㈠ 對人類有致命性的病原體微生物有哪兒類
病原體可以分為:"正常微生物菌群"和"條件致病微生物(條件致病病原體)"。
"病原體"是指可造成人或動物感染疾病的微生物(包括細菌、病毒、立克次氏體、寄生蟲、真菌)或其他媒介(微生物重組體包括雜交體或突變體)。病原體的形態,有球形、桿狀、絲狀、螺旋狀,還有許多復雜又精巧的結構。
肌體遭病原體侵襲後是否發病,一方面自身免疫力有關,另一方面也取決於病原體致病性的強弱和侵入數量的多寡。一般地,數量愈大,發病的可能性愈大。尤其是致病性較弱的病原體,需較大的數量才有可能致病。少數微生物致病性相當強,輕量感染即可致病,如鼠疫、天花、狂犬病等。
㈡ 什麼是致病微生物,致病微生物有那幾種
能引起人和動物致病的微生物叫病源微生物有八大類:
1.真菌:引起皮膚病。深部組織上感染。
2放線菌:皮膚,傷口感染。
3螺旋體:皮膚病,血液感染 如梅毒,鉤端螺旋體病。
4細菌:皮膚病化膿,上呼吸道感染 ,泌尿道感染,食物中毒,敗血壓症,急性傳染病等。
5立克次氏體:斑疹傷寒等。
6依原體:沙眼,泌尿生殖道感染。
7病毒:肝炎,乙型腦炎,麻疹,愛滋病等。
8支原體:肺炎,尿路感染。
生物界的微生物達幾萬種,大多數對人類有益,只有一少部份能致病。有些微生物通常不致病,在特定環境下能引起感染稱條件致病菌。 能引起食品變質,腐敗,正因為它們分解自然界的物體,才能完成大自然的物質循環。
㈢ 讓人生病細菌有哪些
致病菌(Pathogenic bacteria ) 能引起疾病的微生物稱為病原微生物或致病菌。病原微生物包括細菌、病毒、螺旋體、立克次氏體、衣原體、支原體、真菌及放線菌等。一般所說的致病菌指的是病原微生物中的細菌。細菌的致病性與其毒力、侵入數量及侵入門戶有關。雖然絕大多數細菌是無害甚至有益的,但是相當大一部分可以致病。條件致病菌只在特定條件下致病,如有傷口可以允許細菌進入血液,或者免疫力降低時。 例如,金黃色葡萄球菌和鏈球菌也是正常菌群,常可以存在於體表皮膚,鼻腔而不引起疾病,但可以潛在引起皮膚感染,肺炎(pneumonia),腦膜炎(meningitis)敗血症(sepsis)
網路
㈣ 有些微生物會使人生病有些微生物卻是人類的好幫手請你舉例子來說明
肺炎球菌使人患肺炎,有些黴菌使糧食、衣物霉變;青黴可提取青黴素,乳酸菌可發酵牛奶為酸奶.
㈤ 能夠引起人體疾病的微生物(比如大腸桿菌)有哪些
好壞都是針對人來說的
大腸桿菌在人腸道合成VK 乳酸菌助消化 正常共生菌群抑制外界致病菌的侵入等
基礎知識(微生物)
1. 1微生物
微生物概念:體形微小,具有一定形態結構並能在適宜的環境中生長繁殖以及發生遺傳變異的生物。
微生物的分類:由形態、結構以及生物學方面的差異分為
細菌(包括細菌、支原體、螺旋體、立克次體、衣原體及放線菌)、真菌(包括黴菌與酵母)、原蟲、藻類、病毒。
病原微生物:侵入人體或動植物體內可造成病害。
條件致病菌(機會致病菌):存在於人及動植物的表面以及人與動物與外界相通的腔道中,如口腔、鼻咽腔、腸道、眼結膜、泌尿生殖道等的某些微生物,在正常情況下是無害的,如當機體的免疫力減弱或機體受到損傷時,或這些微生物移居至非正常寄居的部位或器官時,引起疾病,在某些條件下引起嚴重的菌血症或敗血症。
1. 2微生物的發現
1676年荷蘭人呂文.虎克利用200倍顯微鏡在牙垢,糞便,井水,污水中發現球狀,桿狀,螺旋體微小生物。
1. 3微生物的分布
廣泛分布於土壤中,水中,空氣中,物體表面以及生物有機體的體表及其與外界相通的腔道中。
正常菌群:在人類的體表及其與外界相通的腔道,如口腔,鼻咽腔,眼結膜,腸道,泌尿生殖道等長期寄居,在機體防禦機能正常時無害的微生物。
如大腸桿菌大量存在於腸道中,甲型鏈球菌常見於鼻咽部,表皮葡萄球菌常見於皮膚。正常情況下,菌群與人體保持著平衡,正常菌群之間也相互制約,所以不致病,甚至是維持人體健康不可缺少的,如腸道大腸桿菌能合成維生素B和K。但當機體防禦機能減弱,如受涼,過度疲勞,電離輻射,大面積燒傷,惡性腫瘤及慢性消耗性疾病時,某些正常菌群就可引起疾病。
1. 4滅菌和消毒
物理方法:熱力,低溫,輻射,乾燥,超聲波,滲透壓,過濾
化學方法:消毒劑(重金屬鹽類,氧化劑,酚類,醇類,醛類,環氧乙烷,鹵素類,酸鹼類,染料,表面活性劑)
2. 1細菌的概念
具有細胞壁的,由二分法繁殖的單細胞微生物。
大多數長約1-5微米,寬0.2-1.0微米。
2.2細菌的分類:
