1. 生物技術手段在中葯中的應用和能解決的問題
組織培養培養出人參等貴重葯材,可以做到短期得到大量人參。還有能避免了一些珍稀葯草的絕種。
2. 請列舉生物學應用的領域
目前比較有很大前景的生物學應用的領域有幾點:
1、生物醫葯。這是生物技術最重要的應用領域了,相對也比較成熟。比如利用基因工程開發的DNA分子探針來檢測疾病,單克隆抗體,利用發酵工程製造葯物(比如青黴素以前要直接提取,產率很低,價格也很高。自從有了發酵工程,你看,大家都在濫用抗生素)。
2、生物農業。例子有轉基因食品等。在這里我要特別說明,轉基因食品不可怕,它的上市都是經過嚴格的檢測的。而且轉基因的食品,它的基因是人為導入的,是完全可控的。相比較而言,袁隆平的雜交水稻完全是自然突變的結果,你根本不知道它有幾個基因突變了、突變成了什麼樣子,從原理上說比轉基因的潛在風險要大得多,何況雜交水稻一般還沒有經過那麼嚴格的檢測。另外,網上有傳言說國外利用轉基因食品來控制中國人的基因,這完全是開國際玩笑。 人類進化幾百萬年來,至少吃進去了幾十億個來歷不明的基因,從來沒聽說過有人吃了魚就會潛水、吃了天鵝就會飛的。確實,不同物種間會存在水平基因轉移,但是這種事情發生的概率比你連續中10次500萬彩票大獎的概率高不了多少,而且即使基因到你體內了,產生作用的概率則更小。基因工程最大的難題就是基因轉進去了不起作用,你隨便吃一口還就起作用了豈不是太令我們科學家汗顏了?
3、生物能源。應該說這個領域還沒有取得突破性進展,但是也很熱門了,比如說人工模擬光合作用、生物電池等。
4、生物計算機。這個研究的人相對較少,國內好像也就上海交大和生物物理所在研究。但是我很看好。與此相關的還有生物感測器、生物電路、分子馬達等。
5、基礎理論的研究。現在DNA剪切、細胞融合、PCR、色譜、核磁共振、質譜、電泳、層析柱等技術都已經成為生命科學研究的重要手段。可以說,現在生命科學的研究已經「科學」和「技術」不分家了。
傳統上的生物學應用的領域有:養殖業,種植業,園藝,食品製造,飼料的加工,環保。。。很多很多!
3. 生物技術在制葯上的應用
生物葯物是指運用微生物學、生物學、醫學、生物化學等的研究成果,從生物體、生物組織、細胞、體液等,綜合利用微生物學、化學、生物化學、生物技術、葯學等科學的原理和方法製造的一類用於預防、治療和診斷的製品。生物葯物原料以天然的生物材料為主,包括微生物、人體、動物、植物、海洋生物等。隨著生物技術的發展,有目的人工製得的生物原料成為當前生物制葯原料的主要來源。如用免疫法製得的動物原料、改變基因結構製得的微生物或其它細胞原料等。生物葯物的特點是葯理活性高、毒副作用小,營養價值高。生物葯物主要有蛋白質、核酸、糖類、脂類等。這些物質的組成單元為氨基酸、核苷酸、單糖、脂肪酸等,對人體不僅無害而且還是重要的營養物質。生物葯物的陣營很龐大,發展也很快。
目前全世界的醫葯品已有一半是生物合成的,特別是合成分子結構復雜的葯物時,它不僅比化學合成法簡便,而且有更高的經濟效益。
半個世紀以來微生物轉化在葯物研製中一系列突破性的應用給醫葯工業創造了巨大的醫療價值和經濟效益。微生物制葯工業生產的特點是利用某種微生物以「純種狀態」,也就是不僅「種子」要優而且只能是一種,如其它菌種進來即為雜菌。對固定產品來說,一定按工藝有它最合適的「飯」—培養基,來供它生長。培養基的成分不能隨意更改,一個菌種在同樣的發酵培養基中,因為只少了或多了某個成分,發酵的成品就完全不同。如金色鏈黴菌在含氯的培養基中可形成金黴素,而在沒有氯化物或在培養基中加入抑制生成氯化的物質,就產生四環素。葯物生產菌投入發酵罐生產,必須經過種子的擴大制備。從保存的菌種斜面移接到搖瓶培養,長好的搖瓶種子接入培養量大的種子罐中,生長好後可接入發酵罐中培養。不同的發酵規模亦有不同的發酵罐,如10噸、30噸、50噸、100噸,甚至更大的罐。這如同我們作飯時用的大小不同的鍋。
我們吃的維生素、紅黴素、潔黴素等,注射用的青黴素、鏈黴素、慶大黴素等就是用不同微生物發酵製得的。醫葯上已應用的抗生素絕大多數來自微生物,每個產品都有嚴格的生產標准。預測生物制葯的研究進展,它將廣泛用於治療癌症、艾滋病、冠心病、貧血、發育不良、糖尿病等多種疾病。
4. 生物技術育種的主要方法有哪些,技術手段有哪些
折疊一、誘變育種
