導航:首頁 > 生物信息 > 什麼是微生物化學反應平衡式

什麼是微生物化學反應平衡式

發布時間:2022-08-03 04:54:23

㈠ 生物化學反應的平衡點是什麼意思

生物化學反應的平衡點:
何反應都是可逆進行的,比如:水+二氧化碳=碳酸(反應一),反過來 碳酸=水+二氧化碳(反應二),剛在水裡加入二氧化碳時,反應一速度快,反應二速度慢,這樣碳酸越來越多,第二個反應越來越快,最終兩個反應速度會相同,咱們就可以認為反應結束了.這時就是平衡點.

㈡ 生物的穩態與化學平衡有什麼不同

生態平衡是指生態系統內兩個方面的穩定:一方面是生物種類(即生物、植物、微生物)的組成和數量比例相對穩定;另一方面是非生物環境(包括空氣、陽光、水、土壤等)保持相對穩定。生態平衡是一種動態平衡。比如,生物個體會不斷發生更替,但總體上看系統保持穩定,生物數量沒有劇烈變化。
根據吉布斯自由能判據,當ΔrGm=0時,反應達最大限度,處於平衡狀態。化學平衡的建立是以可逆反應為前提的。可逆反應是指在同一條件下既能正向進行又能逆向進行的反應。絕大多數化學反應都具有可逆性,都可在不同程度上達到平衡。

從動力學角度看,反應開始時,反應物濃度較大,產物濃度較小,所以正反應速率大於逆反應速率。隨著反應的進行,反應物濃度不斷減小,產物濃度不斷增大,所以正反應速率不斷減小,逆反應速率不斷增大。當正、逆反應速率相等時,系統中各物質的濃度不再發生變化,反應達到了平衡。

㈢ 化學反應的平衡常數是指什麼它等於多少

化學平衡常數 是指在一定溫度下,可逆反應無論從正反應開始,還是從逆反應開始,也不管反應物起始濃度大小,最後都達到平衡,這時各生成物濃度的化學計量數次冪的乘積除以各反應物濃度的化學計量數次冪的乘積所得的比值是個常數,用K表示,這個常數叫化學平衡常數.平衡常數一般有濃度平衡常數和壓強平衡常數.
對於化學反應 mA+nB?pC+qD
在一定溫度下達到化學平衡時,其平衡常數表達式為:
k=[c(C)^p*c(D)^q]/[c(A)^m*c(B)^n],

㈣ 化學平衡的公式是什麼意思 ,這個公式是針對氣體而言的嗎

化學平衡是指化學反應達到了一個動態的平衡,就是說
付出的量
等於
收獲的量
於是總量平衡不變。

對任何物質化學反應都適用

㈤ 什麼是化學反應平衡

化學反應體系內的各物質的濃度不再隨時間的變化而變化。因此建立平衡後,各物質的濃度就不發生改變了。反過來說,如果化學反應達到平衡後,各物質的濃度不再發生改變,則平衡就沒有發生移動。例如在一個裝滿水的杯子中,加入多少水就會有多少水流出,加入的水和流出的水始終相等,
化學反應平衡也是這樣,就是生成的物質等於被消耗的物質,所以物質的質量始終不變化。其平衡遵循化學平衡常數。