在一定的條件下,細菌有相對穩定的基本形態。根據外形不同,可將細菌分為球菌,桿菌和螺形菌三類。
球菌:單個球菌直徑為0.8-1.2微米,呈球形,類球型。
雙球菌,鏈球菌,四聯球菌,八疊球菌,葡萄球菌。
桿菌:在細菌中種類最多。長2-5微米,寬0.5-1.0微米。
螺形菌:菌體呈彎曲狀。
弧菌,螺菌。
細菌在幼齡和適宜環境下,形態正常、整齊,表現出特定的形態。但環境條件改變,細菌則出現不規則形態,稱為多形性。
2.3細菌的細胞結構:分基本結構和特殊結構
基本結構:主要包括細胞壁,細胞膜,細胞質,核,內容物。
細胞壁
位於細菌細胞膜的外層,是質堅韌而有彈性的結構。主要功能是1、保護細胞,不易受滲透壓變化而破裂,並維持固有外形。2、有一定的屏障作用,能阻攔大分子物質。3、與染色性、致病性、抗原性和對某些葯物的敏感性有關。
化學組成:主要成分為肽聚糖或粘肽,是酶和抗生素葯物攻擊的靶子,抗生素可造成細菌細胞壁缺陷,導致細菌低滲性崩解。
革蘭氏陽性菌的細胞壁較厚,15-80nm,占細菌乾重的50%
革蘭氏陰性菌的細胞壁較薄,10-15nm,占細菌乾重的10%,還有脂蛋白,外膜和脂多糖結構。
細胞膜
細胞膜緊靠細胞壁內側,直接包圍著細胞漿,厚約5-10nm.主要含有60—70%蛋白質,20-30%磷脂及少量糖。
功能:1、選擇透性,控制營養物質及代謝產物進出細胞。2、需氧菌的呼吸酶在膜上完成其過程3、多種酶類(肽聚糖,磷壁酸,脂多糖)的合成在膜上完成4、細胞膜與DNA的復制,細胞分裂,芽孢形成,鞭毛運動有關。
細胞質
由細胞膜環繞,呈溶膠狀態,基本成分是水、蛋白質、糖類、核酸、脂類和鹽類。
細胞質是細菌的內在環境,是細菌蛋白質、核酸合成的場所,也是許多酶系反應的場所。
核
細菌的核比較原始,無核膜和核仁,不典型,稱為核質或類核。正常情況下一個菌體內有一個核,多集中於菌體中央。核實際上是細長的閉環雙鏈DNA大分子,反復折疊成超螺旋結構,可視為單一染色體,控制著細菌的各種遺傳性狀。
質粒
微小的核外遺傳物質,為雙鏈閉環的DNA分子,攜帶1-200個基因。能控制某些次要的性狀,如細菌的抗葯性,抗菌素的產生。
細菌的特殊結構:莢膜,鞭毛,菌毛和芽孢。
莢膜
某些細菌在生活過程中向細胞壁分泌一層疏鬆透明的黏液狀物質,稱黏液層,當黏液層較厚具有一定外形,並在光學顯微鏡下可見到與四周有明顯界限的稱莢膜。
可保護細菌細胞免受乾燥,能抵抗機體的吞噬細胞的吞噬和消化,使細菌免遭殺滅,從而能在機體內大量繁殖引起病變。
鞭毛
弧菌、部分桿菌和極少數球菌的菌體表面上,著生細長波狀的絲狀物,稱為鞭毛。是細菌的運動器官。
菌毛
大多數腸道細菌、假單胞菌和霍亂弧菌等,在其菌體周圍有極纖細的絲狀物,稱為菌毛。分普通菌毛和性菌毛。普通菌毛有黏附作用,與細菌的致病性有關。性菌毛具有致育功能,可藉助它傳遞遺傳物質。
芽孢
某些細菌,特別是革蘭氏陽性桿菌,在生活的某一階段,在細胞內形成一個圓形或橢圓形、折光性強的特殊結構。
芽孢的形成是細菌的休眠狀態,對乾燥,熱和消毒劑的滲透性有強大的抵抗力。
3. 1細菌形態檢查法
即將欲檢細菌塗在載玻片上,製成標本,用光學顯微鏡觀察。分不染色標本檢查法和染色法
3.2不染色標本檢查法 直接將細菌標本放在顯微鏡下進行檢查,可觀察微生物生活狀態。常用壓滴法和懸滴法。
3.3染色法
細菌經染色更能清楚觀察細菌的形態和結構。還可利用染色程序,鑒別細菌的染色性和細菌結構的性質。多用鹼性染料,如美藍、鹼性復紅,結晶紫等。可分為單染色法、復染色法和特殊染色法。
單染色法:只用一種染料染色,一般只能顯示細菌的外形、大小、排列和簡單結構。
復染色法:先後用兩中染料染色,經一定程序操作,對比顏色的差異,鑒別細菌不同的結構,故又稱為鑒別染色法。
革蘭氏染色法:在固定的標本上,先用結晶紫(或龍膽紫)染色,再加碘液媒染(即助染),再用95%酒精脫色,最後用沙黃或稀釋鹼性復紅液復染,結晶紫和碘形成不溶於水而溶於乙醇的復合物。凡能固定結晶紫和碘的復合物,不被酒精脫色而呈紫-黑紫色的,稱為革蘭氏陽性菌,如被酒精脫色後再被復紅液復染成紅色的,稱為革蘭氏陰性菌。
原理:現認為主要是革蘭氏陽性菌與陰性菌的細胞壁的結構與化學組成不同。革蘭氏陽性菌的細胞壁較厚,肽聚糖含量多而缺少脂類,酒精雖可溶解脂類但能引起細胞壁脫水,使肽聚糖的框架的小孔縮小。因此細胞壁對酒精透性低,與細胞質結合的結晶紫與碘復合物不易被脫掉。而革蘭氏陰性菌的細胞壁肽聚糖層較薄、分多層,外層又有較多的脂類。酒精溶解外層脂類後,細胞壁各層結構變得鬆弛,內層含肽聚糖又少,細胞壁透性高,結晶紫與碘復合物容易被溶解逸出。所以革蘭氏陰性菌被復染液染成紅色。