誘變育種
誘變育種
誘變育種是指利用人工誘變的方法獲得生物新品種的育種方法。(這句話在中學領域來說應該是完全正確的,已經查閱相關資料。)其原理是基因突變。人工誘變的方法包括:物理方法(X射線、射線、紫外線、中子、激光、電離輻射等)、化學方法(鹼基類似物、硫酸二乙酯、亞硝酸、秋水仙素等)。所處理的生物材料必須是正在進行細胞分裂的細胞、組織、器官或生物。處理的時期是細胞分裂的間期。(這句話主要是針對中學生,為了讓學生能夠更好的理解;主要是考慮到學生從「細胞分裂知識」理解。)經處理的生物材料經選擇、培育才能獲得需要的生物新品種。該方法的優點是可以提高突變頻率,創造出人類需要的生物類型。缺點是必須處理大量的實驗材料。
優點:變異頻率高,育種技術簡單,速度快,可大幅度改良某些性狀;變異范圍廣。
局限性:誘發突變的方向難以掌握,誘變體難以集中多個理想性狀。要想克服這些局限性,可以擴大誘變後代的群體,增加選擇的機會。
折疊二、雜交育種
雜交育種
雜交育種
雜交育種是指利用具有不同基因組成的同種(或不同種)生物個體進行雜交,獲得所需要的表現型類型的育種方法。其原理是基因重組。過程為:用具有相對性狀的純合體作親本雜交獲得子一代,子一代自交(動物則用具有相同基因型的雌雄個體雜交)獲得子二代,從子二代中選擇符合要求的表現型個體。如果需要的表現型是隱性性狀育種就此結束,如果需要的表現型是顯性性狀則用子二代中選出的個體進行連續自交(動物同前),直至獲得能穩定遺傳的類型為止
優點:可定向培養需要的品種,操作簡單易懂。
不足:周期長,不能產生新性狀,工作量大。
折疊三、單倍體育種
單倍體育種是利用花葯離體培養技術獲得單倍體植株,再誘導其染色體加倍,從而獲得所需要的純系植株的育種方法。其原理是染色體變異。優點是可大大縮短育種時間;缺點是技術復雜,需要雜交育種配合。
優點:可縮短育種年限,並可得到純合子植株,保持後代性狀的穩定性,使得到人們所希望的品種.
不足:技術復雜,成本大
四、多倍體育種
原理:染色體變異(染色體加倍)
方法:秋水仙素處理萌發的種子或幼苗。
折疊五、細胞工程育種
細胞工程育種是指用細胞融合的方法獲得雜種細胞,利用細胞的全能性,用組織培養的方法培育雜種植株的方法。
物質基礎是:所有生物的DNA均由四種脫氧核苷酸組成。其結構基礎是:所有生物的DNA均為雙螺旋結構。一種生物的DNA上的基因之所以能在其他生物體內得以進行相同的表達,是因為它們共用一套遺傳密碼。在該育種方法中需兩種工具酶(限制性內切酶、DNA連接酶)和運載體(質粒),質粒上必須有相應的識別基因,便於基因檢測。如人的胰島素基因移接到大腸桿菌的DNA上後,可在大腸桿菌的細胞內指導合成人的胰島素;抗蟲棉植株的培育;將固氮菌的固氮酶基因移接到植物DNA分子上去,培育出固氮植物
5. 關於生物技術的應用和原理
http://wyclv.blogchina.com/
生物技術及應用
一、生物技術的產生與發展
生物技術作為一種高新技術,是70年代初伴隨著DNA重組技術和淋巴細胞雜交瘤技術的發明和應用而誕生的。三十多年來,生物技術的飛速發展為醫療業、制葯業、農業、畜牧業、環保業的發展開辟了廣闊的前景,極大地改善了人們的生活。因此,世界各國都把生物技術確定為21世紀科技發展的關鍵技術和新興產業。
我國生物技術產業自20世紀80年代初起步以來,廣泛應用於醫葯、農業、食品、環保、輕化工、能源等領域。從事生物技術產品開發的企業,如雨後春筍不斷涌現。從1985年到2000年,產品銷售額增加了75.99倍,平均每年增長3358%。2000年我國生物技術產業產值已達200億元。尤其是基因工程制葯產業發展迅猛,1996年基因工程葯物和疫苗銷售額為2.2億元,2000年達到22.8億元,平均每年增長79.42%。近年來生物技術產業的年均增長率一直保持在20%以上。
全國涉及現代生物技術的企業約500家,從業人員超過5萬人,其中涉及醫葯生物技術的企業300多家,涉及農業生物技術的200多家,一些生物技術的新建公司正在崛起,每年增加近100家新公司。北京、上海、福州、廣州、深圳等地已建立了20多個生物技術園區,出台了一些優惠政策,在稅收、金融、人才引進、進出口等方面對生物技術企業給予全面支持,目前已經培育了一大批新企業,在中國生物技術發展中起著龍頭帶動作用。
