『壹』 現代科學表明物質是由什麼和什麼組成的
略 細胞是生物體的結構和功能單位,細胞中的物質也是由分子構成的。例如,細胞中含有水、蛋白質、核酸、脂肪酸、糖類等物質,正是這些物質的分子在細胞中以特定的形式存在,細胞才能表現出多種多樣的生命現象,所以說細胞中的物質也是由分子構成的。但是,細胞中僅僅有各種物質的分子,並不能表現出生命的功能。只有這些物質組成細胞後,才有功能表現,所以細胞是生物體的結構與功能單位。
『貳』 每種生物的學名由哪兩種
考點: 生物的分類及分類單位 專題: 分析: 18世紀瑞典科學家創立了生物命名法--雙名法,即植物的常用名由兩部分組成,前者為屬名,要求用名詞;後者為種名,要求用形容詞. 按照雙名法,每個物種的科學名稱(即學名)由兩部分組成,第一部分是屬名,第二部分是種加詞,種加詞後面還應有命名者的姓名,有時命名者的姓名可以省略.雙名法的生物學名部分均為拉丁文,並為斜體字;命名者姓名部分為正體.因此在雙名法中規定,每種生物只能有一個學名,這個學名由兩個字組成,分別是屬名+種名.故選:A. 點評: 解答此類題目點關鍵是熟記植物命名的方法「雙名法」.
『叄』 生物的學名由( )部分組成,前部分是( ),後半部分是( ) 8. 藻類不能算是植物,是
生物的學名由兩部分組成,前部分是種名,後半部分是屬名。藻類不能算植物,是低等自養生物。
『肆』 哪種動物有學名
在人類已知的動物,或新發現的動物,都有它的學名。
動物學名是依照生物學上對生物種類的命名規則,所給定的學名之形式,成為動物種的學名形式。每個動物種學名的由兩個部分構成:屬名和種加詞(種小名)。屬名由拉丁語法化的名詞形成,但是它的字源可以是來自拉丁詞或希臘詞或拉丁化的其他文字構成,首字母須大寫;種加詞是拉丁文中的形容詞,首字母不大寫。通常在種加詞的後面加上命名人及命名時間,如果學名經過改動,則既要保留最初命名人,並加上改名人及改名時間。命名人、命名時間一般可省略。
不同的動物有不同的學名。「動物」是生物分類學中的最高一級,叫「動物界」,學名就是「Animal」。具體到任何一種動物,都有它的學名。如狼,習慣名稱為「wolf」,但它的學名是「 Canis lupus」。前一個詞表示狼所在的「屬名」,後一個是狼具體的「種名」。動物種的學名通常用拉丁文拼寫,不用英文。
在動物分類學中,一個動物物種可以往下細分,應用三名法來命名一個亞種(有時亦稱為種族race),例如紐西蘭的普通鸕鶿跟其它地方的有所不同,所以被歸入一個亞種。由於動物學僅使用一個種下分類階元,所以不需要在亞種名前插入任何階元指示符,人們也明白第三個名稱就是亞種名。
『伍』 生物學的基礎知識
生物的分類
1:非細胞生命形態
病毒不具備細胞形態,一般由一個核酸長鏈和蛋白質外殼構成(核酸長鏈包括RNA與DNA,病毒復制時有DNA的直接進行轉錄,而含有RNA的病毒需要進行逆轉錄成DNA後再進行復制)。根據組成核酸的核苷酸數目計算,每一病毒顆粒的基因最多不過 300個。寄生於細菌的病毒稱為噬菌體。病毒沒有自己的代謝機構,沒有酶系統,也不能產生三磷酸腺苷(ATP)。因此病毒離開了寄主細胞,就成了沒有任何生命活動,也不能獨立地自我繁殖的化學物質。只有在進入寄主細胞之後,它才可以利用活細胞中的物質和能,以及復制、轉錄和轉譯的全套裝備,按照它自己的核酸所包含的遺傳信息產生和它一樣的新一代病毒。病毒基因同其他生物的基因一樣,也可以發生突變和重組,因而也是能夠演化的。