意義:用革蘭氏染色法可將細菌分為兩大類,即革蘭氏陽性菌和陰性菌。這是識別細菌首要的一步。細菌的革蘭氏染色還在一定程度上反映兩類細菌在某些細菌性質上的差異。如對抗生素等抗菌葯物的敏感性,革蘭氏陽性菌對青黴素、頭孢菌素等β-內醯胺類抗生素敏感;而革蘭氏陰性菌對鏈黴素和慶大黴素的敏感性較陽性強。因此,確定細菌的革蘭氏染色性對新抗生素篩選、製作抗菌譜以及在臨床選葯治療上都很有用途。
特殊染色法:莢膜染色法、鞭毛染色法、芽孢染色法、核染色法等。
3.4顯微鏡檢查
普通光學顯微鏡,暗視野顯微鏡,相差顯微鏡,熒光顯微鏡,電子顯微鏡。
4. 1細菌的致病性
指細菌引起宿主疾病和導致病變進行的能力。凡能引起人畜致病的細菌,稱為致病菌或病原菌。
毒力:致病菌能在生活過程中合成對宿主攻擊性物質,統稱為毒力。毒力是指致病菌株之間致病強弱程度,是測試細菌對宿主損害的測量度。通常以能殺死50%實驗動物的量,即半數致死量來計算。
細菌的毒力包括侵襲力和毒素
侵襲力:指致病菌侵入宿主局部組織細胞內生長繁殖,或機體的防禦屏障蔓延擴散的能力。包括細菌的表面結構和毒性酶。
細菌的表面結構:菌毛和莢膜
菌毛:大多數致病菌引起感染是從細菌對機體黏膜上皮細胞的黏附作用開始的。如大腸桿菌的菌毛易黏附在腸道上皮細胞上,有利於細菌定居繁殖,引起疾病。
莢膜:具有莢膜的細菌如肺炎球菌,具有保護細菌不易被吞噬細胞吞噬,有助於細菌在體內生長繁殖,侵入擴散。
侵襲性酶:致病菌在代謝過程中能合成一些特殊酶類。其本身不具有毒性,但有助於細菌在宿主體內侵襲擴散,統稱為毒性酶。
1、 血漿凝固酶:致病性葡萄菌產生此種酶,能加速人血漿凝固,凝固的血漿附著在菌體表面或將細胞包圍,保護細菌不被吞噬細胞所吞噬或不受體液因子作用。
2、 鏈激酶:由乙型溶血鏈球菌產生,能激活人血漿中纖維蛋白原為溶纖維蛋白酶,使局部纖維蛋白屏障溶解,便於細菌和毒素擴散。
3、 鏈道酶:由乙型溶血鏈球菌產生,可分解粘稠膿液中的DNA,使膿液變稀,有利於細菌向體內擴散。
4、 透明質酸酶:由產氣莢膜桿菌產生。能分解結締組織中的透明質酸,水解後失去粘性而鬆弛,細胞間隙增大,有利於細菌向組織中擴散。
5、 膠原酶:由產氣莢膜桿菌產生。可水解肌肉和皮下膠原組織,使組織崩解,便於細菌向組織中擴散。
毒素:可分為外毒素和內毒素
外毒素:有些致病菌在代謝過程中能合成並分泌到菌體外的毒素。主要由某些革蘭氏陽性菌產生,少數革蘭氏陰性菌也能產生。其化學組成是蛋白質,毒性強,抗原性也強,對組織有選擇性,引起特殊病變。
內毒素:是革蘭氏陰性菌的細胞壁成分,細胞裂解時釋放。化學組成為脂類。無組織細胞選擇性,引起毒性大體相似。小量內毒素可引起發熱,大量引起白細胞反應,嚴重時導致內毒素休克。毒性比外毒素低,抗原性也弱,但耐熱穩定。
常見的病原性細菌
1、 球菌
根據革蘭氏染色性的不同,分成革蘭氏陽性球菌(葡萄球菌、鏈球菌、四聯球菌、八疊球菌)和革蘭氏陰性球菌(腦膜炎球菌、淋球菌、卡他球菌、乾燥奈氏球菌)兩類。
對人類有致病性的球菌稱為病原性球菌,由於這類球菌主要引起化膿性炎症,故又稱為化膿性球菌。主要包括葡萄球菌、鏈球菌、肺炎球菌、腦膜炎球菌及淋球菌。
葡萄球菌
形態:球型或橢圓型。直徑0.4-1.2微米。致病性葡萄球菌一般比非致病株小,且各個菌體的大小和排列也較整齊。典型的葡萄球菌排列呈葡萄串狀,是因為在繁殖時向多個平面不規則分裂的結果。在固體培養基上生長的一般呈典型排列;在膿汁或液體培養基中生長的常為雙球或短鏈狀,易誤認為鏈球菌。葡萄球菌無鞭毛、無芽孢,一般不形成莢膜。
是一群革蘭氏陽性球菌,常堆聚成葡萄串狀,為最常見的化膿性球菌之一,廣泛分布於自然界,如空氣、土壤、水及物品上,也常存在於人和動物的皮膚及於外界相通的腔道中。大部分是不致病的腐物寄生菌。
葡萄球菌在皮膚表面上可生存較久,常隱藏在毛囊、汗腺及皮脂腺內。在進行注射、外科手術時,如不嚴格消毒,易引起化膿性感染。
分類:根據色素、生化反應不同,可分為金黃色葡萄球菌、表皮葡萄球菌和腐生葡萄球菌。金葡菌致病力強,表皮葡菌偶爾致病。
敏感性:對鹼性染料敏感,對青黴素、金黴素、紅黴素和慶大黴素高度敏感,對鏈黴素中度敏感,對氯黴素和磺胺類葯物敏感性差。近年由於廣泛應用抗生素,抗葯菌株逐年增多。金葡菌對青黴素G的抗葯株高達90%以上。
致病物質:血漿凝固酶、葡萄球菌溶血素、腸毒素
所致疾病:
局部感染:主要引起毛囊炎,癰,蜂窩組織炎,傷口化膿等,還可引起氣管炎、肺炎、膿胸及中耳炎
全身感染:引起腦膜炎、心包炎、心內膜炎、敗血症及膿毒血症等。主要由金葡菌引起。
食物中毒:食入含腸毒素的食物後,經2-6小時可發生急性腸胃炎
葡萄球菌性腸炎:正常人腸道中有少量金葡菌存在,當優勢菌(大腸桿菌、脆弱類桿菌)因抗菌葯物的應用而被抑制或殺滅後,抗葯的金葡菌趁機繁殖而產生腸毒素,引起以腹瀉為主的臨床症狀,其本質是一種菌群失調性腸炎。特點為腸黏膜被一層炎性假膜所覆蓋,該假膜由炎性滲出物、腸粘膜壞死塊和細胞組成。
鏈球菌
形態:球型或卵圓形,直徑0.5-1.0微米。呈鏈狀排列,鏈的長短不一,短的由4-8個細胞組成,長的20-30個。鏈的長短與菌種和生長環境有關,在液體培養基中形成鏈較長,固體培養基中短。無芽孢或鞭毛。培養早期可形成莢膜,隨時間的延長消失。細胞壁外有菌毛樣結構。
是化膿性球菌中另一大類常見細菌,可分為致病和非致病兩類。廣泛分布於自然界,其中多數是非致病菌,少數可引起人類化膿性炎症,猩紅熱,丹毒,新生兒敗血症,腦膜炎,細菌性心內膜炎和鏈球菌變態反應性疾病。
分類:根據溶血現象分類,(按鏈球菌在血瓊脂培養基上生長繁殖後,產生溶血與否及其溶血性質而進行分類)。
甲型溶血性鏈球菌(草綠色鏈球菌)條件致病菌
乙型溶血性鏈球菌(溶血性鏈球菌)致病能力強
丙型鏈球菌(不溶血鏈球菌)無致病力,偶爾引起感染。
敏感性:抵抗力不強,對一般消毒劑敏感。在乾燥塵埃中可生存數月。對青黴素、紅黴素、氯黴素、四環素、磺胺葯敏感。
致病物質:脂磷壁酸,M蛋白,透明質酸酶,鏈激酶,鏈道酶,鏈球菌溶血毒素,紅熱毒素
所致疾病:可分為化膿性(淋巴管炎,淋巴結炎,蜂窩組織炎,癰,膿皰瘡等局部皮膚和皮下組織感染;還有扁桃體炎,咽炎,咽峽炎,鼻竇炎,產褥熱,中耳炎,乳突炎等其他系統的感染)
中毒性(猩紅熱),變態反應性疾病(風濕熱和急性腎小球炎)
奈瑟氏菌
形態:(淋球菌)呈腎型或豆型,成雙排列,直徑0.6-0.8微米。無芽孢、無鞭毛、一般無莢膜,但有菌毛。
革蘭氏陰性雙球菌。包括腦膜炎球菌、淋球菌、乾燥奈氏球菌等
2、 腸道桿菌
形態:兩端鈍圓的短桿菌,無特殊排列,不形成芽孢,多數具鞭毛。
是一群寄居在人和動物腸道中生物學性狀近似的革蘭氏陰性桿菌。多數不引起疾病,為條件致病菌。少數(沙門氏菌和志賀氏菌)為腸道致病菌。
埃希氏菌
形態:(大腸桿菌)兩端鈍圓,長約2-3微米,寬0.6微米。有時近球型。有鞭毛,能運動,周身有菌毛。
為革蘭氏陰性桿菌,一般不致病。其中最重要的為大腸桿菌,當機體抵抗力下降,大腸桿菌侵入腸外組織或器官時,可引起腸道外感染,某些血清型菌株致病力強,為致病性大腸桿菌。
敏感性:對熱的抵抗性較強,在自然界的水中可生存數周至數月,對磺胺類,鏈黴素,氯黴素,金黴素敏感。目前抗葯菌株較多。
致病物質:粘附素、腸毒素、K抗原
所致疾病:
腸外感染:大腸桿菌移居腸外組織或器官時引起腸外感染,以化膿性炎症最常見,如尿道炎,膀胱炎,腎盂腎炎,腹膜炎,膽囊炎,闌尾炎和手術後創傷感染,敗血症。
腹瀉
沙門氏菌
形態:短桿菌,長1-3微米,寬0.4-0.9微米。有鞭毛,能運動,多數有菌毛,無芽孢,無莢膜。
革蘭氏陰性菌。對人致病的主要有傷寒桿菌、副傷寒桿菌,以及引起食物中毒與敗血症的沙門氏菌。
敏感性:抵抗力不強,在水中能存活2-3周,治療傷寒常用氯黴素、氨苄青黴素、羥氨苄青黴素。
致病物質:侵襲物質,內毒素,腸毒素
所致疾病:腸熱症(即傷寒和副傷寒)
胃腸炎(食物中毒)
敗血症:細菌隨血至組織、器官可導致感染,如腦膜炎,骨髓炎,膽囊炎,心內膜炎等
志賀氏菌
形態:桿菌,長約2-3微米,寬0.5-0.7微米。無莢膜,不形成芽孢,無鞭毛,有菌毛
革蘭氏陰性桿菌,是細菌性痢疾病原菌,故稱為痢疾桿菌。
敏感性:抵抗力弱,在水中生存數日,對酸敏感,對氯黴素、鏈黴素、四環素、磺胺敏感,首選氨苄青黴素,卡那黴素,慶大黴素。
致病物質:侵襲物質、內毒素、外毒素
所致疾病:細菌性痢疾
3、 綠膿桿菌
形態:桿菌,菌體長短不一,球桿狀,絲狀。單個,成對或短鏈排列。菌體一端有1-3根鞭毛,活動活潑。無莢膜,無芽孢。
為假單胞菌屬代表菌,為條件致病菌。除自然界廣泛存在,正常人的皮膚、腸道和呼吸道均有存在。革蘭氏陰性。
敏感性:對紫外線抵抗力強,對青黴素不敏感,對慶大黴素,多粘菌素B敏感,易產生耐葯性。
致病物質:綠膿桿菌外毒素,蛋白分解酶,細胞溶解毒素,內毒素與原內毒素蛋白質。