隨著中國乃至全世界范圍內生物技術產業的迅猛發展,對生物技術人才的需求也將日益增多。
二、培養目標
本專業面向二十一世紀,培養具有生物技術與工程方面的基礎理論、基本知識、基本技能,能在生物技術與工程領域從事設計、生產和管理的高級工程技術人才。
通過學習,畢業生具體獲得以下幾方面的知識和能力:
1. 具備扎實的數學、化學、生物等基本理論和基礎知識;
2. 掌握有機化學、分析化學、生物化學、分子生物學、微生物學、基因工程、發酵工程及細胞工程等方面的基本理論、基本知識和基本技能;
3. 了解相近專業的一般原理和知識;
4. 熟悉國家生物技術產業政策、知識產權及生物工程安全條例等有關政策和法規;
5. 了解生物技術的理論前沿、應用前景和最新發展動態以及生物技術產業發展狀況;
6.具有創新意識和獨立獲取新知識的能力。
三、主要課程
無機化學、有機化學、物理化學、分析化學、生物化學、化工原理、化學工程與技術、微生物學、分子生物學、生化工程、生物工藝學、生物工程、發酵設備、計算機應用等。
四、學制:三年
五、就業方向
專科畢業生的去向有兩類:一類是可以繼續上本科深造;一類是就業。因為生物技術涉及的產業面廣,包括:生物制葯(製取各種細胞因子類、核酸類、抗生素類、中葯類的葯物等),生物發酵(製取各種保健品、功能性食品、酶制劑、化學品等),生物材料(生產各種骨科康復、器官再造、生物可降解材料等),化工生產(生產生物可再生燃料、各種溶劑、精細化工產品、化學合成中間體等)…,因此,本專業培養的實用型、應用型的技術和管理人才的就業面廣,應聘機會多,可供選擇的去向具有多樣性。
六、專業前景
生物技術是當今最基礎、最前沿、應用最廣泛、發展前景最廣闊的學科之一.隨著我國社會的發展和經濟的增長,當前面臨的諸多問題(如農業、食品、醫葯、環境等)都有賴於生物技術來解決.在我國全面對外開放,特別是加入WTO之後的新形勢下,發展生物技術對於加速我國的產業結構升級,提升我國的綜合國力有著重要的意義。
我國政府十分重視對生物技術的研究和開發應用,投入大量資金資助生物技術的研究和產業化,1996―2000年我國政府在生物技術領域投入15億元,這只是啟動生物技術部門的大計劃的一個部分。2000―2005年計劃在該領域再投入 50 億元。同時,國家實施的"863"計劃、國家計委的高科技示範工程項目等均把生物技術列為優先發展的科技領域和高技術產業,並取得了顯著的成績。
現代生物技術的原理及應用
[知識介紹]
生物工程是生物科學與工程技術有機結合的一門綜合性學科.它包括基因工程,細胞工程,發酵工程,酶工程等.生物工程就是對生物有機體在分子水平,細胞水平,組織水平和個體水平上進行不同層次的創造設計,從而使人類進入改造和創建新的生命形態的時代.這里,我們主要介紹基因工程和細胞工程.
基因工程
我們常說基因是生物體進行生命活動的'藍圖',這是因為生物體可以通過基因控制蛋白質的合成,來表現出生物性狀並完成各項生命活動.那麼,人們能不能改造生物體的基因,定向地改變生物的遺傳特性呢 比如對基因進行重新組合,讓禾本科的植物也能夠固定空氣中的氮,讓細菌"吐出"蠶絲,讓微生物生產人的胰島素,干擾素等.科學家通過努力,在20世紀70年代創立了能夠定向改造生物的技術——基因工程.
基因工程是在DNA分子水平上進行設計施工的.
基因操作的基本步驟
(1)提取目的基因.如植物的抗病基因,人的胰島素基因,干擾素基因
(2)目的基因與運載體結合.將切下的目的基因的片段插入運載體—細菌質粒的切口處,質粒與目的基因形成一個重組DNA分子.
(3)將目的基因導入受體細胞.用人工的方法將體外重組的DNA分子轉移到受體細胞.
(4)目的基因的表達.重組DNA分子進入受體細胞後,目的基因控制蛋白質合成,表現出特定性狀.
以人干擾素基因作為目的基因,通過轉基因工程,目的基因在酵母中表達為例.見下圖:
轉基因技術的應用
在農牧業,食品工業上的應用
例如:
①工業生產干擾素.
干擾素是病毒侵入細胞後產生的一種糖蛋白,由於干擾素幾乎能抵抗所有病毒引起的感染,如水痘,肝炎,狂犬病等,所以它是一種抗病毒的特效葯.1980年,科學家用基因工程方法在大腸桿菌及酵母菌細胞內獲得了干擾素.從1987年開始,用基因工程方法生產的干擾素進入了工業化生產階段,並且大量投放市場.
