『壹』 生物量是什麼意思
生物量(biomass) ,是生態學術語,或對植物專稱植物量(phytomass),是指某一時刻單位面積內實存生活的有機物質(乾重)(包括生物體內所存食物的重量)總量,通常用kg/m或t/hm或g/m²表示。植物群落中各種群的植物量很難測定,特別是地下器官的挖掘和分離工作非常艱巨。出於經濟利用和科研目的的需要常對林木和牧草的地上部分生物量進行調查統計,據此可以判斷樣地內各種群生物量在總生物量中所佔的比例。
生物量
基本概念
某一時間單位面積或體積棲息地內所含一個或一個以上生物種,或所含一個生物群落中所有生物種的總個數或總乾重(包括生物體內所存食物的重量)。生物量(乾重)的單位通常是用g/㎡或J/㎡表示。某一時限任意空間所含生物體的總量,量的值用重量或能量來表示。用於種群和群落。用鮮重或乾重衡量時,規定用B表示;用能量衡量時,則用QB(也稱活體能量,biocontent)表示。
生物量與生產力
廣義的生物量是生物在某一特定時刻單位空間的個體數、重量或其含能量,可用於指某種群、某類群生物的(如浮游動物)或整個生物群落的生物量。狹義的生物量僅指以重量表示的,可以是鮮重或乾重。與生產力是不同的概念。某一特定時刻的生物量是一種現存量(standing crop),生產力則是某一時間內由活的生物體新生產出的有機物質總量。t時間的生物量比t-1時刻的增加量(A生物量),必需加該時間中的減少量才等於生產力,即生產力=△生物量+△減少量。
森林群落生物量
森林群落的生物量是森林生態系統生產力的最好的指標,是森林生態系統結構優劣和功能高低的最直接的表現,是森林生態系統環境質量的綜合體現。森林群落的生物量是指群落在一定時間內積累的有機質總量,通常的單位面積或單位時間積累的平均質量或能量來表示。生物量中的現存量則是指活有機體的乾重,兩者的主要區別在於是否包括林地積累的枯落物。目前普遍使用的生物量概念是後一種含義,即活有機體乾重,不包括枯枝落葉層。森林群落生物量包括喬木層生物量、林下植被生物量。林下植被生物量採用樣方收獲法測定,即在樣地中機械布設5-10個1-2m2的樣方將其中的草灌木(地上、地下)全部收獲稱重、並烘乾測乾重率。以樣方的平均值推算全林的林下植被生物量。喬木層生物量的測定比較復雜,方法也比較多,比較常用的是收獲法中的等斷面積徑級法,即根據一定標准選擇一組標准木,伐倒後測定其生物量,然後以樣本組生物量實測數據構建回歸方程,以回歸方程推算喬木生物量。
『貳』 如何准確估算森林碳匯是全球研究的熱點
近些年來, 大氣CO 2 濃度上升引起的溫室效應及其所帶來的一系列生態環境變化已經越來越明顯, 解決溫室效應所帶來的影響已成為廣大學者研究的首要目標。有研究表明, 森林植物在其生長過程中可通過同化作用吸收大氣中的CO 2, 以生物量的形式將其固定在植物體和土壤中, 使森林成為陸地生態系統最重要的碳匯或碳庫[35]。全球的森林面積只佔土地面積的27. 6% , 但森林植被碳貯量卻佔全球植被的77% , 森林土壤的碳貯量約佔全球土壤的39%; 單位面積森林生態系統碳儲量是農地的1. 9~5 倍[36]。2005 年2 月16 日, 旨在遏制全球氣候變暖的《京都議定書》正式生效。這是人類歷史上首次以法規的形式限制溫室氣體排放。《京都議定書》是在《聯合國氣候變化框架公約(UN FCCC)》下制定的, 它被公認為是國際環境外交的里程碑, 是第一個具有法律約束力的旨在防止全球變暖而要求減少溫室氣體排放的條約。《京都議定書》第12 條還確立了清潔發展機制(clean development mechanism, 簡稱CDM ) (UN FCCC, 1997), 通過該機制, 有減排義務的工業化國家可以在發展中國家實施土地利用變化和林業碳匯項目, 用項目產生的源排放減少和匯清除的增加來實現其所承諾的減限排目標[11]。同時,北半球森林生態系統與大氣之間存在著較大的CO 2負通量, 是吸收人類排放CO 2 的一個重要的匯[38, 39]。這些都為發達國家和發展中國家之間在林業領域內的合作提供了機會。我國地域遼闊, 具有廣大的森林面積, 利用這一機遇發展以碳匯為目的的森林經營, 發展碳匯貿易不僅可以得到資金和技術上的支持, 同時, 對我國的經濟發展也具有積極的意義。