所致疾病:局部感染常見燒傷或創傷部位、中耳、角膜、尿道和下呼吸道,也引發心內膜炎、胃腸炎、膿胸、敗血症。
綠膿桿菌對β-內醯胺類抗生素的耐葯機制:
其引發的感染占醫院內感染的9-10%,個別到18-20%。
外膜通透性 對β-內醯胺類抗生素及其他抗生素有更強的通透屏障
β-內醯胺酶
青黴素結合蛋白(PBPs) 發生改變引發耐葯。
4、 棒狀桿菌
革蘭氏陽性菌,引起人類疾病的主要為白喉桿菌。
敏感性:對寒冷、乾燥和日光抵抗力強,對熱和一般的消毒劑敏感。對青黴素敏感。
致病物質:白喉毒素、索狀因子
所致疾病:咽白喉,喉白喉,鼻白喉
5、 分枝桿菌
主要有結核桿菌和麻風桿菌。
敏感性:對乾燥的抵抗力特別強,對酸鹼抵抗力強,對日光,酒精,紫外線抵抗力弱
6、 厭氧芽孢桿菌
主要有破傷風桿菌
7、 螺旋體
一類細長、柔軟、富有彈性、彎曲呈螺旋狀、活動活潑的單細胞微生物。具有原核細胞的基本結構,其細胞壁具有胞壁酸,具有無定形的核。
主要有梅毒螺旋體、鉤端螺旋體。
8、 支原體
一類無細胞壁,能在體外營獨立生活的、最小的單細胞微生物。主要有肺炎支原體。對青黴素、頭孢菌素治療無效。常用慶大黴素、紅黴素、鏈黴素治療。
由於其不具有細胞壁,因而形態不定,常呈多形性。有球型,絲狀,環狀,星狀和螺旋形等。
9、 衣原體
一類專性細胞內寄生物,在細胞內繁殖有其獨特的生活周期。
主要有沙眼衣原體屬、鸚鵡熱衣原體。常用利福平,四環素,紅黴素治療。
呈圓形、橢圓型顆粒,直徑0.25-0.5微米。
10、 立克次體
一類微小的球桿狀微生物,革蘭氏陰性,專性細胞內寄生物。
引發疾病有斑疹傷寒,Q熱
形似小桿菌,具多型性,常呈雙排列。
病毒
一類體積十分微小,結構簡單,含一種類型的核酸(DNA或RNA),必須在生活的細胞內才能生長繁殖的非細胞型微生物。病毒缺乏細胞具有的細胞器,缺乏必要的酶系統,所以病毒必須在生活的細胞中才能增殖。當病毒進入宿主細胞後,利用宿主細胞提供的原料、能量、酶和生物合成場所,才能合成病毒的蛋白質和病毒核酸,並裝配成成熟的病毒顆粒,再以一定的方式從細胞釋放,完成其增殖周期。主要有流感病毒、麻疹病毒、肝炎病毒,流行性乙型腦炎病毒,HIV等。
㈥ 日常生活中真菌和細菌使人生病的例子
真菌在過去曾稱為黴菌,是微生物中的一個大類,是一群數目龐大的細胞生物,估計全世界已有記載的真菌有10萬種以上.它們的個頭差別很大,小者用顯微鏡才能見到,大者可達數10厘米,如茯苓、蘑菇等.長期以來,真菌和細菌都被歸入植物界,視為最低等植物.隨著生物學,尤其是微生物學的進展,重新認識了真菌在生物界的地位.真菌與植物不同,它們的細胞雖有細胞壁,但無葉綠素,無根、莖、葉構造,不能進行光合作用,因此,不能利用2氧化碳來製造食物,它們的營養方式,只能靠腐生取得碳源,憑寄生獲得能源和其他營養物質;細胞貯藏的養料是肝糖而非澱粉,這與綠色植物有著顯著的差別.除少數菌類為單細胞外,其他都有分枝或不分枝的菌絲體,能進行有性和無性繁殖.病原性真菌是真菌病的病因,其中包括淺表皮膚真菌病,俗稱皮膚癬病.說到真菌,很容易想到細菌,因為它們都能引起疾病.其實真菌與細菌有本質上的不同,這種差別顯示了生物進化歷程:顯微鏡下可見細菌形態單一,呈球狀或棒狀;真菌形態比細菌復雜,有菌絲、芽胞等結構.真菌與細菌還有一個明顯的區別,除極少數真菌外,真菌引起的疾病,用治療細菌、放線菌和病毒有效的葯物治療,沒有任何效果,只能用專門治療真菌病的特殊葯品,才能收到治療效果.由此可見,真菌在生物界中的地位比細菌高得多.弄清它們的主要區別,是很有益的.因為長期以來,總是把細菌與真菌混為一談.總之,真菌在生物界的地位不低,它和植物、動物一樣都屬於真核類,又是多細胞,比原核類的細菌的地位高得多.作為一種病原微生物,它和病毒、立克次體、衣原體、細菌、原蟲、寄生蟲等都不同.真菌分為非致病性和病原性兩類,非致病性真菌體形較大,如食用菌蘑菇;病原性真菌體形較小,往往肉眼看不見.有些病原微生物如霍亂弧菌、梅毒螺旋體、阿米巴原蟲等能夠運動,真菌則無此功能.卡洛特Z初入江湖2級(356)|我的貢獻|我的消息(0/21)|我的空間|網路首頁|退出新聞網頁貼吧知道MP3圖片網路幫助網路>瀏覽詞條編輯詞條發表評論歷史版本列印添加到搜藏真菌目錄·概述·真茵的營養體·真菌的繁殖體·真菌的起源和演化·真菌與生活概述真菌(fungus;eumycetes)是具有真核和細胞壁的異養生物.種屬很多,已報道的屬達1萬以上,種超過10萬個.其營養體除少數低等類型為單細胞外,大多是由纖細管狀菌絲構成的菌絲體.