由於病毒沒有獨立的代謝機構,也不能獨立地繁殖,因而被認為是一種不完整的生命形態。關於病毒的起源,有人認為病毒是由於寄生生活而高度退化的生物;有人認為病毒是從真核細胞脫離下來的一部分核酸和蛋白質顆粒;更多的人認為病毒是細胞形態發生以前的更低級的生命形態。近年發現了比病毒還要簡單的類病毒,它是小的RNA 分子,沒有蛋白質外殼。另外還發現一類只有蛋白質卻沒有核酸的朊粒,它可以在哺乳動物身上造成慢性疾病。這些不完整的生命形態的存在縮小了無生命與生命之間的距離,說明無生命與生命之間沒有不可逾越的鴻溝。因此,在原核生物之下,另闢一界,即病毒界是比較合理的。
2:原核生物
原核細胞和真核細胞是細胞的兩大基本類型,它們反映細胞進化的兩個階段。把具有細胞形態的生物劃分為原核生物和真核生物,是現代生物學的一大進展。原核細胞的主要特徵是沒有線粒體、質體等膜細胞器,染色體只是一個環狀的DNA分子,不含組蛋白及其他蛋白質,沒有核膜。原核生物包括細菌和藍菌,它們都是單生的或群體的單細胞生物。
細菌是只有通過顯微鏡才能看到的原核生物。大多數細菌都有細胞壁,其主要成分是肽聚糖而不是纖維素。細菌的主要營養方式是吸收異養,它分泌水解酶到體外,將大分子的有機物分解為小分子,然後將小分子營養物吸收到體內。細菌在地球上幾乎無處不在,它們繁殖得很快,數量極大,在生態系統中是重要的分解者,在自然界的氮素循環和其他元素循環中起著重要作用(見土壤礦物質轉化)。有些細菌能使無機物氧化,從中取得能來製造食物;有些細菌含有細菌葉綠素,能進行光合作用。但是細菌光合作用的電子供體不是水而是其他化合物如硫化氫等。所以細菌的光合作用是不產氧的光合作用。細菌的繁殖為無性繁殖,在某些種類中存在兩個細胞間交換遺傳物質的一種原始的有性過程──細菌接合。
支原體、立克次氏體和衣原體均屬細菌。支原體無細胞壁,細胞非常微小,甚至比某些大的病毒粒還小,能通過細菌濾器,是能夠獨立地進行生長和代謝活動的最小的生命形態。立克次氏體的酶系統不完全,它只能氧化谷氨酸,而不能氧化葡萄糖或有機酸以產生ATP。衣原體沒有能量代謝系統,不能製造ATP。大多數立克次氏體和衣原體不能獨立地進行代謝活動,被認為是介於細菌和病毒之間的生物。
藍藻(也稱藍細菌)是能光合自養的原核生物,是單生的,或群體的,也有多細胞的。和細菌一樣,藍藻細胞壁的主要成分也是肽聚糖,細胞也沒有核膜和細胞器,如線粒體、高爾基器、葉綠體等。但藍藻細胞有由膜組成的光合片層,這是細菌所沒有的。藍藻含有葉綠素a,這是高等植物也含有的而為細菌所沒有的一種葉綠素。藍藻還含有類胡蘿卜素和藍色色素──藻藍蛋白(或稱之為藻藍素),某些種還有紅色色素──藻紅蛋白,這些光合色素分布於質膜和光合片層上。藍藻的光合作用和綠色植物的光合作用一樣,用於還原CO2產生的H+,因而伴隨著有機物的合成還產生分子氧,這和光合細菌的光合作用截然不同。
最早的生命是在無游離氧的還原性大氣環境中發生的(見生命起源),所以它們應該是厭氧的,又是異養的。從厭氧到好氧,從異養到自養,是進化史上的兩個重大突破。藍菌光合作用使地球大氣從缺氧變為有氧,這樣就改變了整個生態環境,為好氧生物的發生創造了條件,為生物進化展開了新的前景。在現代地球生態系統中,藍菌仍然是生產者之一。
近年發現的原綠藻,含葉綠素a、葉綠素b和類胡蘿卜素。從它們的光合色素的組成以及它們的細胞結構來看,很像綠藻和高等植物的葉綠體,因此受到生物學家的重視。
3:真核生物
和原核細胞相比,真核細胞是結構更為復雜的細胞。它有線粒體等各種膜細胞器,有圍以雙層膜的細胞核,把位於核內的遺傳物質與細胞質分開。DNA為長鏈分子,與組蛋白以及其他蛋白結合而成染色體。真核細胞的分裂為有絲分裂和減數分裂,分裂的結果使復制的染色體均等地分配到子細胞中去。