我國的碳匯造林項目起步較晚, 但可喜的是, 在政策的大力支持下, 近幾年各地的碳匯造林項目也日益活躍起來。比如我國首個「碳匯」合作項目——「中國東北部敖漢旗防治荒漠化青年造林項目」的正式實施[1], 正是中國國家林業局與義大利國家環境和國土資源部根據《京都議定書》清潔發展機制的造林再造林"碳匯"項目相關規定簽署的兩國合作造林項目。美國的3M 公司資助300 萬美元在四川、雲南實施的造林、再造林項目, 目前正在穩步的進行中。
碳匯貿易的快速發展, 隨之而來的將要面臨的重大問題就是為碳匯而造的人工林碳匯計量方法的
問題。目前, 世界各地的學者對森林碳匯的計量方法已經做出了很大的研究, 歸納起來, 主要分為兩大類: 一類是與生物量緊密相關的反映碳累積量的現存生物量清查的方法。另一類是利用微氣象原理和技術測定森林CO 2 通量, 然後再將CO 2 的量換算成碳的儲量。第一類方法已經在我國得到了廣泛的應用, 我國許多專家和學者也對該方法進行了研究。第二類方法在國外已經取得了很大的成果, 到目前為止已經建立了150 多個觀測站, 我國在這方面起步較晚, 2002 年, 中科院正式啟動了中國陸地生態系統碳通量觀測項目, 已經分別在長白山、千煙洲、鼎湖山和西雙版納設立了4 個典型森林生態系統CO 2通量定位觀測站[18, 19]。由於各種方法所使用的原理和儀器都有所不同, 在對計量森林的碳匯時結果都有一定的差異, 因此, 本文將著重對各種碳匯計量方法進行歸納整理。
1相關的概念
碳是一切有機物的基本成分, 也是構成生物體的主要元素, 約占生物體乾重的一半左右, 碳循環及其空間分布與生態系統的維持、發展和穩定性機制有著密切的聯系[2]。在全球變化與陸地生態系統的研究中, 最基礎的和最受重視的是全球碳循環問題也即溫室氣體的「源(source)」和「匯集sink)」的問題,尤其以主要溫室氣體- CO 2 的源匯為重點研究領域。所謂「碳匯」, 是指從大氣中清除CO 2 的過程、活動或機制。大氣、海洋及森林等陸地生態系統通常被稱為地球上的三大碳庫。森林與CO 2 的變化關系密切, 一方面森林生長可吸收並固定CO 2, 是CO 2的吸收匯、貯存庫和緩沖器, 另一方面森林的破壞又是CO 2 的排放源。通過造林、退化生態系統恢復、建立農林復合系統、加強森林可持續管理等措施可增加陸地碳吸收量。「碳匯造林」是指通過森林起到固碳作用, 以此來充抵減排二氧化碳量的義務, 通過市場機制實現森林生態效益價值補償的一種重要途徑。清潔發展機制(CDM )下的造林再造林碳匯(Carbon Sequestra2tion) 項目是《京都議定書》框架下發達國家和發展中國家之間在林業領域內的唯一合作機制。根據規定, 可由發達國家提供資金或技術給發展中國家用於溫室氣體減排, 發展中國家通過發達國家提供的投資和技術來促進本國的可持續發展, 而發達國家可以得到二氧化碳減排量, 來滿足其減排承諾。
2碳匯研究的計量方法
森林碳匯計量方法是評價森林碳匯生態效益大小的基礎工作, 在此基礎上可以開展森林碳匯管理和經濟評價, 為全面開展以碳匯為目的的森林經營打好基礎。在森林碳匯計量的方法的研究上, 國內外的很多專家已經提出了許多方法。
2. 1生物量法
生物量法是目前應用最為廣泛的方法, 其優點就是直接、明確、技術簡單。即採用根據單位面積生物量、森林面積、生物量在樹木各器官中的分配比例、樹木各器官的平均碳含量等參數計算而。最早應用生物量法時, 是將森林通過大規模的實地調查,得到實測的數據, 建立一套標準的測量參數和生物量資料庫, 用樣地數據得到植被的平均碳密度, 然後用每一種植被的碳密度與面積相乘, 估算生態系統的碳儲量[29, 30]。方精雲等[4]就是利用生物量方法推算中國森林植被碳庫, 採用土壤有機質含量估算我國土壤碳庫。計算結果表明: 我國陸地植被的總碳量為6. 1×109t, 其中森林4. 5×109t, 疏林及灌木叢0. 5×109t,草地1. 2×109t, 作物0. 1×109t, 荒漠0. 2×109t,沼澤地0. 8×109t, 其他0. 3×109t。陳遐林運用生物量法對華北各主要森林類型生態系統總碳貯量進
