊的有角和無角。這種影響是通過性激素

『伍』 高中生物必修二詳細的知識點總結

生物必修二知識點總結
一、遺傳的基本規律
(1)基因的分離定律
①豌豆做材料的優點:
(1)豌豆能夠嚴格進行自花授粉,而且是閉花授粉,自然條件下能保持純種。
(2)品種之間具有易區分的性狀。
②人工雜交試驗過程:去雄(留下雌蕊)→套袋(防干擾)→人工傳粉
③一對相對性狀的遺傳現象:具有一對相對性狀的純合親本雜交,後代表現為一種表現型,F1代自交,F2代中出現性狀分離,分離比為3:1。
④基因分離定律的實質:在雜合子的細胞中,位於一對同源染色體上的等位基因,具有一定的獨立性,生物體在進行減數分裂時,等位基因會隨同源染色體的分開而分離,分別進入到兩個配子中,獨立地隨配子遺傳給後代。

(2)基因的自由組合定律
①兩對等位基因控制的兩對相對性狀的遺傳現象:具有兩對相對性狀的純合子親本雜交後,產生的F1自交,後代出現四種表現型,比例為9:3:3:1。四種表現型中各有一種純合子,分別在子二代佔1/16,共佔4/16;雙顯性個體比例佔9/16;雙隱性個體比例佔1/16;單雜合子佔2/16×4=8/16;雙雜合子佔4/16;親本類型比例各佔9/16、1/16;重組類型比例各佔3/16、3/16
②基因的自由組合定律的實質:位於非同源染色體上的非等位基因的分離或組合是互不幹擾的。在進行減數分裂形成配子的過程中,同源染色體上的等位基因彼此分離,同時非同源染色體上的非等位基因自由組合。
③運用基因的自由組合定律的原理培育新品種的方法:優良性狀分別在不同的品種中,先進行雜交,從中選擇出符合需要的,再進行連續自交即可獲得純合的優良品種。

記憶點:
1.基因分離定律:具有一對相對性狀的兩個生物純本雜交時,子一代只表現出顯性性狀;子二代出現了性狀分離現象,並且顯性性狀與隱性性狀的數量比接近於3:1。
2.基因分離定律的實質是:在雜合子的細胞中,位於一對同源染色體,具有一定的獨立性,生物體在進行減數分裂形成配子時,等位基因會隨著的分開而分離,分別進入到兩個配子中,獨立地隨配子遺傳給後代。
3.基因型是性狀表現的內存因素,而表現型則是基因型的表現形式。表現型=基因型+環境條件。
4.基因自由組合定律的實質是:位於非同源染色體上的非等位基因的分離或組合是互不幹擾的。在進行減數分裂形成配子的過程中,同源染色體上的等位基因彼此分離,同時非同源染色體上的非等位基因自由組合。在基因的自由組合定律的范圍內,有n對等位基因的個體產生的配子最多可能有2n種。

二、細胞增殖
(1)細胞周期:指連續分裂的細胞,從一次分裂完成時開始,到下一次分裂完成時為止。

(2)有絲分裂:
分裂間期的最大特點:完成DNA分子的復制和有關蛋白質的合成
分裂期染色體的主要變化為:前期出現;中期清晰、排列;後期分裂;末期消失。特別注意後期由於著絲點分裂,染色體數目暫時加倍。
動植物細胞有絲分裂的差異:a.前期紡錘體形成方式不同;b.末期細胞質分裂方式不同。

(3)減數分裂:
對象:有性生殖的生物
時期:原始生殖細胞形成成熟的生殖細胞
特點:染色體只復制一次,細胞連續分裂兩次
結果:新產生的生殖細胞中染色體數比原始生殖細胞減少一半。
精子和卵細胞形成過程中染色體的主要變化:減數第一次分裂間期染色體復制,前期同源染色體聯會形成四分體(非姐妹染色體單體之間常出現交叉互換),中期同源染色體排列在赤道板上,後期同源染色體分離同時非同源染色體自由組合;減數第二次分裂前期染色體散亂地分布於細胞中,中期染色體的著絲點排列在赤道板上,後期染色體的著絲點分裂染色體單體分離。
有絲分裂和減數分裂的圖形的鑒別:(以二倍體生物為例)
1.細胞中沒有同源染色體……減數第二次分裂
2.有同源染色體聯會、形成四分體、排列於赤道板或相互分離……減數第一次分裂
3.同源染色體沒有上述特殊行為……有絲分裂

記憶點:
1.減數分裂的結果是,新產生的生殖細胞中的染色體數目比原始的生殖細胞的減少了一半。
2.減數分裂過程中聯會的同源染色體彼此分開,說明染色體具一定的獨立性;同源的兩個染色體移向哪一極是隨機的,則不同對的染色體(非同源染色體)間可進行自由組合。
3.減數分裂過程中染色體數目的減半發生在減數第一次分裂中。
4.一個精原細胞經過減數分裂,形成四個精細胞,精細胞再經過復雜的變化形成精子。
5.一個卵原細胞經過減數分裂,只形成一個卵細胞。
6.對於進行有性生殖的生物來說,減數分裂和受精作用對於維持每種生物前後代體細胞中染色體數目的恆定,對於生物的遺傳和變異,都是十分重要的