㈥ 微生物平衡是指什麼

微生物平衡是指互相制約在一個穩定狀態。

㈦ 化學反應的平衡點是什麼意思

對於任一可逆的化學反應,在一定條件下達到化學平衡狀態時,體系中各反應物和生成物的物質的量不再發生變化,即所說的達到平衡點。

㈧ 微生物發生分解作用的表達式

微生物同其他生物一樣都是具有生命的,新陳代謝作用貫穿於它們生命活動的始終,新陳代謝作用包括合成代謝(同化作用)和分解代謝(異化作用)。微生物細胞直接同生活環境接觸,微生物不停地從外界環境吸收適當的營養物質,在細胞內合成新的細胞物質和貯藏物質,並儲存能量,即同化作用,這是其生長、發育的物質基礎;同時,又把衰老的細胞物質和從外界吸收的營養物質進行分解變成簡單物質,並產生一些中間產物作為合成細胞物質的基礎原料,最終將不能利用的廢物排出體外,一部分能量以熱量的形式散發,這便是異化作用。在上述物質代謝的過程中伴隨著能量代謝的進行,在物質的分解過程中,伴隨著能量的釋放,這些能量一部分以熱的形式散失,一部分以高能磷酸鍵的形式貯存在三磷酸腺苷(ATP)中,這些能量主要用於維持微生物的生理活動或供合成代謝需要。 根據微生物代謝過程中產生的代謝產物在微生物體內的作用不同,又可將代謝分成初級代謝與次級代謝兩種類型。初級代謝是指能使營養物質轉換成細胞結構物質、維持微生物正常生命活動的生理活性物質或能量的代謝。初級代謝的產物成為初級代謝產物。次級代謝是指某些微生物進行的非細胞結構物質和維持其正常生命活動的非必須物質的代謝。如一些微生物積累發酵產物的代謝過程(抗生素、毒素、色素等)。 微生物的代謝作用是由微生物體內一系列有一定次序的、連續性的生物化學反應所組成,這些生化反應在生物體內可以在常溫、常壓和pH中性條件下極其迅速地進行,這是由於生物體內存在著多種多樣的酶和酶系,絕大多數的生化反應是在特定酶催化下進行的。 同化作用和異化作用它們兩者既是矛盾的,又是統一的,微生物同其它生物一樣,新陳代謝作用是它最基本的生命過程,也是其它一切生命現象的基礎。 2.1 微生物的能量代謝 微生物在生命活動中需要能量,它主要是通過生物氧化而獲得能量。所謂生物氧化就是指細胞內一切代謝物所進行的氧化作用。它們在氧化過程中能產生大量的能量,分段釋放,並以高能磷酸鍵形式儲藏在ATP分子內,供需要時用。 2.1.1 微生物的呼吸(生物氧化)類型 根據在底物進行氧化時,脫下的氫和電子受體的不同,微生物的呼吸可以分為三個類型,即:好氧呼吸、厭氧呼吸、發酵。 ⑴ 好氧呼吸(aerobic respiration) 以分子氧作為最終電子受體的生物氧化過程,稱為好氧呼吸。許多異養微生物在有氧條件下,以有機物作為呼吸底物,通過呼吸而獲得能量。以葡萄糖為例,通過EMP途徑和TCA循環被徹底氧化成二氧化碳和水,生成38個ATP,化學反應式為: C6H12O6+6O2+38ADP+38Pi→6CO2+6H2O+38ATP ⑵ 厭氧呼吸(anaerobic respiration) 以無機氧化物作為最終電子受體的生物氧化過程,稱為厭氧呼吸。能起這種作用的化合物有硫酸鹽、硝酸鹽和碳酸鹽。這是少數微生物的呼吸過程。例如脫氮小球菌利用葡萄糖氧化成二氧化碳和水,而把硝酸鹽還原成亞硝酸鹽(故稱反硝化作用),反應式如下: C6H12O6+12NO3– →6CO2+6H2O+12NO2–+429000卡 ⑶ 發酵作用(fermentation) 如果電子供體是有機化合物,而最終電子受體也是有機化合物的生物氧化過程稱為發酵作用。在發酵過程中,有機物既是被氧化了基質,又是最終的電子受體,但是由於氧化不徹底,所以產能比較少。酵母菌利用葡萄糖進行酒精發酵,只釋放2.26×105J熱量,其中只有9.6×104J貯存於ATP中,其餘又以熱的形式喪失,反應式如下: C6H12O6+2ADP+2Pi→2C2H5OH+2CO2+2ATP 2.1.2 生物氧化鏈 微生物從呼吸底物脫下的氫和電子向最終電子受體的傳遞過程中,要經過一系列的中間傳遞體,並有順序地進行,它們相互「連控」如同鏈條一樣,故稱為呼吸鏈(生物氧化鏈)。它主要由脫氫酶、輔酶Q和細胞色素等組分組成。它主要存在於真核生物的線粒體中;在原核生物中,則和細胞膜、中間體結合在一起。它的功能是傳遞氫和電子,同時將電子傳遞過程中釋放的能量合成ATP。 2.1.3 ATP的產生 生物氧化的結果不僅使許多還原型輔酶Ⅰ得到了再生,而且更重要的是為生物體的生命活動獲得了能量。ATP的產生就是電子從起始的電子供體經過呼吸鏈至最終電子受體的結果。 ATP是生物體內能量的主要傳遞者。當微生物獲得能量後,都是先將它們轉換成ATP。當需要能量時,ATP分子上的高能鍵水解,重新釋放出能量。這些能量在體內很好地和起催化作用的酶產生偶然作用,既可利用,又可重新貯存。在pH為7.0的情況下,ATP的自由能變化△G是-3×104J,這種分子既比較穩定,又能比較容易引起反應,是微生物體內理想的能量傳遞者。