行了計算, 分別為油松235. 082 t hm2, 落葉松54. 140 8 t hm2, 樺木林269. 896 6 t hm
2, 楊樹林170. 911 2 t hm2, 柞木林642. 6994 t hm2。各主要森林類型生態系統平均貯碳密度從小到大順序依次為油松132. 88t hm2, 楊樹林140. 10 t hm2, 柞木林188. 79 t hm2, 落葉松203. 38 t hm2, 樺木林448. 04t hm2[5]。
由於樹木既有低碳組織, 又有高碳組織, 所以目前在對生物量轉化為碳含量時的轉換系數大多在
0. 45~0. 55 之間, 但究竟在什麼狀態下運用什麼系數都只是憑經驗來選擇, 而並沒有相應的准確的規定。樹木生長是一個動態的過程, 生物量的積累不僅和樹種本身有關, 還與立地質量、氣候條件等多方面因素有關。即使是相同樹種, 在相同立地條件, 相同氣候條件下, 其一生的生物量積累也會有明顯的差別。同時, 計算生物量時往往只考慮地上部分, 即便考慮了地下部分, 由於取樣的困難, 往往也很難得到精確的數據。這樣一來, 運用生物量法對森林碳匯進行計量勢必會造成很大的誤差, 使計量的精度下降。
2. 2蓄積量法
蓄積量法是以森林蓄積量數據為基礎的碳估算方法。其原理是根據對森林主要樹種抽樣實測, 計算出森林中主要樹種的平均容重(t〓m- 3), 根據森林的總蓄積量求出生物量, 再根據生物量與碳量的轉換系數求森林的固碳量。
郎奎建等認為森林固碳的「因變數是一個附加在林木蓄積生長率上的變數」[7]。楊永輝等採用一定時期內碳庫變化主要通過森林蓄積的增加與森林內其它生物成分之間的關系, 求取由於森林蓄積的變化帶來的整個森林碳庫的變化[8]。法國Peyron 等(2002)通過用不同樹種的立木材積乘以它們的換算因子, 計算得出的碳匯。從木材體積到碳噸數的換算因子為: 1m3 木材= 0. 28 t 碳(針葉樹和楊樹); 1m3木材= 0. 30 t 碳(除楊樹外的闊葉樹)。李意德等人[9]採用蓄積量法對雲南南部熱帶森林的碳庫總量進行了估算, 結果表明, 海南熱帶天然林(含原始林和天然更新林)的碳庫總量為. 719~0. 734 億t, 雲南南部的熱帶天然林的碳素庫總量在0. 653 億t 以上。因此我國熱帶林目前的碳總量在1. 372~1. 387億t 以上。康惠寧等[10]採用蓄積量法對中國森林固碳的現狀和潛力進行了估計和預測, 結果表明, 中國森林目前碳積累高於碳釋放, 年平均凈碳匯量為0. 862 7×108t a, 在未來20 a 內中國森林凈碳匯能力約增加773×108t a。
可以說, 蓄積量法是生物量法的延伸, 它繼承了生物量法的優點, 如操作簡便, 技術直接、明了, 有很強的實用性。但是, 由於是生物量法的繼承也就在所難免的產生一些計量誤差。在對轉換系數的選擇上只區分了樹種, 而對其它因素卻並沒有加以考慮, 因此並沒有實質性的突破, 在使用時仍然存在很大的誤差。
2. 3生物量清單法
生物量清單法, 就是將生態學調查資料和森林普查資料結合起來進行[20]。首先計算出各森林生態系統類型喬木層的碳貯存密度(Pc,M gC〓hm- 1)。Pc = V ×D × r ×Cc式中,V 是某一森林類型的單位面積森林蓄積量,D是樹干密度,R 是樹干生物量占喬木層生物量的比例,Cc 是植物中碳含量(常採用0. 45[21])。然後再根據喬木層生物量與總生物量的比值, 估算出各森林類型的單位面積總生物質碳貯量。王效科等[14]利用這種方法對各森林生態系統類型的幼齡林、中齡林、近熟林、成熟林和過熟林的植物碳貯存密度進行估算, 再根據相應森林類型的面積得到中國各森林生態系統類型的植物碳貯量,最後得出中國森林生態系統的現存的植物碳貯量為3. 255~3. 724 PgC, 而且不同齡級的碳密度差距明顯。