三、性別決定與伴性遺傳
(1)XY型的性別決定方式:雌性體內具有一對同型的性染色體(XX),雄性體內具有一對異型的性染色體(XY)。減數分裂形成精子時,產生了含有X染色體的精子和含有Y染色體的精子。雌性只產生了一種含X染色體的卵細胞。受精作用發生時,X精子和Y精子與卵細胞結合的機會均等,所以後代中出生雄性和雌性的機會均等,比例為1:1。
(2)伴X隱性遺傳的特點(如色盲、血友病、果蠅眼色、女婁菜葉形等遺傳)
①男性患者多於女性患者
②屬於交叉遺傳(隔代遺傳)即外公→女兒→外孫
③女性患者,其父親和兒子都是患者;男性患病,其母、女至少為攜帶者
(3)X染色體上隱性遺傳(如抗VD佝僂病、鍾擺型眼球震顫)
①女性患者多於男性患者。
②具有世代連續現象。
③男性患者,其母親和女兒一定是患者。
(4)Y染色體上遺傳(如外耳道多毛症)
致病基因為父傳子、子傳孫、具有世代連續性,也稱限雄遺傳。
(5)伴性遺傳與基因的分離定律之間的關系:伴性遺傳的基因在性染色體上,性染色體也是一對同源染色體,伴性遺傳從本質上說符合基因的分離定律。

記憶點:
1.生物體細胞中的染色體可以分為兩類:常染色體和性染色體。
生物的性別決定方式主要有兩種:一種是XY型,另一種是ZW型。
2.伴性遺傳的特點:
(1)伴X染色體隱性遺傳的特點: 男性患者多於女性患者;具有隔代遺傳現象(由於致病基因在X染色體上,一般是男性通過女兒傳給外孫);女性患者的父親和兒子一定是患者,反之,男性患者一定是其母親傳給致病基因。
(2)伴X染色體顯性遺傳的特點:女性患者多於男性患者,大多具有世代連續性即代代都有患者,男性患者的母親和女兒一定是患者。
(3)伴Y染色體遺傳的特點: 患者全部為男性;致病基因父傳子,子傳孫(限雄遺傳)。

四、基因的本質
(1)DNA是主要的遺傳物質
① 生物的遺傳物質:在整個生物界中絕大多數生物是以DNA作為遺傳物質的。有DNA的生物(細胞結構的生物和DNA病毒),DNA就是遺傳物質;只有少數病毒(如艾滋病毒、SARS病毒、禽流感病毒等)沒有DNA,只有RNA,RNA才是遺傳物質。
②證明DNA是遺傳物質的實驗設計思想:設法把DNA和蛋白質分開,單獨地、直接地去觀察DNA的作用。
(2)DNA分子的結構和復制
①DNA分子的結構
a.基本組成單位:脫氧核苷酸(由磷酸、脫氧核糖和鹼基組成)。
b.脫氧核苷酸長鏈:由脫氧核苷酸按一定的順序聚合而成
c.平面結構:
d.空間結構:規則的雙螺旋結構。
e.結構特點:多樣性、特異性和穩定性。
②DNA的復制
a.時間:有絲分裂間期或減數第一次分裂間期
b .特點:邊解旋邊復制;半保留復制。
c.條件:模板(DNA分子的兩條鏈)、原料(四種游離的脫氧核苷酸)、酶(解旋酶,DNA聚合酶,DNA連接酶等),能量(ATP)
d.結果:通過復制產生了與模板DNA一樣的DNA分子。
e.意義:通過復制將遺傳信息傳遞給後代,保持了遺傳信息的連續性。
(3)基因的結構及表達
①基因的概念:基因是具有遺傳效應的DNA分子片段,基因在染色體上呈線性排列。
②基因控制蛋白質合成的過程:

轉錄:以DNA的一條鏈為模板通過鹼基互補配對原則形成信使RNA的過程。
翻譯:在核糖體中以信使RNA為模板,以轉運RNA為運載工具合成具有一定氨基酸排列順序的蛋白質分子

記憶點:
1.DNA是使R型細菌產生穩定的遺傳變化的物質,而噬菌體的各種性狀也是通過DNA傳遞給後代的,這兩個實驗證明了DNA 是遺傳物質。
2.一切生物的遺傳物質都是核酸。細胞內既含DNA又含RNA和只含DNA的生物遺傳物質是DNA,少數病毒的遺傳物質是RNA。由於絕大多數的生物的遺傳物質是DNA,所以DNA是主要的遺傳物質。

3.鹼基對排列順序的千變萬化,構成了DNA分子的多樣性,而鹼基對的特定的排列順序,又構成了每一個DNA分子的特異性。這從分子水平說明了生物體具有多樣性和特異性的原因。
4.遺傳信息的傳遞是通過DNA分子的復制來完成的。基因的表達是通過DNA控制蛋白質的合成來實現的。
5.DNA分子獨特的雙螺旋結構為復制提供了精確的模板;通過鹼基互補配對,保證了復制能夠准確地進行。在兩條互補鏈中 的比例互為倒數關系。在整個DNA分子中,嘌呤鹼基之和=嘧啶鹼基之和。整個DNA分子中, 與分子內每一條鏈上的該比例相同。
6.子代與親代在性狀上相似,是由於子代獲得了親代復制的一份DNA的緣故。
7.基因是有遺傳效應的DNA片段,基因在染色體上呈直線排列,染色體是基因的載體。
8.由於不同基因的脫氧核苷酸的排列順序(鹼基順序)不同,因此,不同的基因含有不同的遺傳信息。(即:基因的脫氧核苷酸的排列順序就代表遺傳信息)。
9.DNA分子的脫氧核苷酸的排列順序決定了信使RNA中核糖核苷酸的排列順序,信使RNA中核糖核苷酸的排列順序又決定了氨基酸的排列順序,氨基酸的排列順序最終決定了蛋白質的結構和功能的特異性,從而使生物體表現出各種遺傳特性。基因控制蛋白質的合成時:基因的鹼基數:mRNA上的鹼基數:氨基酸數=6:3:1。氨基酸的密碼子是信使RNA上三個相鄰的鹼基,不是轉運RNA上的鹼基。轉錄和翻譯過程中嚴格遵循鹼基互補配對原則。注意:配對時,在RNA上A對應的是U。
10.生物的一切遺傳性狀都是受基因控制的。一些基因是通過控制酶的合成來控制代謝過程;基因控制性狀的另一種情況,是通過控制蛋白質分子的結構來直接影響性狀。