㈦ 什麼細菌可使人患病
你好,很高興回答你的問題
並不是所有的細菌都能使人患病,能使人患病的俗稱病原菌,是指能入侵宿主引起感染的微生物,有細菌、真菌、病毒等。
病原菌為什麼會使人生病呢?是因為它們能產生致病物質,造成宿主感染。如果不產生致病物質,就是非病原菌。至於正常菌群,當與宿主處於生態平衡狀態,它們並不引起機體的感染,故屬於非病原菌范疇。但是,在特定條件下,因為菌群失調、宿主免疫功能低下或菌群寄居部位改變造成了生態失調狀態,正常菌群也能引起感染,這樣它們又應看成病原菌。為此,將這些正常菌群稱為條件性病原菌或機會性病原菌,意思是在特殊條件下或遇到合適機會時,它們也可以具有病原菌的特性,造成人類感染性疾病。
霍亂弧菌、痢疾桿菌和大腸桿菌能產生分泌到它們細胞外面的腸毒素引起患者腹瀉;鼠疫桿菌分泌的鼠疫毒素作用於全身血管及淋巴使其出血和壞死;還有些細菌產生不分泌到菌體細胞外的毒素,例如沙門氏菌。當我們不小心弄破了手足而傷口比較深時,或者被銹鐵釘扎到肉中,必須到醫院去注射預防針,預防由梭狀芽孢桿菌引起的破傷風。梭狀芽孢桿菌也來自土壤,是一種不喜歡氧氣的厭氧菌。它在氧氣較少的深部傷口中繁殖,並產生一種能致人於死地的毒素。還有一種梭狀芽孢桿菌,它們會產生一種已知對人類最厲害的毒素(0.1微克就足以致人死命),它並不在宿主體內繁殖,而是在罐頭里腌制的魚和肉類中繁殖並產生毒素。不過現代先進有效的食品保藏方法使肉毒中毒症變得很少見了。
回答完畢,希望能選為最佳答案
㈧ 危害人類健康的十大病原微生物都叫什麼名
天花(smallpox,variola)
是天花病毒引起的烈性傳染病,死亡率很高。但經推廣牛痘接種和數年的世界性監測,世界衛生組織於1980年正式宣布天花已在全世界消滅。但需注意重新出現。
黑死病(學名鼠疫)
根據史書記載,中世紀爆發的毀掉歐洲1/4人口的黑死病是淋巴腺鼠疫,通過藏在黑鼠皮毛內的跳蚤傳染。1347年到1352年期間,一種被稱為瘟疫的流行病開始在歐洲各地擴散,導致2500多萬人喪生。在隨後的300多年間,黑死病仍然周期性爆發。 黑死病的一種症狀,就是患者的皮膚上會出許多黑斑,所以這種特殊的瘟疫被人們叫做「黑死病」。對於那些感染上該病的患者來說,痛苦地死去幾乎是無法避免的,沒有任何治癒的可能。
艾滋病
據聯合國艾滋病規劃署報告,2003年全世界又新增500萬艾滋病病毒感染者,感染者總數上升到了4200萬人。目前我國的艾滋病流行也進入了高速增長期,最保守的估計也已經有84萬艾滋病病毒感染者,並以每年30%的速度遞增。
登革熱與西尼羅熱——蟲媒傳染病不甘示弱
登革熱是一種「老牌」熱帶傳染病,近年來其流行隨著傳播媒介的活躍而逐步加重。去年1月到2月,泰國登革熱病患者已達5284人,同時此病在厄瓜多、巴拉圭、澳大利亞、沙烏地阿拉伯等國均有不同程度的流行。
與登革熱病原相比,西尼羅病毒是一種新發現的病毒。自1999年首次在美國暴發以來,西尼羅熱已持續5年在美國流行,流行規模越來越大,並且繼續向中美和南美國家蔓延。目前我國尚沒有感染西尼羅病毒的病例報告,但這並不意味著我們可以高枕無憂。如同非典一樣,病毒潛伏在某個未知的地方或者從國外傳入的可能性都非常大。
除了這兩個引起人們關注的蟲媒傳染病外,由蚊蟲傳播的黃熱病、瘧疾、聖路易斯腦炎也都引起了不同規模的流行。
非典——呼吸道傳染病肆虐
2003年在全球引起最大影響的莫過於新發現的嚴重急性呼吸綜合征(SARS)。2002年11月16日,在中國廣東河源出現了第1位非典病人,隨後,這種新型肺炎又在我國香港、台灣地區及美國等地被發現。全世界累計發現8000餘名感染者,造成800多人死亡。
為配合預防非典卷土重來,防治流感成為去年全球關注的焦點。自去年11月份以來,英國、加拿大、美國及我國香港地區均報告,流感的流行比往年有所提前。
在2003年暴發的呼吸系統傳染病中,還有一些人們早已熟知的傳染病。比如專發於兒童的百日咳,2003年1月8日WHO報告阿富汗東北部巴達赫尚省發現115例百日咳病例,其中死亡17例。另外還有白喉, 7~8月在阿富汗坎大哈連續出現50起白喉病例,死亡3例。
霍亂
如果說非典、西尼羅熱的流行是由於人們對新發傳染病的認識還不夠深入,缺乏有效控制措施的話,那麼霍亂這種婦幼皆知的經典傳染病的大流行則主要應歸結於社會因素。動盪的社會秩序、沒有清潔的飲用水、缺醫少葯,成為霍亂流行的最主要因素。去年4~5月,尚比亞、伊拉克、烏干達、莫三比克、南非先後暴發霍亂。
埃博拉病毒
埃博拉病毒被認為是通過動物傳染給人的,但科學家們一直未能發現其真正的動物宿主,更多的證據表明它可以通過接觸、輸血、呼吸等多種途徑傳播。感染埃博拉病毒的患者病死率達到50%~90%。患者死亡時器官溶解,全身毛孔和腔道出血,死狀恐怖。故該病毒被認為是一種潛在的生物武器