生物量清單法的優點是顯而易見的。由於有了公式作為基礎, 其計量的精度大大提高。應用的范圍也更加廣泛。但為了達到需求的數據, 往往要消耗大量的勞動力, 並且只能間歇地記錄碳儲量, 而不能反映出季節和年變化的動態效應。同時, 由於各地區研究的層次、時間尺度、空間范圍和精細程度不同, 樣地的設置、估測的方法等各異, 使研究結果的可靠性和可比性較差。另外, 以外業調查數據資料為基礎建立的各種估算模型中, 有的還存在一定的問題, 而使估測精度較小, 因而需要不斷改進、完善[22]。
2. 4渦旋相關法
渦旋相關法(Eddy correlation method) 是以微氣象學為基礎的一種方法。這一方法首先是應用於測量水汽通量, 20 世紀80 年代已經拓展到CO 2 通量研究中[24, 27]。渦旋相關技術僅僅需要在一個參考高度上對CO 2 濃度以及風速風向進行監測。大氣中物質的垂直交換往往是通過空氣的渦旋狀流動來進行的, 這種渦旋帶動空氣中不同物質包括CO 2 向上或者向下通過某一參考面, 二者之差就是所研究的生態系統固定或放出CO 2 的量。其計算公式為:
Fc = Q′w ′
其中Fc 是CO 2 通量, Q是CO 2 的濃度,w 是垂直方向上的風速。字母的右上標(小撇)是指各自平均值在垂直方向上的波動即渦旋波動, 橫是指一段時間(15~30m in)的平均值。這一思想產生得較早,然而由於需要的儀器設備昂貴, 使得這一技術直到20 世紀80 年代才拓展到CO 2 通量研究中。Euroflux 實驗室的科學家應用渦旋相關法集中研究了不同緯度歐洲森林的CO 2 通量的變化[27]。M alhi 等[28]應用渦旋相關技術對熱帶森林、溫帶森林和北方森林的季節變化模式進行研究表明, 熱帶森林全年都表現出凈碳匯, 而高緯度地區的森林則在生長季節為匯, 在冬季則為源。劉允芬等用該方法對千煙洲人工針葉林生態系統的碳通量進行分析,得出該生態系統全年各個月都為碳匯, 但碳存儲量各月之間變化明顯[13]。
渦旋相關法的特點是直接對森林與大氣之間的通量進行計算, 能夠直接長期對森林生態系統進行
CO 2 通量測定, 同時有能夠為其他模型的建立和校準提供基礎數據而聞名。但是, 這一方法需要較為精密的儀器, 這些儀器在使用上都有嚴格的要求, 這樣對測量者的素質要求較高。在數據處理, 還需要包括二階距量變換、坐標軸旋轉、能量守恆閉合等多種方法的校正和數據質量控制, 最終才能得到滿意的結果。
2. 5渦度協方差法
以微氣象學為基礎的渦度協方差法(Eddy co2variance method)是最為直接的可連續測定的方法,盡管還存在著一些不足之處, 該方法仍然作為現今碳通量研究的一個標准方法獲得了廣泛應用
(Goulden , 1996;Law 等, 1999; 王文傑等, 2003)。採用此方法需要對能量、水分、CO 2 進行分別測定。其中能量(風)的測定由三維超聲波風速儀來完成, 水分與CO 2 濃度則由閉路式紅外氣體分析儀來完成。CO 2 通量即林分的凈生態系統交換量由10 Hz 的CO 2 H 2O 濃度與垂直風速的原始數據經過協方差計算而來, 平均時間長為0. 5 h (Hollinger 等, 1998;wang 等, 2004)
Fs = Q′w ′S ′式中: Q是空氣的密度, S 代表研究的對象物質(CO 2), 上角標(′) 表示與平均值間的偏差, 上劃線(—)表示平均值。
我國在陸地生態系統CO 2 通量和其它溫室氣體研究方面, 尤其是運用渦度協方差法和馳豫渦旋
積累法(Relaxed eddy accumulation)進行溫室氣體的研究剛剛起步(於貴瑞和孫曉敏, 2006)。王文傑等[16]應用渦度協方差法對帽兒山實驗林場老山實驗站的落葉松林的CO 2 通量進行了測定, 並將測定的結果與應用生理生態法測定的結果進行比較, 其結果是, 在考慮林下植被的時候, 渦度協方差法的測定結果非常准確。
由此可以看出, 渦度協方差法在對大范圍的整個生態系統的碳匯測定時具有很好精度。但該方法
所需要的設備比較昂貴, 操作難度比較大, 實驗的周期也比較長。這樣一來勢必會造成實驗成本的增加,所以該種方法目前在國內使用的也比較少。
2. 6馳豫渦旋積累法