②培育高產,穩產和具有優良品質的農作物.
1981年,科學家將菜豆儲藏蛋白的基因轉移到向日葵中,培育出了"向日葵豆"植株.如果以此作為技術基礎,把大豆蛋白的基因轉移到水稻,小麥等糧食作物中,就可以提高這些作物的蛋白質含量,改善它們的品質.
③培育具有各種抗逆性的作物新品種.
1982年,科學家把細菌中的抗卡那黴素基因轉移到煙草,向日葵和胡蘿卜等作物中,一舉獲得成功.此後短短的幾年中,科學家又培育出了數十種具有抗病毒,抗蟲,抗除草劑的作物新品種.
在醫葯衛生事業上的應用
例如:
①基因治療:
把健康的外源基因導入有基因缺陷的細胞中,以達到治療疾病的目的.常用的基因治療手段如下:目的基因與病毒重組,目的基因被包裝入病毒顆粒中,隨著受體細胞被感染,缺失的基因得以彌補,表達出目的基因的產物.目前在遺傳性疾病的基因治療方面,主要還是研究單基因缺陷型遺傳病.由於上述方法是針對體細胞的,故不會代代相傳,不會嚴重改變人群中有關基因的遺傳平衡.
②基因診斷:
用放射性同位素,熒光分子等標記的DNA分子作探針(DNA探針:特定的DNA片段),利用DNA分子雜交原理,鑒定被檢測標本上的遺傳信息,從而達到檢測疾病的目的.例如,肝炎病毒引起的傳染病易於傳播,給診斷和治療帶來了很多困難,利用DNA探針可以迅速地檢出肝炎患者的病毒,為肝炎的診斷提供了一種快速,簡便的方法.
③基因檢測:
據報道,用DNA探針可以檢測飲用水中病毒的含量.具體的方法是使用一個特定的DNA片段製成探針,與被檢測的病毒DNA雜交,從而把病毒檢測出來.此方法的特點是快速,靈敏.
二,細胞工程
細胞工程是指運用細胞生物學和分子生物學的原理和方法,通過某種工程學手段,在細胞整體水平或細胞器水平上,按照人們的意願來改變細胞內的遺傳物質或獲得細胞產品的一門綜合科學.
生物工程涉及的領域相當廣泛,就其技術范圍而言,大致有細胞融合技術,細胞拆合技術,染色體導入技術,胚胎移植技術,克隆技術等.
1,細胞融合技術
細胞融合技術是把兩個細胞在融合劑的作用下,融合成一個雜種細胞的技術.植物細胞融合時,要先用纖維素酶去掉細胞壁,獲得原生質體後再進行融合.
科學家用植物體細胞雜交的方法,將番茄的原生質體和馬鈴薯的原生質體融合,成功地培育出了"番茄—馬鈴薯"雜種植株,以後又培育出了新的品種,例如:白菜—甘藍,胡蘿卜—羊角芥等.不僅如此,科學家在不同種類的動物之間或動物與人的細胞之間也進行了融合,形成了雜種細胞,例如:人—鼠,鼠—兔等.
克隆技術
克隆的實質是無性繁殖,即:不經過生殖細胞的結合,由母體直接產生新個體的生殖方式.時至今日,克隆的含義不僅僅是無性繁殖,只要是一個細胞通過培養,獲得兩個以上的細胞,細胞群或生物體的方式,都稱之為克隆.
克隆技術的理論基礎—全能性
細胞全能性:已經分化的細胞,仍然具有發育的潛能.即,已分化的細胞仍然具有發育成為完整植株的能力.
多細胞生物,一般是由一個受精卵經過有絲分裂而來.所以,生物體的每一個細胞與受精卵的基因都是一樣的.也就是說,生物體的每一個細胞都含有本物種所有的整套遺傳物質,都有發育成完整個體所必需的全部基因.
2)克隆技術的應用
動物克隆:
以"多莉"羊的產生為例,步驟如下:
⒈核移植形成重組細胞.將A羊乳腺細胞的核移植到B羊去核的卵細胞內,形成一個重組細胞.
⒉胚胎移植.將重組細胞在體外進行培養,形成早期胚胎後植入C羊的子宮內.
⒊"多莉"羊出生.
組織培養:
植物組織培養的大致過程是:在無菌條件下,將器官或組織(如芽,莖尖,根尖或花葯)的一部分切下來,放在適當的人工培養基上進行培養,最初,這些器官或組織經過細胞分裂與去分化(從分化狀態變為未分化狀態),形成愈傷組織.之後,在適合的光照,溫度和一定的營養物質與激素等條件下,愈傷組織便開始分化,產生出植物的各種組織和器官,進而發育成一棵完整的植株.