五、生物的變異
(1 )基因突變
①基因突變的概念:由於DNA分子中發生鹼基對的增添、缺失或改變,而引起的基因結構的改變。
②基因突變的特點: a.基因突變在生物界中普遍存在 b.基因突變是隨機發生的 c.基因突變的頻率是很低的 d.大多數基因突變對生物體是有害的 e.基因突變是不定向的
③基因突變的意義:生物變異的根本來源,為生物進化提供了最初的原材料。
④基因突變的類型:自然突變、誘發突變
⑤人工誘變在育種中的應用:通過人工誘變可以提高變異的頻率,可以大幅度地改良生物的性狀。
(2) 染色體變異
①染色體結構的變異:缺失、增添、倒位、易位。如:貓叫綜合征。
②染色體數目的變異:包括細胞內的個別染色體增加或減少和以染色體組的形式成倍地增加減少。
③染色體組特點:a、一個染色體組中不含同源染色體 b、一個染色體組中所含的染色體形態、大小和功能各不相同 c、一個染色體組中含有控制生物性狀的一整套基因
④二倍體或多倍體:由受精卵發育成的個體,體細胞中含幾個染色體組就是幾倍體;由未受精的生殖細胞(精子或卵細胞)發育成的個體均為單倍體(可能有1個或多個染色體組)。
⑤人工誘導多倍體的方法:用秋水仙素處理萌發的種子和幼苗。原理:當秋水仙素作用於正在分裂的細胞時,能夠抑制細胞分裂前期紡錘體形成,導致染色體不分離,從而引起細胞內染色體數目加倍。
⑥多倍體植株特徵:莖桿粗壯,葉片、果實和種子都比較大,糖類和蛋白質等營養物質的含量都有所增加。
⑦單倍體植株特徵:植株長得弱小而且高度不育。單倍體植株獲得方法:花葯離休培養。單倍體育種的意義:明顯縮短育種年限(只需二年)。

記憶點:
1.染色體組是細胞中的一組非同源染色體,它們在形態和功能上各不相同,但是攜帶者控制一種生物生長發育、遺傳和變異的全部信息,這樣的一組染色體叫染色體組。
2.可遺傳變異是遺傳物質發生了改變,包括基因突變、基因重組和染色體變異。基因突變最大的特點是產生新的基因。它是染色體的某個位點上的基因的改變。基因突變既普遍存在,又是隨機發生的,且突變率低,大多對生物體有害,突變不定向。基因突變是生物變異的根本來源,為生物進化提供了最初的原材料。基因重組是生物體原有基因的重新組合,並沒產生新基因,只是通過雜交等使本不在同一個體中的基因重組合進入一個個體。通過有性生殖過程實現的基因重組,為生物變異提供了極其豐富的來源。這是形成生物多樣性的重要原因之一,對於生物進化具有十分重要的意義。上述二種變異用顯微鏡是看不到的,而染色體變異就是染色體的結構和數目發生改變,顯微鏡可以明顯看到。這是與前二者的最重要差別。其變化涉及到染色體的改變。如結構改變,個別數目及整倍改變,其中整倍改變在實際生活中具有重要意義,從而引伸出一系列概念和類型,如:染色體組、二倍體、多倍體、單倍體及多倍體育種等。

六、 人類遺傳病與優生
(1)優生的措施:禁止近親結婚、進行遺傳咨詢、提倡適齡生育、產前診斷。
(2)禁止近親結婚的原因:近親結婚的夫婦從共同祖先那裡繼承同一種致病基因的機會大大增加,所生子女患隱性遺傳病的概率大大增加。

記憶點:
1. 多指、並指、軟骨發育不全是單基因的常染色體顯性遺傳病;抗維生素D佝僂病是單基因的X染色體顯性遺傳病;白化病、苯丙酮尿症、先天性聾啞是單基因的常染色體隱性遺傳病;進行性肌營養不良、紅綠色盲、血友病是單基因的X染色體隱性遺傳病;唇裂、無腦兒、原發性高血壓、青少年型糖尿病等屬於對基因遺傳病;另外染色體遺傳病中常染色體病有21三體綜合症、貓叫綜合症等;性染色體病有性腺發育不良等。

七、細胞質遺傳
①細胞質遺傳的特點:母系遺傳(原因:受精卵中的細胞質幾乎全部來自母細胞);後代沒有一定的分離比(原因:生殖細胞在減數分裂時,細胞質中的遺傳物質隨機地、不均等地分配到子細胞中去)。
②細胞質遺傳的物質基礎:在細胞質內存在著DNA分子,這些DNA分子主要位於線粒體和葉綠體中,可以控制一些性狀。
記憶點:
1.卵細胞中含有大量的細胞質,而精子中只含有極少量的細胞質,這就是說受精卵中的細胞質幾乎全部來自卵細胞,這樣,受細胞質內遺傳物質控制的性狀實際上是由卵細胞傳給子代,因此子代總表現出母本的性狀。
2.細胞質遺傳的主要特點是:母系遺傳;後代不出現一定的分離比。細胞質遺傳特點形成的原因:受精卵中的細胞質幾乎全部來自卵細胞;減數分裂時,細胞質中的遺傳物質隨機地、不均等地分配到卵細胞中。細胞質遺傳的物質基礎是:葉綠體、線粒體等細胞質結構中的DNA。
3.細胞核遺傳和細胞質遺傳各自都有相對的獨立性。這是因為,盡管在細胞質中找不到染色體一樣的結構,但質基因和核基因一樣,可以自我復制,可以通過轉錄和翻譯控制蛋白質的合成,也就是說,都具有穩定性、連續性、變異性和獨立性。但細胞核遺傳和細胞質遺傳又相互影響,很多情況是核質互作的結果。