原生生物是最原始的真核生物。原生生物的原始性不但表現在結構水平上,即停留在單細胞或其群體的水平,不分化成組織;也表現在營養方式的多樣性上。原生生物有自養的、異養的和混合營養的。例如,眼蟲能進行光合作用,也能吸收溶解於水中的有機物。金黃滴蟲除自養和腐食性營養外,還能和動物一樣吞食有機食物顆粒。所以這些生物還沒有明確地分化為動物、植物或真菌。根據這些特性,R.H.惠特克吸收上世紀E.海克爾的意見,將原生生物列為他的5界系統中的1界,即原生生物界。但是有些科學家主張撤銷這 1界,他們的理由是原生生物界所包含的生物種類過於龐雜,大部分原生生物顯然可以歸入動物、植物或者真菌,那些處於中間狀態的原生生物也不難使用分類學的分析方法適當地確定歸屬。
植物是以光合自養為主要營養方式的真核生物。典型的植物細胞都含有液泡和以纖維素為主要成分的細胞壁。細胞質中有進行光合作用的細胞器即含有光合色素的質體──葉綠體。綠藻和高等植物的葉綠體中除葉綠素a外,還有葉綠素b。多種水生藻類,因輔助光合色素的組成不同,而呈現出不同的顏色。植物的光合作用都是以水為電子供體的,因而都是放氧的。光合自養是植物界的主要營養方式,只有某些低等的單細胞藻類,進行混合營養。少數高等植物是寄生的,行次生的吸收異養,還有很少數高等植物能夠捕捉小昆蟲,進行吸收異養。植物界從單細胞綠藻到被子植物是沿著適應光合作用的方向發展的。在高等植物中植物體發生了光合器官(葉)、支持器官(莖)以及用於固定和吸收的器官(根)的分化。葉柄和眾多分枝的莖支持片狀的葉向四面展開,以獲得最大的光照和吸收 CO2的面積。細胞也逐步分化形成專門用於光合作用、輸導和覆蓋等各種組織。大多數植物的生殖是有性生殖,形成配子體和孢子體世代交替的生活史。在高等植物中,孢子體不斷發展分化,而配子體則趨於簡化。植物是生態系統中最主要的生產者,也是地球上氧氣的主要來源。
真菌是以吸收為主要營養方式的真核生物。真菌的細胞有細胞壁,至少在生活史的某一階段是如此。細胞壁多含幾丁質,也有含纖維素的。幾丁質是一種含氨基葡萄糖的多糖,是昆蟲等動物骨骼的主要成分,植物細胞壁從無幾丁質。真菌細胞沒有質體和光合色素。少數真菌是單細胞的,如酵母菌。多細胞真菌的基本構造是分枝或不分枝的菌絲。一整團菌絲叫菌絲體。有的菌絲以橫隔分成多個細胞,每個細胞有一個或多個核,有的菌絲無橫隔而成為多核體。菌絲有吸收水分和養料的機能。菌絲體常疏鬆如蛛網,以擴大吸收面積。真菌的繁殖能力很強,繁殖方式多樣,主要是以無性或有性生殖產生的各種孢子作為繁殖單位。真菌分布非常廣泛。在生態系統中,真菌是重要的分解者,分解作用的范圍也許比細菌還要大一些。
粘菌
是一種特殊的真菌。它的生活史中有一段是真菌性的,而另一段則是動物性的,其結構、行為和取食方法與變形蟲相似。粘菌被認為是介於真菌和動物之間的生物。
動物是以吞食為營養方式的真核生物。吞食異養包括捕獲、吞食、消化和吸收等一系列復雜的過程。動物體的結構是沿著適應吞食異養的方向發展的。單細胞動物吞入食物後形成食物泡。食物在食物泡中被消化,然後透過膜而進入細胞質中,細胞質中溶酶體與之融合,是為細胞內消化。多細胞動物在進化過程中,細胞內消化逐漸為細胞外消化所取代,食物被捕獲後在消化道內由消化腺分泌酶而被消化,消化後的小分子營養物經消化道吸收,並通過循環系統而被輸送給身體各部的細胞。與此相適應,多細胞動物逐步形成了復雜的排泄系統、進行氣體交換的外呼吸系統以及復雜的感覺器官、神經系統、內分泌系統和運動系統等。神經系統和內分泌系統等組成了復雜的自我調節和自我控制的機構,調節和控制著全部生理過程。在全部生物中,只有動物的身體構造發展到如此復雜的高級水平。在生態系統中,動物是有機食物的消費者。在生命發展的早期,即在地球上只有藍菌和細菌時,生態系統是由生產者和分解者組成的兩環系統。隨著真核生物特別是動物的產生和發展,兩環生態系統發展成由生產者、分解者和消費者所組成的三環系統。出現了今日豐富多彩的生物世界。