因此ATP對於微生物的生命活動具有重大的意義。 利用光能合成ATP的反應,稱為光合磷酸化。利用生物氧化過程中釋放的能量,合成ATP的反應,稱為氧化磷酸化,生物體內氧化磷酸化是普遍存在的,有機物降解反應和生成物合成反應通過氧化還原而偶聯起來,使能量得到產生、保存和釋放。 微生物通過氧化磷酸化生成ATP的方式有兩種: ⑴ 底物水平磷酸化 在底物水平磷酸化中,異化作用的中間產物的高能磷酸轉移給ADP,形成ATP,如下述反應: 磷酸烯醇丙酮酸 + ADP 丙酮酸 + ATP ⑵ 電子傳遞磷酸化 在電子傳遞磷酸化中,通過呼吸鏈傳遞電子,將氧化過程中釋放的能量和ADP的磷酸化偶聯起來,形成ATP。一個NAD分子,通過呼吸鏈進行氧化,可以產生3個ATP分子。它分別在三個位置,各產生一個ATP。第1個ATP大約在輔酶Ⅰ和黃素蛋白之間;第2個ATP大約在細胞色素b和c1之間;在第3個ATP大約在細胞色素c和a之間。如圖3-2所示。 ⑶ 光合磷酸化的能量轉換 光能是一種輻射能,它能被微生物直接利用,只有當光能被光合生物的光合色素吸收並轉變成化學能——ATP 以後,才能用於微生物的代謝或其它生理活動。可見光能轉換是光合生物獲得能量的一種主要方式。 光合色素是光合生物所特有的物質,它在光能轉換過程中起著重要作用,光合色素由主要色素和輔助色素構成,主要色素是葉綠素或細菌葉綠素;輔助色素是類胡蘿卜素和藻膽素。光合色素存在於一定的細胞器或細胞結構中,主要色素在它存在的部位里構成光反應中心,並能吸收光和捕捉光能,使自己處於激發態而逐出電子。輔助色素在細胞內只能捕捉光能並將捕捉到的光能傳遞給主要色素。光反應中心的葉綠素通過吸收光能逐出電子而使自己處於氧化態,逐出的電子通過鐵氧還蛋白、泛醌、細胞色素b與細胞色素c組成的電子傳遞鏈再返回葉綠素本身,使葉綠素分子回復到原來的狀態,在電子傳遞過程中產生能量轉化(光能)—→化學能)。這種由光能引起葉綠素分子逐出電子,並通過電子傳遞來產生ATP的方式稱為光合磷酸化。 2.2 微生物的分解代謝 地球上最豐富的有機物是纖維素,半纖維素,澱粉等糖類物質,自然界中微生物賴以生存的主要也是糖類物質,人們培養微生物,進行食品加工和工業發酵等也是以糖類物質為主要的碳源和能源物質。因此,微生物的糖代謝是微生物代謝的一個重要方面,掌握這方面的知識,對於認識自然界不同的微生物類群,以及搞好微生物的培養利用都是重要的基礎知識。 2.2.1 微生物糖代謝的途徑 微生物糖代謝的主要途徑有:EMP途徑(Embden-Meverhef-Parnus Pathway),HMP途徑(Hexose-Mono-Phosphate Pathway),E.D途徑(Entner-Doudorof Pathway),Pk途徑(Phosphoketolase pathway),等四種。 ⑴ EMP途徑 EMP途徑也稱已糖雙磷酸降解途徑或糖酵解途徑。這個途徑的特點是當葡萄糖轉化成1.6-二磷酸果糖後,在果糖二磷酸醛縮酶作用下,裂解為兩 個3C化合物,再由此轉化為2分子丙酮酸。EMP途徑的過程由以下10個連續反應組成: (己糖激酶) 1) 葡萄糖 + ATP 6-磷酸葡萄糖 + ADP (磷酸己糖異構酶) 2) 6-磷酸葡萄糖 6-磷酸果糖 (磷酸己糖激酶) 3) 6-磷酸果糖 + ATP 1,6- 磷酸果糖 + ADP (醛縮酶) 4) 1,6-二磷酸果糖 磷酸二羥丙酮 + 3-磷酸甘油醛 (磷酸丙糖異構酶) 5) 磷酸二羥丙酮 3-磷酸甘油醛 (3-磷酸甘油醛脫氫酶) 6) 3-磷酸甘油醛 + NAD + H3PO4 1,3-二磷酸甘油酸 + NADH (3-磷酸甘油酸激酶) 7) 1,3-二磷酸甘油酸 + ADP 3- 磷酸甘油酸 + ATP (磷酸甘油酸變位酶) 8) 3-磷酸甘油酸 2-磷酸甘油酸 (烯醇化酶) 9) 2-磷酸甘油酸 磷酸烯醇式丙酮酸 + H2O (丙酮酸激酶) 10) 磷酸烯醇式丙酮酸 +ADP 丙酮酸 + ATP 總反應途徑為(圖3-3): 總反應式為: C6H12O6+2NAD+2(ADP+Pi)→2CH3COCOOH+2ATP+2NADH2 EMP 途徑的關鍵酶是磷酸已糖激酶和果糖二磷酸醛縮酶,它開始時消耗 ATP,後來又產生ATP,總計起來,每分子葡萄糖通過EMP途徑凈合成2分子ATP,產能水平較低。 EMP 途徑是生物體內6-磷酸葡萄糖轉變為丙酮酸的最普遍的反應過程,許多微生物都具有EMP途徑。但EMP途徑往往是和HMP途徑同時存在於同一種微生物中,以EMP途徑作為一唯一降解途徑的微生物極少,只有在含有牛肉汁酵母膏復雜培養基上生長的同型乳酸細菌可以利用EMP作為唯一降解途徑。EMP途徑的生理作用主要是為微生物代謝提供能量(即ATP),還原劑(即NADH2)及代謝的中間產物如丙酮酸等。 