八、基因工程簡介
(1)基因工程的概念
標准概念:在生物體外,通過對DNA分子進行人工「剪切」和「拼接」,對生物的基因進行改造和重新組合,然後導入受體細胞內進行無性繁殖,使重組細胞在受體細胞內表達,產生出人類所需要的基因產物。
通俗概念:按照人們的意願,把一種生物的個別基因復制出來,加以修飾改造,然後放到另一種生物的細胞里,定向地改造生物的遺傳性狀。

(2)基因操作的工具
A.基因的剪刀——限制性內切酶(簡稱限制酶)。
①分布:主要在微生物中。
②作用特點:特異性,即識別特定核苷酸序列,切割特定切點。
③結果:產生黏性未端(鹼基互補配對)。
B.基因的針線——DNA連接酶。
①連接的部位:磷酸二酯鍵,不是氫鍵。
②結果:兩個相同的黏性未端的連接。
C.基困的運輸工具——運載體
①作用:將外源基因送入受體細胞。
②具備的條件:a、能在宿主細胞內復制並穩定地保存。b、 具有多個限制酶切點。
c、有某些標記基因。
③種類:質粒、噬菌體和動植物病毒。
④質粒的特點:質粒是基因工程中最常用的運載體。

(3)基因操作的基本步驟
A.提取目的基因
目的基因概念:人們所需要的特定基因,如人的胰島素基因、抗蟲基因、抗病基因、干擾素基因等。
提取途徑:
B.目的基因與運載體結合
用同一種限制酶分別切割目的基因和質粒DNA(運載體),使其產生相同的黏性末端,將切割下的目的基因與切割後的質粒混合,並加入適量的DNA連接酶,使之形成重組DNA分子(重組質粒)
C.將目的基因導入受體細胞
常用的受體細胞:大腸桿菌、枯草桿菌、土壤農桿菌、酵母菌、動植物細胞
D.目的基因檢測與表達
檢測方法如:質粒中有抗菌素抗性基因的大腸桿菌細胞放入到相應的抗菌素中,如果正常生長,說明細胞中含有重組質粒。
表達:受體細胞表現出特定性狀,說明目的基因完成了表達過程。如:抗蟲棉基因導入棉細胞後,棉鈴蟲食用棉的葉片時被殺死;胰島素基因導入大腸桿菌後能合成出胰島素等。

(4)基因工程的成果和發展前景 A.基因工程與醫葯衛生B.基因工程與農牧業、食品工業

C.基因工程與環境保護
記憶點:
1. 作為運載體必須具備的特點是:能夠在宿主細胞中復制並穩定地保存;具有多個限制酶切點,以便與外源基因連接;具有某些標記基因,便於進行篩選。質粒是基因工程最常用的運載體,它存在於許多細菌以及酵母菌等生物中,是能夠自主復制的很小的環狀DNA分子。
2.基因工程的一般步驟包括:①提取目的基因 ②目的基因與運載體結合 ③將目的基因導入受體細胞 ④目的基因的檢測和表達。
3.重組DNA分子進入受體細胞後,受體細胞必須表現出特定的性狀,才能說明目的基因完成了表達過程。
4.區別和理解常用的運載體和常用的受體細胞,目前常用的運載體有:質粒、噬菌體、動植物病毒等,目前常用的受體細胞有大腸桿菌、枯草桿菌、土壤農桿菌、酵母菌和動植物細胞等。
5.基因診斷是用放射性同位素、熒光分子等標記的DNA分子做探針,利用DNA分子雜交原理,鑒定被檢測標本的遺傳信息,達到檢測疾病的目的。
6.基因治療是把健康的外源基因導入有基因缺陷的細胞中,達到治療疾病的目的。

九 、生物的進化
(1)自然選擇學說內容是:過度繁殖、生存斗爭、遺傳變異、適者生存。
(2)物種:指分布在一定的自然區域,具有一定的形態結構和生理功能,而且在自然狀態下能夠相互交配和繁殖,並能產生出可育後代的一群個體。
種群:是指生活在同一地點的同種生物的一群個體。
種群的基因庫:一個種群的全部個體所含有的全部基因。
(3)現代生物進化理論的基本觀點:種群是生物進化的基本單位,生物進化的實質在於種群基因頻率的改變。突變和基因重組、自然選擇及隔離是物種形成過程的三個基本環節,通過它們的綜合作用,種群產生分化,最終導致新物種的形成。
(4)突變和基因重組產生生物進化的原材料,自然選擇使種群的基因頻率定向改變並決定生物進化的方向,隔離是新物種形成的必要條件(生殖隔離的形成標志著新物種的形成)。
現代生物進化理論的基礎:自然選擇學說。

記憶點:
1.生物進化的過程實質上就是種群基因頻率發生變化的過程。
2.以自然選擇學說為核心的現代生物進化理論,其基本觀點是:種群是生物進化的基本單位,生物進化的實質在於種群基因頻率的改變。突變和基因重組、自然選擇及隔離是物種形成過程的三個基本環節,通過它們的綜合作用,種群產生分化,最終導致新物種的形成。
3. 隔離就是指同一物種不同種群間的個體,在自然條件下基因不能自由交流的現象。包括地理隔離和生殖隔離。其作用就是阻斷種群間的基因交流,使種群的基因頻率在自然選擇中向不同方向發展,是物種形成的必要條件和重要環節。
4.物種形成與生物進化的區別:生物進化是指同種生物的發展變化,時間可長可短,性狀變化程度不一,任何基因頻率的改變,不論其變化大小如何,都屬進化的范圍,物種的形成必須是當基因頻率的改變在突破種的界限形成生殖隔離時,方可成立。
5.生物體的每一個細胞都有含有該物種的全套遺傳物質,都有發育成為完整個體所必需的全部基因。
6.在生物體內,細胞沒有表現出全能性,而是分化為不同的組織器官,這是基因在特定的時間和空間條件下選擇性表達的結果。