植物組織培養不僅從植物上取材少,培養周期短,繁殖率高,而且便於自動化管理.目前,這項技術已經在花卉和果樹的快速繁殖,培育無病毒植物等方面得到了廣泛的應用.例如:用一個蘭花莖尖就可以在一年內生產出400萬株蘭花苗.又如:長期進行無性繁殖的植物,體內往往會積累大量的病毒,從而影響植物的產量或觀賞價值.研究發現,這些植物只有根尖和莖尖中不含病毒.因此,人們用莖尖進行組織培養,就得到了多種植物(如馬鈴薯,草莓,菊花)的無病毒植株,取得了可觀的經濟效益.
[習題選編]
白菜—甘藍雜交後產生的植株一般是不育的,但是,科學家發現,極少數的雜交植株能產生種子,原因是:
參考答案:染色體數目加倍
2,能克服遠源雜交的不親和技術是 ( )
A,組織培養 B,動物胚胎移植 C,細胞融合 D,單倍體育種
解析:植物組織培養的優勢能夠提高自然繁殖率比較低的名貴花卉,瀕危物種等的無性繁殖率.動物胚胎移植能夠提高動物的繁殖率.單倍體育種可以加快育種的進程.細胞融合能夠克服遠源雜交的不親和性
3,下列選項中,沒有採用植物組織培養技術的一項是 ( )
A,花葯的離體培養得到的單倍體植株.
B,秋水仙素處理萌發的種子或幼苗得到多倍體植株
C,基因工程培育抗棉鈴蟲的棉花植株
D,細胞工程培育"番茄—馬鈴薯"雜種植株.
參考答案:B
4,英國科學家維爾莫特首次用羊的體細胞(乳腺細胞)成功地克隆出一隻小羊,取名為"多莉",以下四項中與此方法在本質上最相近的是 ( )
A,兔的早期胚胎分割後,分別植入兩只母兔子宮內,並最終發育成兩只一樣的兔.
B,將人的抗病毒基因嫁接到煙草的DNA分子上,培育出具有抗病毒能力的新品種.
C,將鼠骨髓瘤細胞與經過免疫的脾細胞融合成雜交瘤細胞.
D,將人的精子與卵細胞在體外受精,待受精卵在試管內發育到囊胚期時,再植入女性子宮內發育成"試管嬰兒"
參考答案:A
5,下列哪項技術與"試管嬰兒"無關 ( )
A,體外受精 B,動物胚胎移植 C,基因轉移技術 D,組織細胞培養技術
參考答案:C
6,細胞在分化過程中往往由於高度分化而完全失去再分裂的能力.最終衰老死亡,但機體在發展適應過程中.保留了一部分未分化的原始細胞,稱之為幹細胞.一旦需要,這些幹細胞按照發育途徑通過分裂而產生分化細胞,以保證局部組織損傷的修復.根據以上材料,回答下列問題:
(1)人工獲得胚胎幹細胞的方法是:將細胞核移植到去核的卵細胞內,經過一定的處理使其發育到某一時期,從而獲得胚胎幹細胞."某一時期"最可能是 ( )
A,受精卵 B,八細胞胚 C,囊胚 D,原腸胚
(2)根據分裂潛能,幹細胞可分為全能幹細胞(可發育成完整的個體),多能幹細胞(可發育成多種組織和器官)和專能幹細胞(發育成專門的組織和器官),則這些細胞在個體發育中的分化順序是 ( )
A,全能—專能—多能 B,全能—多能—專能
C,多能—全能—專能 D,專能—全能—多能
(3)在全能幹細胞的發育過程中,皮膚由 胚層發育而來,眼睛由 胚層發育而來,神經系統由 胚層發育而來.
(4)個體發育過程中最原始的幹細胞是
(5)幹細胞在臨床上應用的最大優點是移植器官和患者之間無 反應.
(6)談談你對幹細胞研究的看法.
參考答案:(1)C (2)B (3)外和中 外 外 (4)受精卵 (5)排異
(6)幹細胞研究對人類治療疾病有很大幫助.例如:利用幹細胞克隆器官,用於器官移植;利用幹細胞修復損傷的器官等.但是,如果幹細胞研究用於克隆人,則會帶來嚴峻的社會倫理問題,必須嚴肅制止.
7,近幾千年來,生命科學的發展日新月異,層出不窮,生物學的觀點不斷更新或面臨挑戰或得到補充完善.
資料一:20世紀80年代,美國生物學家奧爾等曼和切赫研究和發現了RNA的催化功能,由此他倆獲得了1989年的諾貝爾化學家獎.
資料二:1996年英國蔓延的"瘋牛病"成為國際社會關注的焦點.引起病牛病的病原體是一種能致病的蛋白質,它不含核酸,我們稱之為朊病毒,美國生物學家普魯辛納就是由於研究朊病毒做出的卓越貢獻,而獲得了1997年度諾貝爾醫學生理學獎.