在EMP途徑的反應過程中所生成的NADH2不能積累,必須被重新氧化為NAD後,才能保證繼續不斷地推動全部反應的進行。NADH2重新氧化的方式,因不同的微生物和不同的條件而異。厭氧微生物及兼厭氧性微生物在無氧條件下,NADH2的受氫體可以是丙酮酸,如乳酸細菌所進行的乳酸發酵,也可以是丙酮酸的降解產物——乙醛,如酵母的酒精發酵等。好氧性微生物和在有氧條件下的兼厭氧性微生物經EMP途徑產生的丙酮酸進一步通過三羧酸循環,被徹底氧化,生成CO2,氧化過程中脫下的氫和電子經電子傳遞鏈生成H2O和大量ATP。 圖3-3 EMP途徑 三羧酸循環,簡稱TCA環(Tricarboxylic Acid Cycle)。TCA環的總反應式為: CH3COSCoA+2O2+12(ADP+Pi)→2 CO2+ H2O +12ATP+ CoA TCA 環產生能量的水平是很高的,每氧化一分子乙醯CoA,可產生12分子ATP。 葡萄糖經EMP途徑和TCA 環徹底氧化成CO2和H2O的全部過程為: ① C6H12O6+2NAD+2(ADP+Pi)→2 CH3COCOOH +2ATP+2 NADH2 2 NADH2+O2+6(ADP+Pi)→2NAD+2 H2O +6ATP ② 2 CH3COCOOH+2NAD+2 CoA→2 CH3COSCoA +2 CO2+2 NADH2 2 NADH2+O2+6(ADP+Pi)→2NAD+2 H2O +6ATP ③ 2 H3COSCoA +4O2+24(ADP+Pi)→4 CO2+2 H2O +24ATP+2 CoA 總反應式: C6H12O6+6O2+38(ADP+Pi)→6 CO2+6 H2O +38ATP TCA循環的關鍵酶是檸檬酸合成酶,它催化草醯乙醯與乙醯CoA合成檸檬酸的反應。很多微生物中都存在這條循環途徑,它除了產生大量能量,作為微生物生命活動的主要能量來源以外,還有許多生理功能。特別是循環中的某些中間代謝產物是一些重要的細胞物質,如各種氨基酸、嘌呤、嘧啶及脂類等生物合成前體物,例如乙醯CoA是脂肪酸合成的起始物質;α-酮成二酸可轉化為谷氨酸,草醯乙酸可轉化為天門冬氨酸,而且上述這些氨基酸還可轉變為其他氨基酸,並參與蛋白質的生物合成。另外,TCA環不僅是糖有氧降解的主要途徑,也是脂、蛋白質降解的必經途徑,例如脂肪酸經β-氧化途徑,變成乙醯CoA可進入TCA環徹底氧化成CO2和H2O;又如丙氨酸,天門冬氨酸,谷氨酸等經脫氨基作用後,可分別形成丙酮酸,草醯乙酸,α-酮戊二酸等,它們都可進入TCA環被徹底氧化。因此,TCA環實際上是微生物細胞內各類物質的合成和分解代謝的中心樞紐。 由於EMP途徑和TCA環研究得比較清楚,在發酵工業中得到了廣泛地應用。用一種方法來阻止某一階段的進行,就必然積累某些中間產物。根據這一原理,工業上已篩選出一些優良菌株,進行工業發酵,生產檸檬酸,異檸檬酸,α-酮戊二酸,蘋果酸等。例如利用黑麴黴生產檸檬酸時,由於菌體內順烏頭酸水解酶的活力特別低,使檸檬酸大量積累。 ⑵ HMP途徑 也稱已糖單磷降解途徑或磷酸戊糖循環。這個途徑的特點是當葡萄糖經一次磷酸化脫氫生成6-磷酸葡萄糖酸後,在6-磷酸葡萄糖酸脫酶作用下,再次脫氫降解為1分子CO2和1分子磷酸戊糖。磷酸戊糖的進一步代謝較復雜,由3分子磷酸已糖經脫氫脫羧生成的3分子磷酸戊糖, 3分子磷酸戊糖之間,在轉酮酶和轉醛酶的作用下,又生成2分子磷酸己糖和一分子磷酸丙糖,磷酸丙糖再經EMP途徑的後半部反應轉為丙酮酸,這個反應過程稱為HMP途徑。反應步驟可分為以下十一步反應: 己糖激酶 ① 葡萄糖 + ATP 6-磷酸葡萄糖 + ADP 磷酸葡萄糖脫氫酶 ② 6-磷酸葡萄糖 + NADP 6-磷酸葡萄糖內酯 + NADPH2 內酯酶 ③ 6-磷酸葡萄糖內酯 + H2O 6-磷酸葡萄糖酸 磷酸葡萄糖酸脫氫酶 ④ 6-磷酸葡萄糖酸 + NADP 5-磷酸核酮糖+ NADPH2 + CO2 ⑤ 5-磷酸核酮糖 磷酸核糖異構酶 磷酸木酮糖表異構酶 5-磷酸核糖 5-磷酸木酮糖 ⑥ 轉酮酶 7-磷酸景天庚酮糖 + 3-磷酸甘油醛 轉醛酶 ⑦ 6-磷酸果糖 + 4-磷酸赤鮮糖 轉醛酶 ⑧ 4-磷酸赤鮮糖 + 5-磷酸木酮糖 6-磷酸果糖 + 3-磷酸甘油醛 ⑨ 3-磷酸甘油醛 磷酸二羥丙酮 + 3-磷酸甘油醛 1,6-二磷酸果糖 磷酸酯酶 ⑩ 1,6-二磷酸果糖 6-磷酸果糖 + H3PO4 完全HMP途徑的總反應式為: 6-磷酸葡萄糖 + 7H2O + 12NADP 6CO2+ 12NADPH2+ H3PO4 不完全HMP途徑反應到(9)步反應為止。所生成的3-磷酸甘油醛經過EMP途徑的後半部分,轉化成丙酮酸。不完全HMP途徑的總反應式為: 6-磷酸葡萄糖 + 7H2O + 12NADP CH3COCOOH + 3CO2+ 6NADPH2+ ATP