『陸』 高中生物必修二知識點

高考一輪復習必修二基礎知識點背誦版1、遺傳的基本規律(1)基因的分離定律 ①豌豆做材料的優點:(1)豌豆能夠嚴格進行自花授粉,而且是閉花授粉,自然條件下能保持純種。(2)品種之間具有易區分的性狀。②人工雜交試驗過程:去雄(留下雌蕊)→套袋(防干擾)→人工傳粉③一對相對性狀的遺傳現象:具有一對相對性狀的純合親本雜交,後代表現為一種表現型,F1代自交,F2代中出現性狀分離,分離比為3:1。 ④基因分離定律的實質:在雜合子的細胞中,位於一對同源染色體上的等位基因,具有一定的獨立性,生物體在進行減數分裂時,等位基因會隨同源染色體的分開而分離,分別進入到兩個配子中,獨立地隨配子遺傳給後代。(2)基因的自由組合定律①兩對等位基因控制的兩對相對性狀的遺傳現象:具有兩對相對性狀的純合子親本雜交後,產生的F1自交,後代出現四種表現型,比例為9:3:3:1。四種表現型中各有一種純合子,分別在子二代佔1/16,共佔4/16;雙顯性個體比例佔9/16;雙隱性個體比例佔1/16;單雜合子佔2/16×4=8/16;雙雜合子佔4/16;親本類型比例各佔9/16、1/16;重組類型比例各佔3/16、3/16②基因的自由組合定律的實質:位於非同源染色體上的非等位基因的分離或組合是互不幹擾的。在進行減數分裂形成配子的過程中,同源染色體上的等位基因彼此分離,同時非同源染色體上的非等位基因自由組合。③運用基因的自由組合定律的原理培育新品種的方法:優良性狀分別在不同的品種中,先進行雜交,從中選擇出符合需要的,再進行連續自交即可獲得純合的優良品種。記憶點:1.基因分離定律:具有一對相對性狀的兩個生物純本雜交時,子一代只表現出顯性性狀;子二代出現了性狀分離現象,並且顯性性狀與隱性性狀的數量比接近於3:1。2.基因分離定律的實質是:在雜合子的細胞中,位於一對同源染色體,具有一定的獨立性,生物體在進行減數分裂形成配子時,等位基因會隨著的分開而分離,分別進入到兩個配子中,獨立地隨配子遺傳給後代。3.基因型是性狀表現的內存因素,而表現型則是基因型的表現形式。表現型=基因型+環境條件。4.基因自由組合定律的實質是:位於非同源染色體上的非等位基因的分離或組合是互不幹擾的。在進行減數分裂形成配子的過程中,同源染色體上的等位基因彼此分離,同時非同源染色體上的非等位基因自由組合。在基因的自由組合定律的范圍內,有n對等位基因的個體產生的配子最多可能有2n種。2、 細胞增殖(1) 細胞周期:指連續分裂的細胞,從一次分裂完成時開始,到下一次分裂完成時為止。(2)有絲分裂:分裂間期的最大特點:完成DNA分子的復制和有關蛋白質的合成 分裂期染色體的主要變化為:前期出現;中期清晰、排列;後期分裂;末期消失。特別注意後期由於著絲點分裂,染色體數目暫時加倍。動植物細胞有絲分裂的差異:a.前期紡錘體形成方式不同;b.末期細胞質分裂方式不同。(3)減數分裂: 對象:有性生殖的生物時期:原始生殖細胞形成成熟的生殖細胞特點:染色體只復制一次,細胞連續分裂兩次結果:新產生的生殖細胞中染色體數比原始生殖細胞減少一半。精子和卵細胞形成過程中染色體的主要變化:減數第一次分裂間期染色體復制,前期同源染色體聯會形成四分體(非姐妹染色體單體之間常出現交叉互換),中期同源染色體排列在赤道板上,後期同源染色體分離同時非同源染色體自由組合;減數第二次分裂前期染色體散亂地分布於細胞中,中期染色體的著絲點排列在赤道板上,後期染色體的著絲點分裂染色體單體分離。 有絲分裂和減數分裂的圖形的鑒別:(檢索表以二倍體生物為例) 1.1細胞中沒有同源染色體……減數第二次分裂 1.2細胞中有同源染色體 2.1有同源染色體聯會、形成四分體、排列於赤道板或相互分離……減數第一次分裂2.2同源染色體沒有上述特殊行為……有絲分裂記憶點:1.減數分裂的結果是,新產生的生殖細胞中的染色體數目比原始的生殖細胞的減少了一半。2.減數分裂過程中聯會的同源染色體彼此分開,說明染色體具一定的獨立性;同源的兩個染色體移向哪一極是隨機的,則不同對的染色體(非同源染色體)間可進行自由組合。 3.減數分裂過程中染色體數目的減半發生在減數第一次分裂中。4.一個精原細胞經過減數分裂,形成四個精細胞,精細胞再經過復雜的變化形成精子。5. 一個卵原細胞經過減數分裂,只形成一個卵細胞。 6. 對於進行有性生殖的生物來說,減數分裂和受精作用對於維持每種生物前後代體細胞中染色體數目的恆定,對於生物的遺傳和變異,都是十分重要的3、性別決定與伴性遺傳(1)XY型的性別決定方式:雌性體內具有一對同型的性染色體(XX),雄性體內具有一對異型的性染色體(XY)。減數分裂形成精子時,產生了含有X染色體的精子和含有Y染色體的精子。雌性只產生了一種含X染色體的卵細胞。受精作用發生時,X精子和Y精子與卵細胞結合的機會均等,所以後代中出生雄性和雌性的機會均等,比例為1:1。