從類病毒、病毒到植物、動物,生物擁有眾多特徵鮮明的類型。各種類型之間又有一系列中間環節,形成連續的譜系。同時由營養方式決定的三大進化方向,在生態系統中呈現出相互作用的空間關系。因而,進化既是時間過程,又是空間發展過程。生物從時間的歷史淵源和空間的生活關系來講,都是一個整體。
編輯本段生物的特徵
生物不僅具有多樣性,而且具有一些共同的特徵和屬性。人們對這些共同的特徵、屬性和規律的認識,使內容十分豐富的生物學成為統一的知識體系。
生物化學的統一性
大量實驗研究表明,組成生物體生物大分子的結構和功能,在原則上是相同的。例如各種生物的蛋白質的單體都是氨基酸,種類不過20種左右,各種生物的核酸的單體都是核苷酸,種類不過8種,這些單體都以相同的方式組成蛋白質或者核酸的長鏈,它們的功能對於所有生物都是一樣的。在不同的生物體內基本代謝途徑也是相同的,甚至在代謝途徑中各個不同步驟所需要的酶也是基本相同的。不同生物體在代謝過程中都以 ATP的形式傳遞能量。生物化學的同一性深刻地揭示了生物的統一性。
多層次的結構模式
19世紀德國科學家M.J.施萊登和T.A.H.施旺提出細胞學說,認為動、植物都是由相同的基本單位──細胞所組成。這對於病毒以外的一切生物,從細菌到人都是適用的。細胞是由大量原子和分子所組成的非均質的系統。在結構上,細胞是由蛋白質、核酸、脂質、多糖等組成的多分子動態體系;從資訊理論觀點看,細胞是遺傳信息和代謝信息的傳遞系統;從化學觀點看,細胞是由小分子合成的復雜大分子,特別是核酸和蛋白質的系統;從熱力學觀點看,細胞又是遠離平衡的開放系統。所有這些,對於原核細胞和真核細胞都是一樣的。
除細胞外,生物還有其他結構單位。在細胞之下有細胞器、分子和原子,在細胞之上有組織、器官、器官系統、個體、種群、群落、生態系統、生物圈等單位。
生物的各種結構單位,按照復雜程度和逐級結合的關系而排列成一系列的等級,稱為結構層次。在每一個層次上表現出的生命活動不僅取決於它的組成成分的相互作用,而且取決於特定的有序結構,因此在較高層次上可能出現較低的層次所不曾出現的性質和規律。
有序性和耗散結構
生物是由大量分子和原子組成的宏觀系統(相對於研究亞原子事件的微觀系統而言),它的代謝歷程和空間結構都是有序的。熱力學第二定律指出,物理的化學的變化導致系統的無序性或隨機性(即熵) 的增加。生物無休止的新陳代謝,不可避免地使系統內部的熵增漲,從而干擾和破壞系統的有序性。現代生物學證明,在生物體中同時還存在一種使熵減少的機制。20世紀60年代,I.普里戈任提出耗散結構理論。按此理論,生物體是遠離平衡的開放系統,它從環境中吸取以食物形式存在的低熵狀態的物質和能,把它們轉化為高熵狀態後排出體外。這種不對稱的交換使生物體和外界熵的交流出現負值,這樣就可能抵消系統內熵的增漲。生物有序正是依賴新陳代謝這種能量耗散過程得以產生和維持的。(見耗散結構和生物有序)
穩態
生物對體內的各種生命過程有良好的調節能力。生物所處的環境是多變的,但生物能夠對環境的刺激作出反應,通過自我調節保持自身的穩定。例如,人的體溫保持在37℃上下,血液的酸度保持在 pH7.4左右等。這一概念先是由法國生物學家C.貝爾納提出的。他指出身體內部環境的穩定是自由和獨立生活的條件。後來,美國生理學家W.B.坎農揭示內環境穩定是通過一系列調節機制來保證的,並提出「穩態」一詞。穩態概念的應用現在已遠遠超出個體內環境的范圍。生物體的生物化學成分、代謝速率等都趨向穩態水平,甚至一個生物群落、生態系統在沒有激烈外界因素的影響下,也都處於相對穩定狀態。
生命的連續性
1855年R.C.菲爾肖提出,所有的細胞都來自原已存在的細胞。這個概念對於現存的所有生物來說是正確的。除了最早的生命是從無生命物質在當時的地球環境條件下發生的以外,生物只能來自已經存在的生物。只能通過繁殖來實現從親代到子代的延續。因此,遺傳是生命的基本屬性。