㈨ 關於微生物

不知這對你有用沒~~~~~看看
微生物(microorganism簡稱microbe)是包括細菌、病毒、真菌以及一些小型的原生動物等在內的一大類生物群體,它個體微小,卻與人類生活密切相關。微生物在自然界中可謂「無處不在,無處不有」,涵蓋了有益有害的眾多種類,廣泛涉及健康、醫葯、工農業、環保等諸多領域。
原核:細菌、放線菌、螺旋體、支原體、立克次氏體、衣原體。
真核:真菌、藻類、原生動物。
非細胞類:病毒和亞病毒。
微生物一般地,在中國大陸地區的教科書中,均將微生物劃分為以下8大類:細菌、病毒、真菌、放線菌、立克次體、支原體、衣原體、螺旋體。
微生物的定義
一切肉眼看不見的或看不清的微小生物的總稱
1 特點: 個體微小,一般<0.1mm。
構造簡單,有單細胞的,簡單多細胞的,非細胞的
進化地位低。
2 分類 原核類: 三菌,三體 。
真核類: 真菌,原生動物,顯微藻類。
非細胞類: 病毒,亞病毒 ( 類病毒,擬病毒,朊病毒)
3 五大共性: 體積小,面積大
吸收多,轉化快
生長旺,繁殖快
適應強,易變異
分布廣,種類多
二、微生物的類群
1 細菌:
(1)定義:一類細胞細短,結構簡單,胞壁堅韌,多以二分裂方式繁殖和水生性強的原核生物
(2)分布:溫暖,潮濕和富含有機質的地方
(3)結構:主要是單細胞的原核生物,有球形,桿形,螺旋形
基本結構:細胞膜 細胞壁 細胞質 擬核 菌毛(幫助附著在物體表面)鞭毛(運動功能)
特殊結構:莢膜
(4)繁殖: 主要以二分裂方式進行繁殖的
(5)菌落: 單個細菌用肉眼是看不見的,當單個或少數細菌在固體培養基啊行大量繁殖時,便會形成一個肉眼可見的,具有一定形態結構的子細胞群落.
菌落是菌種鑒定的重要依據.不同種類的細菌菌落的大小,形狀光澤度顏色硬度透明毒都不同.
2 放線菌
(1)定義:一類主要成菌絲狀生長和以孢子繁殖的陸生性較強的原核生物
(2)分布:含水量較低,有機物較豐富的,呈微鹼性的土壤中
(3)形態構造:主要由菌絲組成,包括基內菌絲和氣生菌絲(部分氣生菌絲可以成熟分化為孢子絲,產生孢子)
(4)繁殖:通過形成無性孢子的形式進行無性繁殖
無性繁殖 有性繁殖
(5)菌落:在固體培養基上:乾燥,不透明,表面呈緻密的絲絨狀,彩色乾粉
3 病毒
(1) 定義:一類由核酸和蛋白質等少數幾種成分組成的」非細胞生物」,但是它的生存必須依賴於活細胞.
(2)結構:[font class="Apple-style-span" style="font-family: -webkit-monospace; font-size: 13px; line-height: normal; white-space: pre-wrap; "]蛋白質衣殼以及核酸(核酸為DNA或RNA)[/font]
(3)大小:一般直徑在100nm左右,最大的病毒直徑為200nm的牛痘病毒,最小的病毒直徑為28nm的脊髓灰質炎病毒
(4)增殖:病毒的生命活動中一個顯著的特點為寄生性。病毒只能寄生在某種特定的活細胞內才能生活。並利用會宿主細胞內的環境及原料快速復制增值。在非寄生狀態時呈結晶狀,不能進行獨立的代謝活動。以 噬菌體為例: 吸附→DNA注入→復制、合成→組裝→釋放
噬菌體侵染細菌過程示意圖
微生物的營養
一、微生物的化學組成
C,H,O,N,P,S以及其他元素
二、微生物的營養物質
1 水和無機鹽
2 碳源:凡能為微生物提供生長繁殖所需碳元素的營養物質
來源
作用
3氮源:凡能為微生物提供所必需氮元素的營養物質
來源
作用:主要用於合成蛋白質,核酸以及含氮的代謝產物
4 能源:能為微生物生命活動提供最初能源來源的營養物質或輻射能
根據碳源和能源分類:
5生長因子:微生物生長不可缺少的微量有機物
能引起人和動物致病的微生物叫病源微生物,有八大類:
1.真菌:引起皮膚病。深部組織上感染。
2放線菌:皮膚,傷口感染。
3螺旋體:皮膚病,血液感染 如梅毒,鉤端螺旋體病。
4細菌:皮膚病化膿,上呼吸道感染 ,泌尿道感染,食物中毒,敗血壓症,急性傳染病等。
5立克次氏體:斑疹傷寒等。
6衣原體:沙眼,泌尿生殖道感染。
7病毒:肝炎,乙型腦炎,麻疹,艾滋病等。
8支原體:肺炎,尿路感染。
生物界的微生物達幾萬種,大多數對人類有益,只有一少部份能致病。有些微生物通常不致病,在特定環境下能引起感染稱條件致病菌。 能引起食品變質,腐敗,正因為它們分解自然界的物體,才能完成大自然的物質循環。
有些人誤將真菌當作細菌,是一種比較普遍的誤解。尤其以80年代以前未受過系統生物學教育者。
微生物的特點
1.個體微小,結構簡單
在形態上,個體微小,肉眼看不見,需用顯微鏡觀察,細胞大小以微米和納米計量。
2.繁殖快
生長繁殖快,在實驗室培養條件下細菌幾十分鍾至幾小時可以繁殖一代。
3.代謝類型多,活性強。
4.分布廣泛
有高等生物的地方均有微生物生活,動植物不能生活的極端環境也有微生物存在。
5.數量多
在局部環境中數量眾多,如每克土壤含微生物幾千萬至幾億個。
6.易變異
相對於高等生物而言,較容易發生變異。在所有生物類群中,已知微生物種類的數量僅次於被子植物和昆蟲。微生物種內的遺傳多樣性非常豐富。
所以微生物是很好的研究對象,具有廣泛的用途。