血吸蟲病
近年來,我國血吸蟲病疫情出現了反復,主要表現為釘螺擴散明顯,新疫區不斷增加。目前已有28個縣(市、區)在多年前達到血吸蟲病傳播控制和傳播阻斷標准之後,疫情重新出現明顯回升。
禽流感
禽流感是禽流行性感冒的簡稱。是由A型禽流行性感冒病毒引起的一種禽類(家禽和野禽)傳染病。禽流感病毒感染後可以表現為輕度的呼吸道症狀、消化道症狀,死亡率較低;或表現為較嚴重的全身性、出血性、敗血性症狀,死亡率較高。這種症狀上的不同,主要是由禽流感的毒型決定的。
脊髓灰質炎
脊髓灰質炎又稱「小兒麻痹症」,是由脊髓灰質炎病毒引起的急性傳染病。臨床以發熱、上呼吸道症狀、肢體疼痛,少數病例出現肢體弛緩性癱瘓為特徵。
㈨ 環境中能使人感染疾病的微生物叫
環境中能使人感染疾病的微生物叫做什麼?環境中能使人感染疾病的微生素叫做病原微生物。
㈩ 對人類有害的微生物
微生物
微生物(microorganism)是包括細菌、病毒、真菌以及一些小型的原生動物等在內的一大類生物群體,它個體微小,卻與人類生活密切相關。微生物在自然界中可謂「無處不在,無處不有」,涵蓋了有益有害的眾多種類,廣泛涉及健康、醫葯、工農業、環保等諸多領域。
一般地,在中國大陸地區的教科書中,均將微生物劃分為以下8大類:細菌、病毒、真菌、放線菌、立克次體、支原體、衣原體、螺旋體。
有些人誤將真菌當作細菌,是一種比較普遍的誤解。尤其以80年代以前未受過系統生物學教育者。
微生物對人類最重要的影響之一是導致傳染病的流行。在人類疾病中有50%是由病毒引起。世界衛生組織公布資料顯示:傳染病的發病率和病死率在所有疾病中占據第一位。微生物導致人類疾病的歷史,也就是人類與之不斷斗爭的歷史。在疾病的預防和治療方面,人類取得了長足的進展,但是新現和再現的微生物感染還是不斷發生,像大量的病毒性疾病一直缺乏有效的治療葯物。一些疾病的致病機制並不清楚。大量的廣譜抗生素的濫用造成了強大的選擇壓力,使許多菌株發生變異,導致耐葯性的產生,人類健康受到新的威脅。一些分節段的病毒之間可以通過重組或重配發生變異,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都與前次導致感染的株型發生了變異,這種快速的變異給疫苗的設計和治療造成了很大的障礙。而耐葯性結核桿菌的出現使原本已近控制住的結核感染又在世界范圍內猖獗起來。
微生物千姿百態,有些是腐敗性的,即引起食品氣味和組織結構發生不良變化。當然有些微生物是有益的,它們可用來生產如乳酪,麵包,泡菜,啤酒和葡萄酒。微生物非常小,必須通過顯微鏡放大約1000 倍才能看到。比如中等大小的細菌,1000個疊加在一起只有句號那麼大。想像一下一滴牛奶,每毫升腐敗的牛奶中約有5千萬個細菌,或者講每誇脫牛奶中細菌總數約為50億。也就是一滴牛奶中可有含有50 億個細菌。
微生物能夠致病,能夠造成食品、布匹、皮革等發霉腐爛,但微生物也有有益的一面。最早是弗萊明從青黴菌抑制其它細菌的生長中發現了青黴素,這對醫葯界來講是一個劃時代的發現。後來大量的抗生素從放線菌等的代謝產物中篩選出來。抗生素的使用在第二次世界大戰中挽救了無數人的生命。一些微生物被廣泛應用於工業發酵,生產乙醇、食品及各種酶制劑等;一部分微生物能夠降解塑料、處理廢水廢氣等等,並且可再生資源的潛力極大,稱為環保微生物;還有一些能在極端環境中生存的微生物,例如:高溫、低溫、高鹽、高鹼以及高輻射等普通生命體不能生存的環境,依然存在著一部分微生物等等。看上去,我們發現的微生物已經很多,但實際上由於培養方式等技術手段的限制,人類現今發現的微生物還只佔自然界中存在的微生物的很少一部分。
微生物間的相互作用機制也相當奧秘。例如健康人腸道中即有大量細菌存在,稱正常菌群,其中包含的細菌種類高達上百種。在腸道環境中這些細菌相互依存,互惠共生。食物、有毒物質甚至葯物的分解與吸收,菌群在這些過程中發揮的作用,以及細菌之間的相互作用機制還不明了。一旦菌群失調,就會引起腹瀉。
隨著醫學研究進入分子水平,人們對基因、遺傳物質等專業術語也日漸熟悉。人們認識到,是遺傳信息決定了生物體具有的生命特徵,包括外部形態以及從事的生命活動等等,而生物體的基因組正是這些遺傳信息的攜帶者。因此闡明生物體基因組攜帶的遺傳信息,將大大有助於揭示生命的起源和奧秘。在分子水平上研究微生物病原體的變異規律、毒力和致病性,對於傳統微生物學來說是一場革命。
以人類基因組計劃為代表的生物體基因組研究成為整個生命科學研究的前沿,而微生物基因組研究又是其中的重要分支。世界權威性雜志《科學》曾將微生物基因組研究評為世界重大科學進展之一。通過基因組研究揭示微生物的遺傳機制,發現重要的功能基因並在此基礎上發展疫苗,開發新型抗病毒、抗細菌、真菌葯物,將對有效地控制新老傳染病的流行,促進醫療健康事業的迅速發展和壯大!