1866年G.J.孟德爾通過豌豆雜交試驗發現了遺傳因子的分離規律和自由組合規律。20世紀20年代,以T.H.摩爾根為代表的一批科學家提出基因論,證明孟德爾假設的因子就是在染色體上線性排列的基因,補充了一個新的規律,即基因的連鎖和交換規律,並證明這些規律在動物界和植物界是普遍適用的。40年代,J.萊德伯格發現細菌的有性雜交,M.德爾布呂克發現了噬菌體的交叉重組現象,從而證明病毒、原核生物和動物、植物都遵循同樣的遺傳規律。分子生物學的發展證明一切生物的基因的化學實體都是核酸(DNA和RNA),遺傳信息都是以核苷酸的排列來編碼的,DNA以半保留復制產生新的拷貝。在分子水平上,生命的連續性首先表現在基因物質DNA的連續性上。
個體發育
通常是指多細胞生物從單個生殖細胞到成熟個體的成長過程。生物在一生中,每個細胞、每個組織、器官都隨時間而發展變化,它在任何一個特定時間的狀態都是本身發育的結果。生物個體發育是按一定的生長模式進行的穩定過程。個體發育的概念對單細胞生物和病毒在原則上也是適用的。單細胞生物從一代到下一代經歷一定的細胞周期,病毒的發育也要經歷遺傳物質的復制,結構蛋白的合成以及病毒顆粒的裝配過程。因此,所有的生物都有各自的按一定規律進行的生活史。
對於個體發育規律的認識,經歷了漫長的過程。1797年C.F.沃爾夫發表《發生論》,對雞胚的發育過程作了較為詳細的描述。19世紀初К.M.貝爾提出胚層理論,指出胚胎組織和器官的發生是以內、中、外三個胚層為出發點的。20世紀初,H.施佩曼及其學派通過把胚胎組織從一處移植到另一處能改變其發育過程和方向的實驗,證明了胚胎發育是通過各部分的相互作用而完成的,現代生物學證明,個體發育是由遺傳信息所控制的,不論是在分子層次上,還是在細胞、組織、個體層次上,發育的基本模式都是由基因決定的。
進化
1859年C.R.達爾文所著《物種起源》的出版,創立了以自然選擇為基礎的生物進化論。進化是普遍的生物學現象。每個細胞、每種生物都有自己的演變歷史,都在隨著時間的發展而變化,它們目前的狀態是它們本身進化演變的結果。進化導致物種的分化,生物不再被認為是一大堆彼此毫無聯系的、偶然的、「神造的」不變的物種。生物世界是一個統一的自然譜系,各種生物,歸根結底,都來自一個最原始的生命類型。生物不僅有一個復雜的縱深層次(從生物圈到生物大分子),它還具有個體發育歷史和種系進化歷史,有一個極廣闊的歷史橫幅。
生態系統中的相互關系 在自然界里,生物的個體總是組成種群,不同的種群彼此相互依賴,相互作用形成群落。群落和它所在的無生命環境組成了生物地理復合體──生態系統。在生態系統中,不同的種群具有不同的功能和作用。譬如,綠色植物是生產者,它能利用日光能製造食物;動物包括人在內是消費者;細菌和真菌是分解者。生物彼此之間以及它們和環境之間的相互關系決定了生態系統所具有的性質和特點。任何一個生物,它的外部形態、內部結構和功能,生活習性和行為,同它在生態系統中的作用和地位總是相對適應的。這種適應是長期演變的結果,是自然選擇的結果。根據上面這些敘述,不難看到,盡管生物世界存在驚人的多樣性,但所有的生物都有共同的物質基礎,遵循共同的規律。生物就是這樣的一個統一而又多樣的物質世界。因而,生物學也就是一個統一而又十分豐富的知識領域。
編輯本段研究方法
生物學的一些基本研究方法——觀察描述的方法、比較的方法和實驗的方法等是在生物學發展進程中逐步形成的。在生物學的發展史上,這些方法依次興起,成為一定時期的主要研究手段。現在,這些方法綜合而成現代生物學研究方法體系和研究框架。
觀察描述的方法