資料三:1997年英國的克隆羊"多莉"的誕生轟動了全球.克隆羊"多莉"是英國的威爾穆特博士領導的研究小組將高度分化的成年綿羊乳腺細胞核移植到去核的卵細胞中培育成功的.
根據你所了解的生物學知識,上述的三則資料內容對哪些原有的生物學觀點提出了挑戰或補充完善 請用簡短的文字加以說明.
參考答案:
生物催化劑酶都是蛋白質,但RNA催化功能的發現,說明酶不一定都是蛋白質,RNA也具有
酶的功能.
以前人們認為核酸是一切生物的遺傳物質,但朊病毒這種病原體不含核酸,卻能導致"瘋牛病",
說明除了核酸外,還應該存在其它的遺傳物質.
原來人們認為已高度分化的成體動物的體細胞已失去了全能性,克隆羊的成功,說明了高度分
化的成年動物體細胞仍然具有全能性.
8,科學家發現,人們長期接觸2,4-D(人工合成的生長素類似物)患某種癌症的可能性要遠遠高於未接觸者.美國科學家從一種細菌的DNA中分離得到了能降解2,4-D的基因,將其轉移到另一種細菌細胞內,獲得了能高效降解2,4-D的轉基因菌.據此回答:
(1)2,4-D能促進雙子葉植物生長又能殺死雙子葉植物的原因是
.
(2)該轉基因菌能表現也降解2,4-D的性狀並能代代相傳,所遵循的生物學原理是
.
(3)人們在生產上不直接應用最早發現的具有降解基因的細菌,而是培育和應用轉基因
菌來降解2,4-D的可能原因是:轉基因菌與原細菌相比有如下特點:
.
參考答案:
生長素低濃度促進植物生長,高濃度抑制甚至殺死植物.
基因的功能:通過復制實現遺傳信息的傳遞.通過控制蛋白質合成實現遺傳信息的表達.
高效性
9,花葯離體培養也屬於植物的組織培養,它培育出的植株是 倍體,其染色體數目比原物種 .香蕉的組織培養形成的幼苗是 倍體.其性狀與親本相比 ,培養基的作用是 .植物的組織培養之所以能夠獲得成功,是因為細胞具有 性,即植物細胞含有的遺傳信息與胚細胞 ,只要條件適合,就可發育成完整的植株.
分析:花葯離體培養是通過植物的花粉培育出完整的植株,花粉是經過減數分裂形成的,其染色體數目減半.香蕉是利用莖尖作為外植體,莖尖細胞屬於體細胞,其染色體數目與親本一致.
參考答案:
單 減半 三 一致 提供營養和激素等物質 全能 相同
10,2000年11月,"廣東集愛"診療中心投入運作,標志著試管嬰兒技術落戶到了廣州.
(1)培育試管嬰兒屬於 生殖方式.
(2)胚的發育過程是指從 發育到 階段,場所是 .
(3)後期要繼續把胚胎移植入婦女的子宮內繼續發育的原因是
.
參考答案:
(1)有性 (2)受精卵 胚 前期是體外(試管),後期是子宮
(3)胚的發育需要一定的條件,如溫度,激素,營養,氣體濃度等,而子宮具有所有胚發育的所需條件,是胚發育的最佳場所.
11,閱讀下列材料.回答問題:
2002年1月30日《科學時報》報道 美國科學家維爾法伊領導的一個小組發現,
成年人骨髓中存在著一類幹細胞.可以在培養液中無限期地生長,與胚胎幹細胞極其相
似.其中的一部分細胞系在生長近兩年後,特性依然保持完好,無任何衰老跡象.研究
人員將這些細胞稱為"多能成體祖細胞'.
此前也有一些實驗室和生物技術公司發現,成人的皮膚,肌肉和骨髓中存在著能
形成其他組織細胞的幹細胞.研究人員稱.從理論上講"多能成體祖細胞"在一定的條
件下 應該能夠形成心肌,大腦,肝臟,皮膚和各類神經細胞.
(1)如果在培養液中培養的"多能成體祖細胞"己傳至60代 那麼 這種細胞的遺傳物質與成年人骨髓中的幹細胞的遺傳物質( ).
A.全部相同 B.全部不同 C.大部分相同 D.大部分不同
(2)為大面積燒傷病人植皮,最好選用( )的幹細胞培育的皮膚細胞.
A.患者本人 B.父母 C.子女 D.配偶
(3)在一定的條件下,"多能成體祖細胞"形成心肌,大腦,肝臟,皮膚和各類神經細胞需通過 和 完成.
參考答案:(1).C(2).A:(3).細胞分裂;細胞分化
12,在細胞工程——原生質體融合育種技術中 .
(1)其技術的重要一環就是要將營養細胞的細胞壁除去,通常採用的方法是 .
(2)在不破壞植物細胞結構的前提下,可以用光學顯微鏡觀察植物細胞的細胞膜,請問如何操作才可以在光鏡下觀察到細胞膜 .