隨著氣象技術的發展, 直接跟蹤大氣CO 2 與森林的交換來研究森林的碳匯也已經發展起來, 馳豫渦旋積累法就是其中之一。馳豫渦旋積累法是渦旋積累法的發展。Desjardins[25]首先應用這一技術, 其基本思想是根據垂直風速的大小和方向採集兩組氣體樣品進行測量。然而, 這一技術當時並沒有獲得成功, 因為很難根據垂直風速的大小和方向進行不等時瞬時采樣。這一技術的實用型直到在渦旋積累的思想中引入馳豫(relaxed)的思想, 使得不定時采樣轉換為定時采樣, 這一實用型被定名為馳豫渦旋積累法[31]。這一方法需要一維聲速風速儀、紅外線CO 2 分析儀、快速反應螺旋管閥門、數據比較器、數據記錄儀、導管系統以及空氣泵等。數據比較器用於比較從聲速風速儀所得到的即時垂直風速信號與數據記錄儀所得到的一定時間(200 s)的平均值。通過這種比較, 數據記錄儀就可以估計渦旋是上行還是下行, 繼而開通或關閉連接2 個空氣收集袋的閥門。
通過數據記錄儀的程序化設計, 紅外線CO 2 分析儀間隔一定時間(3 m in) 開啟或關閉其通道即可以連續監測2 個收集袋內CO 2 的濃度[15]。由於該方法所應用的儀器都是比較精密的昂貴設備, 加之實際操作過程中要把設備架設到林冠的上方, 這就使監測出現一定的困難, 所以該方法目前
在國內並沒有得到很好的應用。在國外該方法在進行森林碳匯計量的時候應用較多。
3小結
綜上所述, 各種方法都有其各自的優缺點, 研究人員可以按照不同的目的和要求對森林的碳匯採用不同的方法進行計量。在當前《京都議定書》和清潔發展機制的促動下, 我們需要一種更為直接, 更為精確, 可以針對不同樹種, 針對同一樹種的不同年齡的計量森林碳匯的方法。可目前運用最為普遍的就是通過測量生物量, 或測量蓄積量, 然後推出碳匯儲量, 在眾多的研究中, 研究的對象都是大范圍的森林生態系統, 或者是省級、國家級的自然保護區, 採用的方法都是通過計算森林生態系統各組成部分的生物量, 再乘以轉換因子求算林地的現存固碳總量。即使已有學者通過計算林木各生理部分的碳儲量, 其方法也是先計算蓄積量, 在換算成生物量, 最後乘以轉換因子。有的國家(森林管理基礎好的)用生物量直接計算碳儲量。但是無論哪種方法, 在由生物量轉換碳儲量時都是使用轉換系數實現的, 而且所用的轉換系數或者不分樹種、或者不分林齡, 使用同一的轉換系數。這些方法僅適合於大尺度森林植被類型的碳儲量計量與評價, 而未能解明不同樹種由於碳儲存速率變化差異引起的含碳量變化規律; 特別是對樹種單一的人工林來說, 究竟單位面積的森林在單位時間內能儲存多少碳, 碳匯的多少和人工林的林齡關系又是怎樣。因此, 對樹木生長過程中的不同林齡的碳匯儲量進行計量, 在評價人工林碳儲功能方面具有重要的現實意義。
『叄』 什麼叫地下生物量
地下生物量是指地下某一時刻單位面積內實存生活的有機物質的總量。
生物量(乾重)的單位通常是用g/㎡或J/㎡表示。某一時限任意空間所含生物體的總量,量的值用重量或能量來表示。用於種群和群落。用鮮重或乾重衡量時,規定用B表示;用能量衡量時,則用QB(也稱活體能量,biocontent)表示。
(3)如何測定森林生態系統生物量擴展閱讀
生物量測定步驟
1、標准地的建立:
根據標准「生物群落監測中的調查采樣」中的規定,建立具有代表性標准地若乾地塊,一般塊數要大於6,每塊面積為0.1公頃,形狀為正方形或長方形,並用測繩圈好。破壞性調查不能在該固定標准地中進行。
2、標准地環境記錄:
記錄森林的層次結構、郁閉度、各樹種密度、林下植物的種類及狀況。
3、樣地內每木調查:
在各樣地內,對樣地內全部樹木,逐一地測定其胸高直徑、樹高並記錄,每測一樹要進行編號,避免漏測。胸高直徑D是採用1.3m高的標桿,在樹幹上坡一側地表面立上標桿,在齊桿的上端,用捲尺測定樹乾的圓周長,以此求出直徑(以cm為單位),或用測圍尺直接量得直徑。
樹高H的測定採用測桿或測高器為工具,在測樹高時一定要以測量者能看到樹木頂端為條件,盡量減少誤差,以m為計量單位。
參考資料來源:網路-生物量
『肆』 求測量蓄積量和生物量的實驗方案 和具體實施步驟!!!