細胞是由膜包圍著含有細胞核(或擬核)的原生質所組成, 是生物體的結構和功能的基本單位, 也是生命活動的基本單位。細胞能夠通過分裂而增殖,是生物體個體發育和系統發育的基礎。細胞或是獨立的作為生命單位, 或是多個細胞組成細胞群體、組織、器官,進而各部分相互作用、相互配合,具有一定的結構及功能,形成系統和個體(動物,主要為人體);細胞還能夠進行分裂和繁殖;細胞是遺傳的基本單位,並具有遺傳的全能性(但在基因的表達上,具有選擇性)。細胞內有成形細胞核的是真核生物(並不是細胞的任何時期都具有成形核),反之,則是原核生物(無成形核,但有擬核,或叫核區)。
[編輯本段]細胞定義的新思考
除病毒外的所有生物,都由細胞構成。自然界中既有單細胞生物,也有多細胞生物。細胞是生物體基本的結構和功能單位。細胞是生物界中,不可缺的一部分。
細胞是生命的基本單位,細胞的特殊性決定了個體的特殊性,因此,對細胞的深入研究是揭開生命奧秘、改造生命和征服疾病的關鍵。細胞生物學已經成為當代生物科學中發展最快的一門尖端學科,是生物、農學、醫學、畜牧、水產和許多生物相關專業的一門必修課程。50年代以來諾貝爾生理與醫學獎大都授予了從事細胞生物學研究的科學家。
定義概要
細胞:是生命活動的基本單位,一切有機體(除病毒外)都由細胞構成,細胞是構成有機體的基本單位。細胞
★細胞具有獨立的、有序的自控代謝體系,是代謝與功能的基本單位
★細胞是有機體生長與發育的基礎
★細胞是遺傳的基本結構單位,細胞具有遺傳的全能性
★沒有細胞就沒有完整的生命(病毒必須寄居在活體內)
★除病毒以外,其他生物都是細胞構成的
生物七大基本特徵 1,有嚴整結構 2,有新陳代謝 3,生長現象 4,應激性 5,生殖和發育 6,遺傳變異 7,適應一定環境也能影響環境
[編輯本段]細胞的基本共性
1、所有的細胞表面均有由磷脂雙分子層與鑲嵌蛋白質及糖被構成的生物膜,即細胞膜。
2、所有的細胞都含有兩種核酸:即DNA與RNA。
3、作為遺傳信息復制與轉錄的載體。
4、作為蛋白質合成的機器—核糖體,毫無例外地存在於一切細胞內。
5、所有細胞的增殖都以一分為二的方式進行分裂。
[編輯本段]細胞的基本結構
在光學顯微鏡下觀察植物的細胞,可以看到它的結構分為下列四個部分
顯微鏡下的細胞1.細胞壁
位於植物細胞的最外層,是一層透明的薄壁。它主要是由纖維素和果膠組成的,孔隙較大,物質分子可以自由透過。細胞壁對細胞起著支持和保護的作用。
2.細胞膜
細胞壁的內側緊貼著一層極薄的膜,叫做細胞膜。這層由蛋白質分子和磷脂雙層分子組成的薄膜,水和氧氣等小分子物質能夠自由通過,而某些離子和大分子物質則不能自由通過,因此,它除了起著保護細胞內部的作用以外,還具有控制物質進出細胞的作用:既不讓有用物質任意地滲出細胞,也不讓有害物質輕易地進入細胞。
細胞膜在光學顯微鏡下不易分辨。用電子顯微鏡觀察,可以知道細胞膜主要由蛋白質分子和脂類分子構成。在細胞膜的中間,是磷脂雙分子層,這是細胞膜的基本骨架。在磷脂雙分子層的外側和內側,有許多球形的蛋白質分子,它們以不同深度鑲嵌在磷脂分子層中,或者覆蓋在磷脂分子層的表面。這些磷脂分子和蛋白質分子大都是可以流動的,可以說,細胞膜具有一定的流動性。細胞膜的這種結構特點,對於它完成各種生理功能是非常重要的。
細胞膜的基本結構:(1)脂雙層:磷脂、膽固醇、糖脂,每個動物細胞質膜上約有109個脂分子,即每平方微米的質膜上約有5x106個脂分子。(2)膜蛋白,分內在蛋白和外在蛋白兩種。內在蛋白以疏水的部分直接與磷脂的疏水部分共價結合,兩端帶有極性,貫穿膜的內外;外在蛋白以非共價鍵結合在固有蛋白的外端上,或結合在磷脂分子的親水頭上。如載體、特異受體、酶、表面抗原。(3)膜糖和糖衣:糖蛋白、糖脂
細胞膜的特性:(1)結構特性:以凝脂雙分子層作為基本骨架——流動性;(2)功能特性:載體蛋白在一定程度上決定了細胞內生命活動的豐富程度——選擇透過性。
3.細胞質
細胞膜包著的黏稠透明的物質,叫做細胞質。在細胞質中還可看到一些帶折光性的顆粒,這些顆粒多數具有一定的結構和功能,類似生物體的各種器官,因此叫做細胞器。例如,在綠色植物的葉肉細胞中,能看到許多綠色的顆粒,這就是一種細胞器,叫做葉綠體。綠色植物的光合作用就是在葉綠體中進行的。在細胞質中,往往還能看到一個或幾個液泡,其中充滿著液體,叫做細胞液。在成熟的植物細胞中,液泡合並為一個中央大液泡,其體積佔去整個細胞的大半。
細胞質不是凝固靜止的,而是緩緩地運動著的。在只具有一個中央液泡的細胞內,細胞質往往圍繞液泡循環流動,這樣便促進了細胞內物質的轉運,也加強了細胞器之間的相互聯系。細胞質運動是一種消耗能量的生命現象。細胞的生命活動越旺盛,細胞質流動越快,反之,則越慢。細胞死亡後,其細胞質的流動也就停止了。