參考答案:
(1)用纖維素酶去除細胞壁
(2)當細胞液的濃度小於外界溶液的濃度時;活的成熟的植物細胞通過滲透作用失去水分;原生質層逐漸與細胞壁分離開來,這樣便可在光學顯微鏡下清晰的觀察到原生質層最外面的細胞膜
13,中國青年科學家陳大炬成功地把人的抗病毒干擾基因"嫁接"到煙草的DNA分子上,可使煙草獲得抗療毒的能力,形j#轉基因產只,試分析回答:
(1)人的基因之所以能接到植物體內去,原因是 .
(2)煙草具有抗病毒能力,這表明煙草體內產生了 .這個事實說明,人和植物共用一套 .
(3)該工程在農業,醫葯等方面已取得了許多成就,請你說出三個具體實例
.
參考答案:
(1)人與植物DNA結構組成相同(2)抗病毒干擾素;遺傳密碼
(3)將抗病毒基因嫁接到水稻中,形成抗病毒水稻新品種;將人的血型基因移入到豬體內,培育出人血的豬:將干擾素基因移入細菌體內,培育出能產生干擾素細菌
14,人類基因組計劃的目標是繪制四張圖,其中一張圖用遺傳單位表示基因間的距離,另一張圖用核著酸數目表示基因間的距離,一張圖顯示染色體上全部DNA上約30億個減基對的排列順序,還有一張是基因轉錄圖.這四張圖組成了不同層次的,最終為分子水平的人類"解剖圖",它揭開了決定人類生.老.病.死的所有遺傳信息——基因組之謎,將成為人類認識自我的用之不竭的知識源泉.
國際人類基因組計劃合作組織.美國塞萊拉遺傳信息公司.美國(科學)雜志和英
國(自然)雜志於2m1年2月門日聯合宣布:由科學家提供的初步分析中,格外引人關
注的是:原來預計多達10萬多個的人類基因總數被最終確定為3萬個左右,而與蛋白質
編碼無關的非編碼區的減基對序列卻達人類基因組序列的97%之多.
請根據以上材料回答下列問題:
(1)"人類基因組計劃"需要測定人類的24個染色體的基因和減基順序,試指出哪24個染色體 .
(2)你認為完成"人類基因組計劃"有哪些意義 .
.
參考答案:
(l)22條常染色體和XY兩條性染色體(2)①有利於疾病的診斷和治療 ②有利於研究生物進化③有利於培育優良的高等動植物品種 ④有利於研究基因表達有調控機制
6. 現代生物技術現實生活中有哪些具體應用
1、越來越多的現代生物技術公司開發家畜醫療產品。美國的動物保健品市場每年約40億美元。美國農業部批準的動物生物製品約100種,主要是預防動物傳染病和常見疾病的疫苗和治療葯物。
2、現代生物技術還應應用於保護珍稀野生動物,通過DNA鑒定鑒定動物物種,跟蹤其活動區域等。
海洋生物技術的應用導致了過度捕撈對海洋生物生存的威脅。同時,為人類從豐富的海洋生物資源中發現新葯提供了途徑。例如,海螺中的毒素是一種有效的鎮痛劑,海綿可以用作抗感染劑。
3、現代生物技術在航天發展中的應用,可以為宇航員提供長期太空探索所必需的生命支持環境。
4、現代生物技術還被用於人類考古學和刑事調查,DNA分析可用於研究人類種群的進化史。DNA技術在刑事偵查中的應用可以幫助執法人員識別犯罪分子。
(6)生物技術在中葯育種的運用有哪些擴展閱讀:
現代生物技術是一個復雜的技術群體。基因工程只是現代生物技術的代表之一,其特點是在分子水平上創造或改變生物類型和生物功能。
此外,在染色體、細胞、組織、器官甚至個體有機體的層面上,創造或改變生物類型和功能的工程,如染色體工程、細胞工程、組織培養和器官培養、定量遺傳工程等,都可以因此,這屬於現代生物技術的范疇。
為這些項目服務的一些新技術系統,如現代發酵工程、酶工程、生物反應器工程,也被納入現代生物技術系統。
7. 生物技術在農業領域的應用主要有哪些方面
1、生物菌能增加土壤肥力。2、生物均能有益抑制土壤有害菌活性。3、有益菌可活化土壤。4、生物農葯對環境友好、無污染。5、生物育種。6、轉基因技術提高作物抗性。7、改善糧食品質。8、提高糧食產量。
8. 現代生物技術在葯用植物產業的應用前景有哪些
葯用植物以其獨特的療效、較小的毒副作用等特點,引起世界各國的普遍關注,其需求量日漸增多。中葯有效成分是其具有確切臨床療效的物質基礎。葯效物質的有無(真偽)、多寡(優劣)是其品質的核心部分。但是由於植物葯成分復雜、葯效物質不明確、來源不一,且不同制劑工藝各異,造成質量難以控制,加之植物葯材的造假問題也很突出,這些都阻礙了葯用植物產業的發展。同時由於自然環境的破壞以及人們長期的過度採挖和濫用,使很多的原料性葯用植物資源已面臨枯竭的威脅,野生資源遠遠不能滿足人們的需要。