初一上生物的期末總結資料(基因戰者整理)
第一單元 生物和生物圈
第一章 認識生物
第一節 生物的特徵
一、 生物的特徵:
1、生物的生活需要營養 2、生物能進行呼吸 3、能排泄廢物
4、有應激性 5、由細胞構成(病毒除外) 6、生長發育 7、能繁殖 8、遺傳變異
二、 觀察法 P2
第二節 調查我們身邊的生物
一、 調查的一般方法
步驟:明確調查目的、確定調查對象、制定合理的調查方案、調查記錄、對調查結果進行整理、撰寫調查報告
二、 生物的分類
按照形態結構分:動物、植物、其他生物
按照生活環境分:陸生生物、水生生物
按照用途分:作物、家禽、家畜、寵物
第二章 生物圈是所有生物的家
第一節 生物圈
一、 生物圈的范圍:大氣圈的底部:可飛翔的鳥類、昆蟲、細菌等
水圈的全部:距海平面150米內的水層
岩石圈的表面:是一切陸生生物的「立足點」
二、 生物圈為生物的生存提供了基本條件:營養物質、陽光、空氣和水,適宜的溫度和一定的生存空間
第二節 環境對生物的影響
一、 非生物因素對生物的影響:光、水分、溫度等
二、 光對鼠婦生活影響的實驗(中考卷子的題目理解掌握)
三、 探究的過程:1、發現問題、提出問題 2、作出假設 3、制定計劃 4、實施計劃 5、得出結論 6、表達和交流
四、 對照實驗 P15
五、 生物因素對生物的影響:
根據同種或異種的關系,生物因素可分為兩種:1、種內關系:種內互助(螞蟻搬食)、種內斗爭(兩豹爭奪羚羊、爭奪棲息地)
2、種間關系:寄生(蛔蟲)、競爭(獅子和豹爭奪食物)、互助(犀牛和犀牛鳥)
第三節 生物對環境的適應和影響
一、 生物對環境的適應P19的例子
二、 生物對環境的影響:植物的蒸騰作用調節空氣濕度、植物的枯葉枯枝腐爛後可調節土壤肥力、動物糞便改良土壤、蚯蚓鬆土
第四節 生態系統
一、 生態系統的組成:
1、 生物部分:生產者、消費者、分解者
2、 非生物部分:陽光、水、空氣、溫度
二、 食物鏈和食物網:
1、 食物鏈以生產者為起點
2、 物質&能量沿著食物鏈&食物網流動
3、 營養級越高,生物數量越少;營養級越高,有毒物質積聚更多,譬如日本的水吳病。
三、 生態系統具有一定的自動調節能力
在一般情況下,生態系統中生物的數量和所佔比例是相對穩定的。但這種自動調節能力有一定限度,超過則會遭到破壞。
第五節 生物圈是最大的生態系統
一、 生態系統的類型p29
森林生態系統、草原生態系統、農田生態系統、海洋生態系統、城市生態系統等
二、 生物圈是一個統一的整體p30
注意DDT的例子 (平時練習卷子的題目)
第二單元 生物和細胞
第一章 觀察細胞的結構
第一節 練習使用顯微鏡
一、1. 顯微鏡的結構
鏡座:穩定鏡身;
鏡柱:支持鏡柱以上的部分;
鏡臂:握鏡的部位;
載物台:放置玻片標本的地方。中央有通光孔,兩旁各有一個壓片夾,用於固定所觀察的物體。
遮光器:上面有大小不等的圓孔,叫光圈。每個光圈都可以對准通光孔。光線用來調節光線的強弱:
反光鏡:可以轉動,使光線經過通光孔反射上來。其兩面是不同的:
鏡筒:上端裝目鏡,下端有轉換器,在轉換器上裝有物鏡,後方有準焦螺旋。
准焦螺旋:粗准焦螺旋(又稱粗調):轉動時鏡筒升降的幅度大;細准焦螺旋(又稱細調)。
轉動方向和升降方向的關系:順時針轉動准焦螺旋,鏡筒下降;反之則上升
三、 顯微鏡的使用 P37-38 的圖要掌握
1、 觀察的物像與實際圖像相反。
2、 放大倍數=物鏡倍數X目鏡倍數
3、 放在顯微鏡下觀察的生物標本,應該薄而透明,光線能透過,才能觀察清楚。因此必須加工製成玻片標本。
第二節 觀察植物細胞
一、 切片、塗片、裝片的區別 P42
二、 實驗過程P43-44
三、 植物細胞的基本結構
1、 細胞壁:支持、保護
2、 細胞膜:控制物質的進出
3、 細胞質:液態的,可以流動的
4、 細胞核:貯存&傳遞遺傳信息
5、 葉綠體:進行光合作用的場所
6、 液泡:細胞液
『伍』 如何測定森林生態系統的初級生產力
初級生產量的測定方法有很多,這里簡列幾種:
(1)收獲量測定法
用於陸地生態系統.定期收割植被,烘乾至恆重,然後以每年每平方米的干物質重量來表示.取樣測定干物質的熱量,並將生物量換算為 g / (m2·a) .