(2)伴X隱性遺傳的特點(如色盲、血友病、果蠅眼色、女婁菜葉形等遺傳)①男性患者多於女性患者 ②屬於交叉遺傳(隔代遺傳)即外公→女兒→外孫③女性患者,其父親和兒子都是患者;男性患病,其母、女至少為攜帶者(3)X染色體上隱性遺傳(如抗VD佝僂病、鍾擺型眼球震顫) ①女性患者多於男性患者。②具有世代連續現象。 ③男性患者,其母親和女兒一定是患者。(4)Y染色體上遺傳(如外耳道多毛症) 致病基因為父傳子、子傳孫、具有世代連續性,也稱限雄遺傳。(5)伴性遺傳與基因的分離定律之間的關系:伴性遺傳的基因在性染色體上,性染色體也是一對同源染色體,伴性遺傳從本質上說符合基因的分離定律。記憶點:1.生物體細胞中的染色體可以分為兩類:常染色體和性染色體。生物的性別決定方式主要有兩種:一種是XY型,另一種是ZW型。2.伴性遺傳的特點:(1)伴X染色體隱性遺傳的特點: 男性患者多於女性患者;具有隔代遺傳現象(由於致病基因在X染色體上,一般是男性通過女兒傳給外孫);女性患者的父親和兒子一定是患者,反之,男性患者一定是其母親傳給致病基因。 (2)伴X染色體顯性遺傳的特點:女性患者多於男性患者,大多具有世代連續性即代代都有患者,男性患者的母親和女兒一定是患者。 (3)伴Y染色體遺傳的特點: 患者全部為男性;致病基因父傳子,子傳孫(限雄遺傳)。4、基因的本質(1)DNA是主要的遺傳物質 ① 生物的遺傳物質:在整個生物界中絕大多數生物是以DNA作為遺傳物質的。有DNA的生物(細胞結構的生物和DNA病毒),DNA就是遺傳物質;只有少數病毒(如艾滋病毒、SARS病毒、禽流感病毒等)沒有DNA,只有RNA,RNA才是遺傳物質。 ②證明DNA是遺傳物質的實驗設計思想:設法把DNA和蛋白質分開,單獨地、直接地去觀察DNA的作用。(2)DNA分子的結構和復制 ①DNA分子的結構 a.基本組成單位:脫氧核苷酸(由磷酸、脫氧核糖和鹼基組成)。 b.脫氧核苷酸長鏈:由脫氧核苷酸按一定的順序聚合而成c.平面結構: d.空間結構:規則的雙螺旋結構。 e.結構特點:多樣性、特異性和穩定性。②DNA的復制a.時間:有絲分裂間期或減數第一次分裂間期 b .特點:邊解旋邊復制;半保留復制。 c.條件:模板(DNA分子的兩條鏈)、原料(四種游離的脫氧核苷酸)、酶(解旋酶,DNA聚合酶,DNA連接酶等),能量(ATP) d.結果:通過復制產生了與模板DNA一樣的DNA分子。 e.意義:通過復制將遺傳信息傳遞給後代,保持了遺傳信息的連續性。 (3)基因的結構及表達 ①基因的概念:基因是具有遺傳效應的DNA分子片段,基因在染色體上呈線性排列。 ②基因控制蛋白質合成的過程: 轉錄:以DNA的一條鏈為模板通過鹼基互補配對原則形成信使RNA的過程。翻譯:在核糖體中以信使RNA為模板,以轉運RNA為運載工具合成具有一定氨基酸排列順序的蛋白質分子記憶點:1.DNA是使R型細菌產生穩定的遺傳變化的物質,而噬菌體的各種性狀也是通過DNA傳遞給後代的,這兩個實驗證明了DNA 是遺傳物質。2.一切生物的遺傳物質都是核酸。細胞內既含DNA又含RNA和只含DNA的生物遺傳物質是DNA,少數病毒的遺傳物質是RNA。由於絕大多數的生物的遺傳物質是DNA,所以DNA是主要的遺傳物質。 3.鹼基對排列順序的千變萬化,構成了DNA分子的多樣性,而鹼基對的特定的排列順序,又構成了每一個DNA分子的特異性。這從分子水平說明了生物體具有多樣性和特異性的原因。 4.遺傳信息的傳遞是通過DNA分子的復制來完成的。基因的表達是通過DNA控制蛋白質的合成來實現的。5.DNA分子獨特的雙螺旋結構為復制提供了精確的模板;通過鹼基互補配對,保證了復制能夠准確地進行。在兩條互補鏈中 的比例互為倒數關系。在整個DNA分子中,嘌呤鹼基之和=嘧啶鹼基之和。整個DNA分子中, 與分子內每一條鏈上的該比例相同。6.子代與親代在性狀上相似,是由於子代獲得了親代復制的一份DNA的緣故。 7.基因是有遺傳效應的DNA片段,基因在染色體上呈直線排列,染色體是基因的載體。 8.由於不同基因的脫氧核苷酸的排列順序(鹼基順序)不同,因此,不同的基因含有不同的遺傳信息。(即:基因的脫氧核苷酸的排列順序就代表遺傳信息)。9.DNA分子的脫氧核苷酸的排列順序決定了信使RNA中核糖核苷酸的排列順序,信使RNA中核糖核苷酸的排列順序又決定了氨基酸的排列順序,氨基酸的排列順序最終決定了蛋白質的結構和功能的特異性,從而使生物體表現出各種遺傳特性。基因控制蛋白質的合成時:基因的鹼基數:mRNA上的鹼基數:氨基酸數=6:3:1。氨基酸的密碼子是信使RNA上三個相鄰的鹼基,不是轉運RNA上的鹼基。轉錄和翻譯過程中嚴格遵循鹼基互補配對原則。注意:配對時,在RNA上A對應的是U。10.生物的一切遺傳性狀都是受基因控制的。一些基因是通過控制酶的合成來控制代謝過程;基因控制性狀的另一種情況,是通過控制蛋白質分子的結構來直接影響性狀。5、生物的變異(1 )基因突變 ①基因突變的概念:由於DNA分子中發生鹼基對的增添、缺失或改變,而引起的基因結構的改變。 ②基因突變的特點: a.基因突變在生物界中普遍存在 b.基因突變是隨機發生的 c.基因突變的頻率是很低的 d.大多數基因突變對生物體是有害的 e.基因突變是不定向的 ③基因突變的意義:生物變異的根本來源,為生物進化提供了最初的原材料。 ④基因突變的類型:自然突變、誘發突變 ⑤人工誘變在育種中的應用:通過人工誘變可以提高變異的頻率,可以大幅度地改良生物的性狀。(2) 染色體變異 ①染色體結構的變異:缺失、增添、倒位、易位。如:貓叫綜合征。②染色體數目的變異:包括細胞內的個別染色體增加或減少和以染色體組的形式成倍地增加減少。③染色體組特點:a、一個染色體組中不含同源染色體 b、一個染色體組中所含的染色體形態、大小和功能各不相同 c、一個染色體組中含有控制生物性狀的一整套基因 ④二倍體或多倍體:由受精卵發育成的個體,體細胞中含幾個染色體組就是幾倍體;由未受精的生殖細胞(精子或卵細胞)發育成的個體均為單倍體(可能有1個或多個染色體組)。⑤人工誘導多倍體的方法:用秋水仙素處理萌發的種子和幼苗。原理:當秋水仙素作用於正在分裂的細胞時,能夠抑制細胞分裂前期紡錘體形成,導致染色體不分離,從而引起細胞內染色體數目加倍。⑥多倍體植株特徵:莖桿粗壯,葉片、果實和種子都比較大,糖類和蛋白質等營養物質的含量都有所增加。⑦單倍體植株特徵:植株長得弱小而且高度不育。單倍體植株獲得方法:花葯離休培養。單倍體育種的意義:明顯縮短育種年限(只需二年)。記憶點:1.染色體組是細胞中的一組非同源染色體,它們在形態和功能上各不相同,但是攜帶者控制一種生物生長發育、遺傳和變異的全部信息,這樣的一組染色體叫染色體組。2.可遺傳變異是遺傳物質發生了改變,包括基因突變、基因重組和染色體變異。基因突變最大的特點是產生新的基因。它是染色體的某個位點上的基因的改變。基因突變既普遍存在,又是隨機發生的,且突變率低,大多對生物體有害,突變不定向。基因突變是生物變異的根本來源,為生物進化提供了最初的原材料。基因重組是生物體原有基因的重新組合,並沒產生新基因,只是通過雜交等使本不在同一個體中的基因重組合進入一個個體。通過有性生殖過程實現的基因重組,為生物變異提供了極其豐富的來源。這是形成生物多樣性的重要原因之一,對於生物進化具有十分重要的意義。上述二種變異用顯微鏡是看不到的,而染色體變異就是染色體的結構和數目發生改變,顯微鏡可以明顯看到。這是與前二者的最重要差別。其變化涉及到染色體的改變。如結構改變,個別數目及整倍改變,其中整倍改變在實際生活中具有重要意義,從而引伸出一系列概念和類型,如:染色體組、二倍體、多倍體、單倍體及多倍體育種等。  6、 人類遺傳病與優生(1)優生的措施:禁止近親結婚、進行遺傳咨詢、提倡適齡生育、產前診斷。(2)禁止近親結婚的原因:近親結婚的夫婦從共同祖先那裡繼承同一種致病基因的機會大大增加,所生子女患隱性遺傳病的概率大大增加。記憶點:1. 多指、並指、軟骨發育不全是單基因的常染色體顯性遺傳病;抗維生素D佝僂病是單基因的X染色體顯性遺傳病;白化病、苯丙酮尿症、先天性聾啞是單基因的常染色體隱性遺傳病;進行性肌營養不良、紅綠色盲、血友病是單基因的X染色體隱性遺傳病;唇裂、無腦兒、原發性高血壓、青少年型糖尿病等屬於對基因遺傳病;另外染色體遺傳病中常染色體病有21三體綜合症、貓叫綜合症等;性染色體病有性腺發育不良等。7、細胞質遺傳①細胞質遺傳的特點:母系遺傳(原因:受精卵中的細胞質幾乎全部來自母細胞);後代沒有一定的分離比(原因:生殖細胞在減數分裂時,細胞質中的遺傳物質隨機地、不均等地分配到子細胞中去)。②細胞質遺傳的物質基礎:在細胞質內存在著DNA分子,這些DNA分子主要位於線粒體和葉綠體中,可以控制一些性狀。記憶點:1.卵細胞中含有大量的細胞質,而精子中只含有極少量的細胞質,這就是說受精卵中的細胞質幾乎全部來自卵細胞,這樣,受細胞質內遺傳物質控制的性狀實際上是由卵細胞傳給子代,因此子代總表現出母本的性狀。2.細胞質遺傳的主要特點是:母系遺傳;後代不出現一定的分離比。細胞質遺傳特點形成的原因:受精卵中的細胞質幾乎全部來自卵細胞;減數分裂時,細胞質中的遺傳物質隨機地、不均等地分配到卵細胞中。細胞質遺傳的物質基礎是:葉綠體、線粒體等細胞質結構中的DNA。3.細胞核遺傳和細胞質遺傳各自都有相對的獨立性。這是因為,盡管在細胞質中找不到染色體一樣的結構,但質基因和核基因一樣,可以自我復制,可以通過轉錄和翻譯控制蛋白質的合成,也就是說,都具有穩定性、連續性、變異性和獨立性。但細胞核遺傳和細胞質遺傳又相互影響,很多情況是核質互作的結果。8、基因工程簡介(1)基因工程的概念標准概念:在生物體外,通過對DNA分子進行人工「剪切」和「拼接」,對生物的基因進行改造和重新組合,然後導入受體細胞內進行無性繁殖,使重組細胞在受體細胞內表達,產生出人類所需要的基因產物。通俗概念:按照人們的意願,把一種生物的個別基因復制出來,加以修飾改造,然後放到另一種生物的細胞里,定向地改造生物的遺傳性狀。 (2)基因操作的工具 A.基因的剪刀——限制性內切酶(簡稱限制酶)。 ①分布:主要在微生物中。 ②作用特點:特異性,即識別特定核苷酸序列,切割特定切點。 ③結果:產生黏性未端(鹼基互補配對)。 B.基因的針線——DNA連接酶。 ①連接的部位:磷酸二酯鍵,不是氫鍵。 ②結果:兩個相同的黏性未端的連接。 C.基困的運輸工具——運載體 ①作用:將外源基因送入受體細胞。 ②具備的條件:a、能在宿主細胞內復制並穩定地保存。b、 具有多個限制酶切點。c、有某些標記基因。 ③種類:質粒、噬菌體和動植物病毒。 ④質粒的特點:質粒是基因工程中最常用的運載體。(3)基因操作的基本步驟 A.提取目的基因 目的基因概念:人們所需要的特定基因,如人的胰島素基因、抗蟲基因、抗病基因、干擾素基因等。 提取途徑:B.目的基因與運載體結合 用同一種限制酶分別切割目的基因和質粒DNA(運載體),使其產生相同的黏性末端,將切割下的目的基因與切割後的質粒混合,並加入適量的DNA連接酶,使之形成重組DNA分子(重組質粒) C.將目的基因導入受體細胞 常用的受體細胞:大腸桿菌、枯草桿菌、土壤農桿菌、酵母菌、動植物細胞 D.目的基因檢測與表達 檢測方法如:質粒中有抗菌素抗性基因的大腸桿菌細胞放入到相應的抗菌素中,如果正常生長,說明細胞中含有重組質粒。 表達:受體細胞表現出特定性狀,說明目的基因完成了表達過程。如:抗蟲棉基因導入棉細胞後,棉鈴蟲食用棉的葉片時被殺死;胰島素基因導入大腸桿菌後能合成出胰島素等。 (4)基因工程的成果和發展前景 A.基因工程與醫葯衛生B.基因工程與農牧業、食品工業  C.基因工程與環境保護記憶點:1. 作為運載體必須具備的特點是:能夠在宿主細胞中復制並穩定地保存;具有多個限制酶切點,以便與外源基因連接;具有某些標記基因,便於進行篩選。質粒是基因工程最常用的運載體,它存在於許多細菌以及酵母菌等生物中,是能夠自主復制的很小的環狀DNA分子。2.基因工程的一般步驟包括:①提取目的基因 ②目的基因與運載體結合 ③將目的基因導入受體細胞 ④目的基因的檢測和表達。3.重組DNA分子進入受體細胞後,受體細胞必須表現出特定的性狀,才能說明目的基因完成了表達過程。4.區別和理解常用的運載體和常用的受體細胞,目前常用的運載體有:質粒、噬菌體、動植物病毒等,目前常用的受體細胞有大腸桿菌、枯草桿菌、土壤農桿菌、酵母菌和動植物細胞等。5.基因診斷是用放射性同位素、熒光分子等標記的DNA分子做探針,利用DNA分子雜交原理,鑒定被檢測標本的遺傳信息,達到檢測疾病的目的。6.基因治療是把健康的外源基因導入有基因缺陷的細胞中,達到治療疾病的目的。9 、生物的進化(1)自然選擇學說內容是:過度繁殖、生存斗爭、遺傳變異、適者生存。(2)物種:指分布在一定的自然區域,具有一定的形態結構和生理功能,而且在自然狀態下能夠相互交配和繁殖,並能產生出可育後代的一群個體。種群:是指生活在同一地點的同種生物的一群個體。種群的基因庫:一個種群的全部個體所含有的全部基因。(3)現代生物進化理論的基本觀點:種群是生物進化的基本單位,生物進化的實質在於種群基因頻率的改變。突變和基因重組、自然選擇及隔離是物種形成過程的三個基本環節,通過它們的綜合作用,種群產生分化,最終導致新物種的形成。(4)突變和基因重組產生生物進化的原材料,自然選擇使種群的基因頻率定向改變並決定生物進化的方向,隔離是新物種形成的必要條件(生殖隔離的形成標志著新物種的形成)。現代生物進化理論的基礎:自然選擇學說。記憶點:1.生物進化的過程實質上就是種群基因頻率發生變化的過程。2.以自然選擇學說為核心的現代生物進化理論,其基本觀點是:種群是生物進化的基本單位,生物進化的實質在於種群基因頻率的改變。突變和基因重組、自然選擇及隔離是物種形成過程的三個基本環節,通過它們的綜合作用,種群產生分化,最終導致新物種的形成。3. 隔離就是指同一物種不同種群間的個體,在自然條件下基因不能自由交流的現象。包括地理隔離和生殖隔離。其作用就是阻斷種群間的基因交流,使種群的基因頻率在自然選擇中向不同方向發展,是物種形成的必要條件和重要環節。4.物種形成與生物進化的區別:生物進化是指同種生物的發展變化,時間可長可短,性狀變化程度不一,任何基因頻率的改變,不論其變化大小如何,都屬進化的范圍,物種的形成必須是當基因頻率的改變在突破種的界限形成生殖隔離時,方可成立。5.生物體的每一個細胞都有含有該物種的全套遺傳物質,都有發育成為完整個體所必需的全部基因。6.在生物體內,細胞沒有表現出全能性,而是分化為不同的組織器官,這是基因在特定的時間和空間條件下選擇性表達的結果。

『柒』 高中生物必修二每章的知識框架或概念圖

高中生物必修二每章的知識框架如下:

閱讀全文

與高中生物必修二第二章是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069