因此,應對保障與提升重要葯用植物品質的國家需求,以及中葯野生資源短缺、品質嚴重退化的嚴峻形勢,就需要更好地開發利用葯用植物資源,改良和提升其品質,加大工業化生產力度,提高葯效物質產量以滿足市場需求,同時加大對野生資源的保護力度,使其更好地、可持續地為人類所用。
葯用植物開發利用過程中存在種類和數量不清、種質資源保存困難、野生資源遭受嚴重破壞、人工栽培品種品質退化等諸多問題,嚴重製約了產業發展。如何有效對葯用植物資源進行分類鑒定,保護瀕危和緊缺資源修復和再生,防止退化和滅絕,以實現保障葯材可持續供應,提升葯材質量,是現代葯用植物開發領域最亟需解決的課題,也是中醫葯產業實現現代化、國際化的關鍵措施。
葯用植物傳統分類和鑒別方法主要依據葯材顏色、形狀、氣味、味道和質地等感觀特徵,其不足之處在於對這些特徵的把握因人而異,具有很強的主觀性,且強調經驗積累,准確性不強,得不到國際同行的廣泛認可。因此如何從分子水平揭示種質間差異成為研究者十分關心的問題。現代生物技術為葯用植物種質鑒定開辟了一條新道路。
DNA分子標記(DNA molecular markers)是以脫氧核糖核酸分子差異為基礎的一種標記,一般具有快速、微量、特異性強、穩定性好、結果直觀可靠且不受生育階段、供試部位、環境條件、貯藏等因素的影響等諸多優點[1]。
DNA分子標記在葯用植物研究中的應用最先開始於日本。應用最早且最多的是葯材的真偽鑒定及品種分類。較早的DNA分子標記技術有限制性內切酶片段長度多態性標記(restriction fragment length polymorphism,RFLP)和隨機擴增多態性DNA標記(random amplified polymorphic DNA,RAPD)。隨著生物技術的發展,更加高效、快捷的DNA分子標記如擴增片段長度多態性標記(amplified restriction fragment polymorphism,AFLP)、簡單序列重復標記(simple sequence repeat,SSR)、序列特徵化擴增區域(sequence charactered amplified region,SCAR)、簡單重復序列間長度多態性(inter-simple sequence repeat,ISSR)、相關序列擴增多態性(sequence-related amplified polymorphism,SRAP)、單鏈構象多態性(single strand conformation polymorphism,SSCP)等相繼出現,並且被應用於葯用植物種質資源研究中的各個方面。
台灣中興大學應用RFLP技術精確鑒定出了苦參與其偽品[2],紀寶玉等[3]對野葛的研究表明,RAPD可作為種質資源篩選鑒定的關鍵技術;郝崗平等[4]將AFLP技術成功應用於丹參的道地性鑒別;潘清平等[5]採用ISSR技術為玉竹商品葯材的鑒定提供了分子依據等。由此可見,DNA分子標記技術是一種有效鑒定葯用植物的方法。
表 1對幾種常用DNA分子標記技術進行了比較,每種方法各有優點及局限性,實際應用過程中可根據實驗目的、材料和實驗條件綜合考慮進行選擇。
點擊查看錶格內容
轉基因在葯用植物上的應用雖然已取得相當不錯的成果,但其安全問題一直是爭論的熱點。因此,對轉基因葯用植物還是應持有謹慎的態度,必須進行更加系統深入的研究。
次生代謝工程就是用DNA重組技術修飾生成次生代謝物的生化反應途徑或引進新的生化反應,從而直接提高或抑制某個或某些特定次生代謝物的合成,改善細胞性能。隨著葯用植物次生代謝物生物合成途徑的日漸探明,應用代謝工程技術對植物次生代謝途徑進行遺傳改良,以大幅度提高目標產物的量已成為研究的熱點。
自1991年美國學者Bailey提出次生代謝工程概念以來,次生代謝工程技術的應用已有大量報道。早期最為經典的研究要屬用該技術實現了水稻胚乳中維生素A原(β-胡蘿卜素)的從無到有[68]。近年來,該技術在葯用植物上應用的報道更是層出不窮。葯用植物中各類葯效物質的量往往很低,無法滿足人們的需求。通過次生代謝工程的手段可穩定地提高它們在植物體內的量。本文簡要介紹葯用植物中幾類重要葯效物質通過次生代謝工程方法提高量的應用進展。
苯丙素類化合物是植物在長期自然選擇過程中產生的一類重要的天然有機化合物,一般具有抗菌、抗病毒、抗腫瘤、抗自由基、抗炎鎮痛、保肝、保護心血管系統等多種生物活性,因此是非常重要的一類天然葯效物質。