在17世紀,近代自然科學發展的早期,生物學的研究方法同物理學研究方法大不相同。物理學研究的是物體可測量的性質,即時間、運動和質量。物理學把數學應用於研究物理現象,發現這些量之間存在著相互關系,並用演繹法推算出這些關系的後果。生物學的研究則是考察那些將不同生物區別開來的、往往是不可測量的性質。生物學用描述的方法來記錄這些性質,再用歸納法,將這些不同性質的生物歸並成不同的類群。18世紀,由於新大陸的開拓和許多探險家的活動,生物學記錄的物種幾倍、幾十倍地增長,於是生物分類學首先發展起來。生物分類學者搜集物種進行鑒別、整理,描述的方法獲得巨大發展。要明確地鑒別不同物種就必須用統一的、規范的術語為物種命名,這又需要對各種各樣形態的器官作細致的分類,並制定規范的術語為器官命名。這一繁重的術語制定工作,主要是C.von林奈完成的。人們使用這些比較精確的描述方法收集了大量動、植物分類學材料及形態學和解剖學的材料。
比較的方法
18世紀下半葉,生物學不僅積累了大量分類學材料,而且積累了許多形態學、解剖學、生理學的材料。在這種情況下,僅僅作分類研究已經不夠了,需要全面地考察物種的各種性狀,分析不同物種之間的差異點和共同點,將它們歸並成自然的類群。比較的方法便被應用於生物學。
運用比較的方法研究生物,是力求從物種之間的類似性找到生物的結構模式、原型甚至某種共同的結構單元。G.居維葉在動物學方面,J.W.von歌德在植物學方面,是用比較方法研究生物學問題的著名學者。用比較的方法研究生物,愈來愈深刻地揭示動物和植物結構上的統一性,勢必觸及各個不同類型生物的起源問題。19世紀中葉,達爾文的進化論戰勝了特創論和物種不變論。進化論的勝利又給比較的方法以巨大的影響。早期的比較,還僅僅是靜態的共時的比較,在進化論確立後,比較就成為動態的歷史的比較了。現存的任何一個物種以及生物的任何一種形態,都是長期進化的產物,因而用比較的方法,從歷史發展的角度去考察,是十分必要的。
早期的生物學僅僅是對生物的形態和結構作宏觀的描述。1665年英國R.胡克用他自製的復式單孔反射顯微鏡,觀察軟木片,看到軟木是由他稱為細胞的盒狀小室組成的。從此,生物學的觀察和描述進入了顯微領域。但是在17世紀,人們還不能理解細胞這樣的顯微結構有何等重要意義。那時的顯微鏡未能消除使影像失真的色環,因而還不能清楚地辨認細胞結構。19世紀30年代,消色差顯微鏡問世,使人們得以觀察到細胞的內部情況。1838~1839年施萊登和施萬的細胞學說提出:細胞是一切動植物結構的基本單位。比較形態學者和比較解剖學者多年來苦心探求生物的基本結構單元,終於有了結果。細胞的發現和細胞學說的建立是觀察和描述深入到顯微領域所獲得的成果,也是比較方法研究的一個重要成果。
實驗的方法
前面提到的觀察和描述的方法有時也要對研究對象作某些處理,但這只是為了更好地觀察自然發生的現象,而不是要考察這種處理所引起的效應。實驗方法則是人為地干預、控制所研究的對象,並通過這種干預和控制所造成的效應來研究對象的某種屬性。實驗的方法是自然科學研究中最重要的方法之一。17世紀前後生物學中出現了最早的一批生物學實驗,如英國生理學家W.哈維關於血液循環的實驗,J.B.van黑爾蒙特關於柳樹生長的實驗等。然而在那時,生物學的實驗並沒有發展起來,這是因為物理學、化學還沒有為生物學實驗准備好條件,活力論還占統治地位。很多人甚至認為,用實驗的方法研究生物學只能起很小的作用。
到了19世紀,物理學、化學比較成熟了,生物學實驗就有了堅實的基礎,因而首先是生理學,然後是細菌學和生物化學相繼成為明確的實驗性的學科。19世紀80年代,實驗方法進一步被應用到了胚胎學,細胞學和遺傳學等學科。到了20世紀30年代,除了古生物學等少數學科,大多數的生物學領域都因為應用了實驗方法而取得新進展。
系統的方法