(2)氧氣測定法
多用於水生生態系統,即黑白瓶法.用三個玻璃瓶,其中一個用黑膠布包上,在包以鉛箔.從待測的水體深度取水,保留一瓶(初始瓶)以測定水中原來溶氧量.根據初始瓶、黑瓶、白瓶溶氧量,即可求得凈初級生產量、呼吸量、總初級生產量.
(36)CO2 測定法
用塑料帳將群落的一部分罩住,測定進入和抽出空氣中 CO2 含量.如氧氣測定法中的黑白瓶法比較水中溶氧量那樣,本方法也要用暗罩和透明罩,也可用夜間無光條件下的 CO2 增加量來估計呼吸量.
(4)放射性標記物測定法
把放射性 14C 以碳酸鹽的形式,放入含有自然水體浮游植物的樣瓶中,沉入水中經過短時間培養,確定光合作用固定的碳量.因為浮游植物在暗中也能吸收 14C 因此還要用「暗呼吸」作校正.
『陸』 地下生物量及其結構測定的意義
生物量(biomass) ,是生態學術語,或對植物專稱植物量(phytomass),是指某一時刻單位面積內實存生活的有機物質(乾重)(包括生物體內所存食物的重量)總量,通常用kg/m2或t/hm2表示。
植物群落中各種群的植物量很難測定,特別是地下器官的挖掘和分離工作非常艱巨。出於經濟利用和科研目的的需要常對林木和牧草的地上部分生物量進行調查統計,據此可以判斷樣地內各種群生物量在總生物量中所佔的比例。
林下植被生物量採用樣方收獲法測定,即在樣地中機械布設5-10個1-2m2的樣方將其中的草灌木(地上、地下)全部收獲稱重、並烘乾測乾重率。以樣方的平均值推算全林的林下植被生物量。
(6)如何測定森林生態系統生物量擴展閱讀:
生物量監測
喬木層器官生物量:徑階等比標准木法,每五年一次,分別干、枝、葉、花果、根。
喬木層的生物量是森林群落生物量的最重要組成,對其的准確測定對於研究森林生長和森林生態系統的生產力有重要作用。本標准規定了森林喬木層生物量的徑階等比標准木測定法,適用於森林喬木層生物量的測定,也適用於其它陸地生態系統中喬木層生物量的測定。
徑階等比標准木法按徑階等比選擇標准木,對每一株標准木的各器官分別測定其千物質質量,建立其與直徑或胸徑和高度的回歸方程。
將樣地中各喬木的自變數(直徑、胸徑和高度等)代入方程,即可求得各株的生物量。將各株的生物量求和後即得樣地喬木層的總生物量。此方法比原始收獲法的勞動強度小,比平均標准木法精度高。
『柒』 生物量是什麼
生物量
生態系統中,在某一時間內,單位面積或單位體積內所含的一個或幾個生物種,或一個生物群落所有的個體總數。例如,我國大連淺海泥沙中,生活著一種瓣鰓綱動物━━蛤仔,最大生物量為每平方米72個,重122.44克。
科學家測得,熱帶雨林平均每年每平方米能生產2,200克乾的有機物;岩石、沙漠和冰地平均每年每平方米只有3克;海洋每立方米則是330克。由於生物體含水量差別很大,所以通常用乾重而不用濕重。生物量也可以用熱量單位,如卡、千卡來表示。例如,一隻田鼠乾重10克,每克的熱量換算值為5.6千卡,它的熱量就是56千卡。假如某一個生態系統中共有1,000隻田鼠,平均每隻乾重10克,那麼這田鼠種群的生物量為10,000克,或者為能量56,000千卡。
在生態系統中,綠色植物通過光合作用,把太陽能轉變成化學能貯存在自己製造的有機物中,這些有機物稱為初級生產量。植物被動物吃掉以後,動物得以生長、發育,它們的產量叫次級生產量。在生態系統的物質和能量流動中,人們希望初級生產量與次級生產量保持動態平衡,否則生態環境就會受到破環。
隨著人類社會的發展,人們對物質和能量消耗不斷增大,能源危機、糧食危機、生態環境破環威脅著人們的正常生活。因此,世界各國對生物量的轉化極為重視,同時十分注意生物量的合理利用和開發。例如建立能量種植園,大量栽培高光效植物。中外,通過人為地控制細胞光合作用 "裝置",生產人類的理想燃料氫氣,研究生物量的氣化,生產煤氣、甲醇等,前景也十分誘人。
科學家認為,在20世紀80年代關鍵性技術領域里,生物量轉換技術將日益發揮重要作用。資源短缺和漲價使得逐漸應用新的生物量轉化技術更加富有經濟意義,它將為人類提供豐富的產品。