從分子水平上對微生物進行基因組研究為探索微生物個體以及群體間作用的奧秘提供了新的線索和思路。為了充分開發微生物(特別是細菌)資源,1994年美國發起了微生物基因組研究計劃(MGP)。通過研究完整的基因組信息開發和利用微生物重要的功能基因,不僅能夠加深對微生物的致病機制、重要代謝和調控機制的認識,更能在此基礎上發展一系列與我們的生活密切相關的基因工程產品,包括:接種用的疫苗、治療用的新葯、診斷試劑和應用於工農業生產的各種酶制劑等等。通過基因工程方法的改造,促進新型菌株的構建和傳統菌株的改造,全面促進微生物工業時代的來臨。
工業微生物涉及食品、制葯、冶金、采礦、石油、皮革、輕化工等多種行業。通過微生物發酵途徑生產抗生素、丁醇、維生素C以及一些風味食品的制備等;某些特殊微生物酶參與皮革脫毛、冶金、採油采礦等生產過程,甚至直接作為洗衣粉等的添加劑;另外還有一些微生物的代謝產物可以作為天然的微生物殺蟲劑廣泛應用於農業生產。通過對枯草芽孢桿菌的基因組研究,發現了一系列與抗生素及重要工業用酶的產生相關的基因。乳酸桿菌作為一種重要的微生態調節劑參與食品發酵過程,對其進行的基因組學研究將有利於找到關鍵的功能基因,然後對菌株加以改造,使其更適於工業化的生產過程。國內維生素C兩步發酵法生產過程中的關鍵菌株氧化葡萄糖酸桿菌的基因組研究,將在基因組測序完成的前提下找到與維生素C生產相關的重要代謝功能基因,經基因工程改造,實現新的工程菌株的構建,簡化生產步驟,降低生產成本,繼而實現經濟效益的大幅度提升。對工業微生物開展的基因組研究,不斷發現新的特殊酶基因及重要代謝過程和代謝產物生成相關的功能基因,並將其應用於生產以及傳統工業、工藝的改造,同時推動現代生物技術的迅速發展。
農業微生物基因組研究認清致病機制發展控制病害的新對策
據資料統計,全球每年因病害導致的農作物減產可高達20%,其中植物的細菌性病害最為嚴重。除了培植在遺傳上對病害有抗性的品種以及加強園藝管理外,似乎沒有更好的病害防治策略。因此積極開展某些植物致病微生物的基因組研究,認清其致病機制並由此發展控制病害的新對策顯得十分緊迫。
經濟作物柑橘的致病菌是國際上第一個發表了全序列的植物致病微生物。還有一些在分類學、生理學和經濟價值上非常重要的農業微生物,例如:胡蘿卜歐文氏菌、植物致病性假單胞菌以及我國正在開展的黃單胞菌的研究等正在進行之中。日前植物固氮根瘤菌的全序列也剛剛測定完成。借鑒已經較為成熟的從人類病原微生物的基因組學信息篩選治療性葯物的方案,可以嘗試性地應用到植物病原體上。特別像柑橘的致病菌這種需要昆蟲媒介才能完成生活周期的種類,除了殺蟲劑能阻斷其生活周期以外,只能通過遺傳學研究找到毒力相關因子,尋找抗性靶位以發展更有效的控制對策。固氮菌全部遺傳信息的解析對於開發利用其固氮關鍵基因提高農作物的產量和質量也具有重要的意義。
環境保護微生物基因組研究找到關鍵基因降解不同污染物
在全面推進經濟發展的同時,濫用資源、破壞環境的現象也日益嚴重。面對全球環境的一再惡化,提倡環保成為全世界人民的共同呼聲。而生物除污在環境污染治理中潛力巨大,微生物參與治理則是生物除污的主流。微生物可降解塑料、甲苯等有機物;還能處理工業廢水中的磷酸鹽、含硫廢氣以及土壤的改良等。微生物能夠分解纖維素等物質,並促進資源的再生利用。對這些微生物開展的基因組研究,在深入了解特殊代謝過程的遺傳背景的前提下,有選擇性的加以利用,例如找到不同污染物降解的關鍵基因,將其在某一菌株中組合,構建高效能的基因工程菌株,一菌多用,可同時降解不同的環境污染物質,極大發揮其改善環境、排除污染的潛力。美國基因組研究所結合生物晶元方法對微生物進行了特殊條件下的表達譜的研究,以期找到其降解有機物的關鍵基因,為開發及利用確定目標。
極端環境微生物基因組研究深入認識生命本質應用潛力極大
在極端環境下能夠生長的微生物稱為極端微生物,又稱嗜極菌。嗜極菌對極端環境具有很強的適應性,極端微生物基因組的研究有助於從分子水平研究極限條件下微生物的適應性,加深對生命本質的認識。
有一種嗜極菌,它能夠暴露於數千倍強度的輻射下仍能存活,而人類一個劑量強度就會死亡。該細菌的染色體在接受幾百萬拉德a射線後粉碎為數百個片段,但能在一天內將其恢復。研究其DNA修復機制對於發展在輻射污染區進行環境的生物治理非常有意義。開發利用嗜極菌的極限特性可以突破當前生物技術領域中的一些局限,建立新的技術手段,使環境、能源、農業、健康、輕化工等領域的生物技術能力發生革命。來自極端微生物的極端酶,可在極端環境下行使功能,將極大地拓展酶的應用空間,是建立高效率、低成本生物技術加工過程的基礎,例如PCR技術中的TagDNA聚合酶、洗滌劑中的鹼性酶等都具有代表意義。極端微生物的研究與應用將是取得現代生物技術優勢的重要途徑,其在新酶、新葯開發及環境整治方面應用潛力極大.