系統科學源自對還原論、機械論反省提出的有機體、綜合哲學,從C.貝爾納與W.B.坎農揭示生物的穩態現象、維納與艾什比的控制論到貝塔郎菲的一般系統論,系統生態學、系統生理學等先後建立與發展,20世紀70-80年代系統論與生物學、系統生物學等概念發表。從香農資訊理論到I.普里戈津的耗散結構理論,將生命看作自組織化系統。細胞生物學、生化與分子生物學發展,艾根提出細胞、分子水平探討的超循環理論,20世紀90年代曾邦哲的系統遺傳學及系統醫葯學、系統生物工程概念發表。隨著基因組計劃、生物信息學發展,高通量生物技術、生物計算軟體設計的應用,帶來系統生物學新的時期,形成系統生物學「omics」組學與計算系統生物學 - 系統生物技術的發展,國際國內系統生物學研究機構建立而進入系統生物學時代。
『陸』 生物細胞分子的組成成分
水:生命活動的介質環境
水是生物體的第一大化合物,含量在50%以上,甚至可達99%。人體的含水量隨年齡增長而減少,從新生兒80%到老年的55%。
地球表面的70%為水覆蓋,水是地球表面最豐富的物質,水在地球表面以三種狀態同時存在。液態水是良好的極性溶劑,很多物質都能溶於水中,眾多的化學反應在水中能非常好的進行。生命現象主要是生物體內一系列生物化學反應的外部體現,因此,水是生命存在的介質環境,沒有水就沒有生命。
水分子的形狀是一個等腰三角形,分子內O-H間的鍵長約為0.0965nm,H-O-H鍵角為104.5°。氫原子的電子由於氧原子核的強力吸引而偏向氧,結果使氫被氧化而呈正電,氧呈負電。由於氧原子只有兩對電子是與質子(氫原子核)共享的,在8電子殼層中還有兩對電子暴露在O-H的外部,這兩對電子吸引相鄰水分子上的正電,從而形成氫鍵。因此,水分子通過氫鍵而相互連接起來。水與其他分子的負電性原子形成鍵能大致相同的氫鍵,例如羧基中的-OH基團中的氧或蛋白質-NH基團中的氮都可與水分子的氫形成氫鍵。在分子中如果含有-OH、-NH等極性基團的分子與電負性強的原子也能形成氫鍵。在蛋白質分子中,存在著大量的氫鍵,從而使蛋白質的結構得到加固。氫鍵在加固核酸的特殊結構中也起著重要的作用。此外,水還能夠和一些小分子有機化合物形成氫鍵。氫鍵的鍵能大約只有共價鍵的十分之一,幅度較小的溫度變化就可以使氫鍵斷開。這就使得帶氫鍵的結構具有顯著的柔順性,使它們能隨著內外環境的變化而變化。
生物體內物質的運輸是依賴水良好的流動性完成的,另外水還有恆溫、潤滑等多種作用。
無機鹽:參與和調節新陳代謝
無機鹽在細胞里含量很小,人體內的無機鹽大約佔5%左右,種類很多,含量最多的無機鹽是鈣和磷鹽約占無機鹽含量的一半左右,主要沉積在骨骼和牙齒中,無機鹽的另一半大多以水合離子狀態存在於體液中。由於無機鹽的種類多樣,因此功能不一。總體來說,無機鹽有如下功能:
1.構成骨骼和牙齒的無機成分,對身體起支撐作用。骨骼中無機物約佔1/3,有機物佔2/3。存在於骨骼中的無機鹽主要是鈣和磷,有機物主要是蛋白質。有機物使骨骼具有韌性,無機鹽使骨骼具有硬度。骨骼中的鈣磷鹽是體液中鈣磷鹽的貯存場所(鈣磷庫)。
2.維持生命活動的正常生理環境。Na+、Cl-、K+、HPO42-在維持細胞內外液的容量方面起著重要的作用。體內各種酶的作用需要相對恆定的pH,體液的緩沖系統由這些鹽類構成,發揮穩定氫離子濃度的功能。同樣,無機鹽對肌肉、心肌的應激性的維持也有重要的作用。
3.參與或調節新陳代謝。體內很多酶需要離子結合才具有活性,有些離子可以增強或抑制酶的活性。某些離子參與物質轉運、代謝反應、信息傳遞等多種功能。
無機鹽是機體新陳代謝的重要調節和參與因素。
蛋白質:生命活動的主要表現者
蛋白質是生物體的第二大化合物,在細胞的乾重中,約一半以上是蛋白質,在活細胞中的含量在15%以上。蛋白質是大分子物質,分子量在6000至百萬道爾頓。蛋白質的英文名叫做protein,源自希臘文προτο,它是「最原初的」,「第一重要的」意思。「朊」這個詞就是根據protein的原意翻譯的,但由於蛋白質一詞沿用已久,所以「朊」並未被廣泛採用。蛋白質在生物體內佔有特殊的地位。蛋白質和核酸構成原生質中的主要成分,而原生質是生命現象的物質基礎。