『捌』 植物生物量的測定
植物細根地下生物量測定方法匯總及其特點
植物地下生物量測定的具體方法很多,綜合各相關文獻,可將其歸納為三大類:直接收獲法;模型估演算法;數字圖像法。
l直接收獲法
根據操作方法的不同,又可以分為挖掘收獲法,鑽土芯法和內生長土芯法。1(I挖掘收獲法挖掘收獲法包括傳統挖掘法和挖土塊法。傳統挖掘法一般是在所選擇植株的周圍挖溝,去除土壤,露出整個根系,觀測根的形態和生物量,它是植物根系研究中常用的最古老方法。挖土塊法是在傳統挖掘法的基礎上發展起來的,主要是通過挖掘一定體積土塊,然後將含有根系的土壤全部收集到一定容器內,放人孔篩或尼龍網袋中用水沖洗,將沖洗出來的根進行分離、烘乾、稱重,從而獲得一定土體的根系生物量。挖土塊法幾乎適用予所有的研究,因為它能同時獲得植物的粗根和細根,只要條件允許就可以挖掘到任何想要的土樣。該方法廣泛適合於農田、草地、森林等多類生態系統,但土塊大小需要隨生態系統或物種的不同進行實時調整。挖土塊法如果取樣點選擇科學,並有足夠的重復數,可以獲得可靠的直接觀測數據。同時,該法操作簡單,不需要專門儀器,是目前草地生態系統研究中使用最多的方法。但該方法存在以下缺點:(1)土塊的挖掘和處理需要大量的人力;(2)對土塊的挖掘及輸出會對土壤和植被造成嚴重破壞;(3)在實際操作中易受土壤體積和土表面積的限制,同時由於工作量的制約,往往很難達到理想的采樣重復數,使測定結果達不到該方法應有的可信度;(4)由於是破壞性取樣,故不適合做時間上的動態觀測研究。挖掘收獲法的共同特點是:實地測定,數據相對可靠,但是測定過程中需要高強度的勞動,且對實驗地的破壞很大。基於挖掘收獲法存在的缺陷,很多新方法在努力彌補這些不足中獲得發展。
1(2鑽土芯法,由於挖掘收獲法費時耗力以及重復次數的限制,人們開始嘗試使用某些工具來達到對測定方法的改進。經過幾十年的鑽研和嘗試,20世紀60年代土鑽被正式開始使用進行植物地下生物量的測定[1引,這類方法被稱為鑽土芯法。該法是利用土鑽採集土樣,從而達到對植物地下生物量的測定。土樣的處理過程同挖土塊法。此法最主要的工具是土鑽。土鑽的直徑和取樣重復數,根據植物根分布特點、異質性及取樣頻度和要求精度等具體實驗情況進行選擇。適宜鑽徑的選擇對實驗成功十分重要,目前,對於土鑽適宜直徑的選擇和各直徑下對應的取樣次數的確定還沒有統一的標准,在不同類型生態系統中使用的變換參數也缺乏明確的規定,一般情況下大多採用7,10cm的鑽徑且每個取樣點取樣不得低於4鑽。鑽土芯法繼承了挖土塊法的優點,同時較挖土塊法取樣迅速、簡便、容易、覆蓋面積大,由此減少了環境異質性誤差,測定結果更為精確,對土壤和植被的破壞也輕於挖土塊法,是研究森林生態系統細根及草地、農田等生態系統地下部分的較好方法。但在使用時要注意根據實驗地具體情況選擇適當的鑽徑和取樣次數,否則容易造成數據代表性降低甚至缺失。考慮到鑽土芯法在取樣成本和實驗地保護方面的絕對優勢,建議在草地生態系統研究中推廣使用此法。
『玖』 如何利用地上生物量求出地下生物量
喬木層器官生物量:徑階等比標准木法,每五年一次,分別干、枝、葉、花果、根。喬木層的生物量是森林群落生物量的最重要組成,對其的准確測定對於研究森林生長和森林生態系統的生產力有重要作用。本標准規定了森林喬木層生物量的徑階等比標准木
『拾』 可以利用NDVI計算生態系統的植被生物量么
植被指數(NDVI)能夠應用在檢測植被生長狀態、植被覆蓋度和消除部分輻射誤差等,其主要應用如下:1、運用NDVI植被指數進行草地長勢監測;2、社會-生態系統種動態等級結構研究; 3、通過地球觀測衛星獲得地面真實數據; 4、雜草覆蓋繪圖;5、作物產量/密度估計;6、用NDVI 判斷植物生長的狀態:植物葉綠素發生光合作用而吸收紅光,所以長勢越好的植物吸收紅光越多,反射近紅外光也越多。所以NDVI能反應植物生物量的多少,NDVI越大,植物長勢越好。 7、NDVI可用於林火監測,彌補了地理信息系統難以隨時更新的數據不足,排除了雲體對床干起的干擾,提高了森林火災監測的准確性,及時性和可靠性。