除葉綠體外,植物細胞中還有一些細胞器,它們具有不同的結構,執行著不同的功能,共同完成細胞的生命活動。這些細胞器的結構需用電子顯微鏡觀察。在電鏡下觀察到的細胞結構稱為亞顯微結構。
①線粒體
呈線狀、粒狀,故名線粒體。在線粒體上,有很多種與呼吸作用有關的顆粒,即多種呼吸酶。它是細胞進行呼吸作用的場所,通過呼吸作用,將有機物氧化分解,並釋放能量,供細胞的生命活動所需,所以有人稱線粒體為細胞的「發電站」或「動力工廠」。
②葉綠體
葉綠體是綠色植物細胞中重要的細胞器,其主要功能是進行光合作用。葉綠體由雙層膜、基粒(類囊體)和基質三部分構成。類囊體是一種扁平的小囊狀結構,在類囊體薄膜上,有進行光合作用必需的色素和酶。許多類囊體疊合而成基粒。基粒之間充滿著基質,其中含有與光合作用有關的酶。基質中還含有DNA。
③內質網
內質網是細胞質中由膜構成的網狀管道系統廣泛的分布在細胞質基質內。它與細胞膜及核膜相通連,對細胞內蛋白質及脂質等物質的合成和運輸起著重要作用。
內質網有兩種:一種是表面光滑的是滑面內質網,主要與脂質的合成有關;另一種是上面附著許多小顆粒狀的,是粗面內質網,與蛋白質的合成有關。內質網增大了細胞內的膜面積,膜上附著著許多酶,為細胞內各種化學反應的正常進行提供了有利條件。
④高爾基體
高爾基體普遍存在於植物細胞和動物細胞中。一般認為,細胞中的高爾基體與細胞分泌物的形成有關,高爾基體本身沒有合成蛋白質的功能,但可以對蛋白質進行加工和轉運。植物細胞分裂時,高爾基體與細胞壁的形成有關(赤道板周圍有特別多的高爾基體,以便合成纖維素及果膠)。
⑤核糖體
核糖體是橢球形的粒狀小體,有些附著在內質網膜的外表面(供給膜上及膜外蛋白質),有些游離在細胞質基質中(供給膜內蛋白質,不經過高爾基體,直接在細胞質基質內的酶的作用下形成空間構形),是合成蛋白質的重要基地。
⑥中心體
中心體存在於動物細胞和某些低等植物細胞中,因為它的位置靠近細胞核,所以叫中心體。每個中心體由兩個互相垂直排列的中心粒及其周圍的物質組成。 動物細胞的中心體與有絲分裂有密切關系。
⑦液泡
液泡是植物細胞中的泡狀結構。成熟的植物細胞中的液泡很大,可占整個細胞體積的90%。液泡的表面有液泡膜。液泡內有細胞液,其中含有糖類、無機鹽、色素和蛋白質等物質,可以達到很高的濃度。因此,它對細胞內的環境起著調節作用,可以使細胞保持一定的滲透壓,保持膨脹的狀態。動物細胞也同樣有小液泡。
⑧溶酶體
溶酶體是細胞內具有單層膜囊狀結構的細胞器。其內含有很多種水解酶類,能夠分解很多物質。
4.細胞核
細胞質里含有一個近似球形的細胞核,是由更加黏稠的物質構成的。細胞核通常位於細胞的中央,成熟的植物細胞的細胞核,往往被中央液泡推擠到細胞的邊緣。細胞核中有一種物質,易被洋紅、蘇木精、甲基綠等鹼性染料染成深色,叫做染色質。生物體用於傳種接代的物質即遺傳物質,就在染色質上。當細胞進行有絲分裂時,染色質就變化成染色體。
多數細胞只有一個細胞核,有些細胞含有兩個或多個細胞核,如肌細胞、肝細胞等。細胞核可分為核膜、染色質、核液和核仁四部分。核膜與內質網相通連,染色質位於核膜與核仁之間。染色質主要由蛋白質和DNA組成。DNA是一種有機物大分子,又叫脫氧核糖核酸,是生物的遺傳物質。在有絲分裂時,染色體復制,DNA也隨之復制為兩份,平均分配到兩個子細胞中,使得後代細胞染色體數目恆定,從而保證了後代遺傳特性的穩定。還有RNA,RNA是DNA在復制時形成的單鏈,它傳遞信息,控制合成蛋白質,其中有轉移核糖核酸(tRNA)、信使核糖核酸(mRNA)和核糖體核糖核酸(rRNA)。
動物細胞與植物細胞比較
動物細胞與植物細胞相比較,具有很多相似的地方,如動物細胞也具有細胞膜、細胞質、細胞核等結構。但是動物細胞與植物細胞又有一些重要的區別,如動物細胞的最外面是細胞膜,沒有細胞壁;動物細胞的細胞質中不含葉綠體,也不形成中央液泡。
總之,不論是植物還是動物,都是由細胞構成的。細胞是生物體結構和功能的基本單位。
[編輯本段]細胞的生命活動
細胞的生命活動包括:
1,細胞生長
結果:使細胞逐漸變大。
2,細胞分裂
結果:使細胞數量增多。
3,細胞分化
結果:形成不同功能的細胞群(組織)。
[編輯本段]細胞的化學成分
組成細胞的基本元素是:O、C、H、N、Si、K、Ca、P、Mg,其中O、C、H、N四種元素佔90%以上。細胞化學物質可分為兩大類:無機物和有機物。在無機物中水是最主要的成分,約占細胞物質總含量的75%—80%。
一、水與無機鹽

(一)水是原生質最基本的物質
細胞水在細胞中不僅含量最大,而且由於它具有一些特有的物理化學屬性,使其在生命起源和形成細胞有序結構方面起著關鍵的作用。可以說,沒有水,就不會有生命。水在細胞中以兩種形式存在:一種是游離水,約佔95%;另一種是結合水,通過氫鍵或其他鍵同蛋白質結合,約佔4%~5%。隨著細胞的生長和衰老,細胞的含水量逐漸下降,但是活細胞的含水量不會低於75%。
水在細胞中的主要作用是,溶解無機物、調節溫度、參加酶反應、參與物質代謝和形成細胞有序結構。水之所以具有這么多的重要功能是和水的特有屬性分不開的。
1.水分子是偶極子
從化學結構上看,水分子似乎很簡單,僅是由2個氫原子和1個氧原子構成(H2O)。然而水分子中的電荷分布是不對稱的,一側顯正電性,另一側顯負電性,從而表現出電極性,是一個典型的偶極子(圖3-31)。正由於水分子具有這一特性,它既可以同蛋白質中的正電荷結合,也可以同負電荷結合。蛋白質中每一個氨基酸平均可結合2.6個水分子。
由於水分子具有極性,產生靜電作用,因而它是一些離子物質(如無機鹽)的良好溶劑。
2.水分子間可形成氫鍵
由於水分子是偶極子,因而在水分子之間和水分子與其他極性分子間可建立弱作用力的氫鍵。在水中每一氧原子可與另兩個水分子的氫原子形成兩個氫鍵。氫鍵作用力很弱,因此分子間的氫鍵經常處於斷開和重建的過程中。
3.水分子可解離為離子
水分子可解離為氫氧離子(OH-)和氫離子(H+)。在標准狀況下總有少量水分子解離為離子,大約有107mol/L水分子解離,相當於每109個水分子中就有2個解離。但是水分子的電解並不穩定,總是處於分子與離子相互轉化的動態平衡之中。
(二)無機鹽
細胞中無機鹽的含量很少,約占細胞總重的1%。鹽在細胞中解離為離子,離子的濃度除了具有調節滲透壓和維持酸鹼平衡的作用外,還有許多重要的作用。
主要的陰離子有Cl—、PO4—和HCO3—,其中磷酸根離子在細胞代謝活動中最為重要:①在各類細胞的能量代謝中起著關鍵作用;②是核苷酸、磷脂、磷蛋白和磷酸化糖的組成成分;③調節酸鹼平衡,對血液和組織液pH起緩沖作用。
主要的陽離子有:Na+、K+、Ca2+、Mg2+、Fe2+、Fe3+、Mn2+、Cu2+、Co2+、Mo2+。
二、細胞的有機分子
細胞中有機物達幾千種之多,約占細胞乾重的90%以上,它們主要由碳、氫、氧、氮等元素組成。有機物中主要由四大類分子所組成,即蛋白質、核酸、脂類和糖,這些分子約占細胞乾重的90%以上。
(一)蛋白質
在生命活動中,蛋白質是一類極為重要的大分子,幾乎各種生命活動無不與蛋白質的存在有關。蛋白質不僅是細胞的主要結構成分,而且更重要的是,生物專有的催化劑——酶是蛋白質,因此細胞的代謝活動離不開蛋白質。一個細胞中約含有104種蛋白質,分子的數量達1011個。
(二)核酸
核酸是生物遺傳信息的載體分子,所有生物均含有核酸。核酸是由核苷酸單體聚合而成的大分子。核酸可分為核糖核酸RNA和脫氧核糖核酸兩大類DNA。當溫度上升到一定高度時,DNA雙鏈即解離為單鏈,稱為變性(denaturation)或熔解(melting),這一溫度稱為熔解溫度(melting temperature,Tm)。鹼基組成不同的DNA,熔解溫度不一樣,含G—C對(3條氫鍵)多的DNA,Tm高;含A—T對(2條氫鍵)多的,Tm低。當溫度下降到一定溫度以下,變性DNA的互補單鏈又可通過在配對鹼基間形成氫鍵,恢復DNA的雙螺旋結構,這一過程稱為復性(renaturation)或退火(annealing)。
DNA有三種主要構象
B-DNA:為Watson&Click提出的右手螺旋模型,每圈螺旋10個鹼基,螺旋扭角為36度,螺距34A,每個鹼基對的螺旋上升值為3.4A,鹼基傾角為-2度。
A-DNA:為右手螺旋,每圈螺旋10.9個鹼基,螺旋扭角為33度,螺距32A,每個鹼基對的螺旋上升值為2.9A,鹼基傾角為13度。
Z-DNA:為左手螺旋,每圈螺旋12個鹼基,螺旋扭角為-51度(G—C)和-9度(C—G),螺距46A,每個鹼基對的螺旋上升值為3.5A(G—C)和4.1A(C—G),鹼基傾角為9度。
(三)糖類
細胞中的糖類既有單糖,也有多糖。細胞中的單糖是作為能源以及與糖有關的化合物的原料存在。重要的單糖為五碳糖(戊糖)和六碳糖(己糖),其中最主要的五碳糖為核糖,最重要的六碳糖為葡萄糖。葡萄糖不僅是能量代謝的關鍵單糖,而且是構成多糖的主要單體。
多糖在細胞結構成分中佔有主要的地位。細胞中的多糖基本上可分為兩類:一類是營養儲備多糖;另一類是結構多糖。作為食物儲備的多糖主要有兩種,在植物細胞中為澱粉(starch),在動物細胞中為糖元(glycogen)。在真核細胞中結構多糖主要有纖維素(cellulose)和幾丁質(chitin)。
(四)脂類
脂類包括:脂肪酸、中性脂肪、類固醇、蠟、磷酸甘油酯、鞘脂、糖脂、類胡蘿卜素等。脂類化合物難溶於水,而易溶於非極性有機溶劑。
1、中性脂肪(neutral fat)
①甘油酯:它是脂肪酸的羧基同甘油的羥基結合形成的甘油三酯(triglyceride)。甘油酯是動物和植物體內脂肪的主要貯存形式。當體內碳水化合物、蛋白質或脂類過剩時,即可轉變成甘油酯貯存起來。甘油酯為能源物質,氧化時可比糖或蛋白質釋放出高兩倍的能量。營養缺乏時,就要動用甘油酯提供能量。
②蠟:脂肪酸同長鏈脂肪族一元醇或固醇酯化形成蠟(如蜂蠟)。蠟的碳氫鏈很長,熔點要高於甘油酯。細胞中不含蠟質,但有的細胞可分泌蠟質。如:植物表皮細胞分泌的蠟膜;同翅目昆蟲的蠟腺、如高等動物外耳道的耵聹腺。
2、磷脂
磷脂對細胞的結構和代謝至關重要,它是構成生物膜的基本成分,也是許多代謝途徑的參與者。分為甘油磷脂和鞘磷脂兩大類。
3、糖脂
糖脂也是構成細胞膜的成分,與細胞的識別和表面抗原性有關。
4、萜類和類固醇類
這兩類化合物都是異戊二烯(isoptene)的衍生物,都不含脂肪酸。
生物中主要的萜類化合物有胡蘿卜素和維生素A、E、K等。還有一種多萜醇磷酸酯,它是細胞質中糖基轉移酶的載體。
類固醇類(steroids)化合物又稱甾類化合物,其中膽固醇是構成膜的成分。另一些甾類化合物是激素類,如雌性激素、雄性激素、腎上腺激素等。
三、酶與生物催化劑
(一)酶
細胞酶是蛋白質性的催化劑,主要作用是降低化學反應的活化能,增加了反應物分子越過活化能屏障和完成反應的概率。酶的作用機制是,在反應中酶與底物暫時結合,形成了酶——底物活化復合物。這種復合物對活化能的需求量低,因而在單位時間內復合物分子越過活化能屏障的數量就比單純分子要多。反應完成後,酶分子迅即從酶——底物復合物中解脫出來。
酶的主要特點是:具有高效催化能力、高度特異性和可調性;要求適宜的pH和溫度;只催化熱力學允許的反應,對正負反應的均具有催化能力,實質上是能加速反應達到平衡的速度。
某些酶需要有一種非蛋白質性的輔因子(cofactor)結合才能具有活性。輔因子可以是一種復雜的有機分子,也可以是一種金屬離子,或者二者兼有。完全的蛋白質——輔因子復合物稱為全酶(holoenzyme)。全酶去掉輔因子,剩下的蛋白質部分稱為脫輔基酶蛋白(apoenzyme)。
(二)RNA催化劑
T.Cech 1982發現四膜蟲(Tetrahymena)rRNA的前體物能在沒有任何蛋白質參與下進行自我加工,產生成熟的rRNA產物。這種加工方式稱為自我剪接(self splicing)。後來又發現,這種剪下來的RNA內含子序列像酶一樣,也具有催化活性。此RNA序列長約400個核苷酸,可褶疊成表面復雜的結構。它也能與另一RNA分子結合,將其在一定位點切割開,因而將這種具有催化活性的RNA序列稱為核酶Ribozyme。後來陸續發現,具有催化活性的RNA不只存在於四膜蟲,而是普遍存在於原核和真核生物中。一個典型的例子核糖體的肽基轉移酶,過去一直認為催化肽鏈合成的是核糖體中蛋白質的作用,但事實上具有肽基轉移酶活性和催化形成肽鍵的成分是RNA,而不是蛋白質,核糖體中的蛋白質只起支架作用。

㈩ 化學平衡中的化學平衡式,指的是什麼,是怎

在一定條件下,當一個可逆反應的正反應速率與逆反應速率相等時,反應物的濃度與生成物的濃度不再改變,達到一種表面靜止的狀態,即"化學平衡狀態". 其中,正反應速率與逆反應速率相等是化學平衡狀態的實質,而反應物的濃度與生成物的濃度不再改變是化學平衡狀態的表現。正反應速率與逆反應速率是針對同一可逆反應而言,正與反只是相對而言,不是絕對概念。

閱讀全文

與什麼是微生物化學反應平衡式相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1343
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069