蛋白質是生命的結構基礎和功能基礎。蛋白質廣泛地存在於細胞膜、液態基質、細胞器、核膜、染色體等結構中,蛋白質中的一半左右是酶-生物催化劑,細胞中眾多的化學反應由酶分子催化。蛋白質種類眾多,功能各異,總體來說,蛋白質具有下述功能:
1.催化和調控:體內物質代謝的一系列化學反應幾乎都是由酶催化的。體內各組織細胞各種代謝的進行和協調,都與蛋白質的調控功能密切相關。
2.在協調運動中的作用:肌肉收縮是一種協調運動,肌肉的主要成分是蛋白質,肌肉收縮是肌肉中多種蛋白質組裝成的粗絲、細絲完成的,從微觀上看是細胞內微絲、微管的活動,精子、纖毛的運動等都與蛋白質的作用有關。
3.在運輸及貯存中的作用:蛋白質在體內物質的運輸和貯存中起重要作用。例如,全身各組織細胞時刻不能缺少的氧分子,就是由血紅蛋白運輸的;氧在肌肉中的貯存靠肌紅蛋白來完成。鐵在細胞內需與鐵蛋白結合才能貯存。
4.在識別、防禦和神經傳導中的作用:體內各種傳遞信息的信使需與特異的受體相互識別,受體多為蛋白質,可見蛋白質在信息傳遞過程中起重要作用,另外,抗體對抗原的結合,神經沖動的傳遞等也是蛋白質參與完成的。
因此,蛋白質是生命過程中的主要分子,是生命現象的主要「演員」,蛋白質-生命的體現者。
糖:生命活動的主要能源物質
糖在動物體內是四大類生物分子中含量最小的,但糖類是草食動物及人體消化吸收最多的食物成分(不計水),原因在於吸收的糖類消耗很快(能源物質)、可大量轉化為脂肪貯存及糖原貯存量較小造成的。
糖是多羥基醛或多羥基酮類化合物。糖的基本單位是單糖,如葡萄糖、果糖等。多數單糖有鏈式和環式兩種結構,並且環式結構存在α和β兩種異構體,三者之間可以相互轉化。由單糖可以聚合成雙糖、寡糖、多糖。雙糖如蔗糖(葡萄糖-果糖二聚體)、麥芽糖(葡萄糖二聚體)和乳糖(半乳糖二聚體),多糖的典型代表是植物中的澱粉和動物體的糖原。
糖在植物體中貯存較多,在動物體相對含量較小。動物體不能由無機物合成糖,動物體內的糖最初都是由植物提供的,植物通過光合作用能將二氧化碳和水合成為糖。
糖在體內有以下兩方面的功能:
1.細胞的重要能源物質:動物體攝取糖後,大量的糖是作為能源物質被使用。糖在體內氧化,釋放能量,釋放的能量以熱散發維持體溫和貯存於ATP、磷酸肌酸中以供生命活動所用。動物體攝取的糖如果有剩餘,能夠合成肝糖原和肌糖原以貯存糖,但量相對較小,一個中等身材的人只能貯存約500g左右的糖原。糖在身體內很容易轉化為高度還原的能源貯存形式脂肪,貯存於脂肪組織,以供糖缺乏的時候給身體提供能量。
2.糖在細胞內與蛋白質構成復合物,形成糖蛋白和蛋白聚糖,廣泛地存在與細胞間液、生物膜和細胞內液中,它們有些作為結構成分出現,有些作為功能成分出現。因此,糖蛋白和蛋白聚糖也是生命現象的「演員」。
核酸:生命活動的主宰者
核酸在體內含量很少,分為兩類:脫氧核糖核酸(DNA)和核糖核酸(RNA)。DNA主要存在於細胞核中,RNA主要存在於細胞質中。RNA主要有信使核糖核酸(mRNA)、轉運核糖核酸(tRNA)和核糖核蛋白體核糖核酸(rRNA)三種。
核酸是重要的生物大分子,是生物化學與分子生物學研究的重要對象和領域。生物的特徵是生物大分子決定的。生物大分子有四類:核酸、蛋白質、多糖和脂質復合物。糖和脂質的合成由酶(蛋白質)催化完成,它們與蛋白質在一起,增加了蛋白質結構與功能的多樣性。蛋白質的合成取決於核酸;然而生物功能通過蛋白質來實現,包括核酸的合成也需要蛋白質的作用。因此,生物體內最重要的大分子物質是DNA、RNA和蛋白質。由生物大分子和有關生物分子與無機分子或離子共同構成生物機體不同層次的結構;生物大分子之間以及與其他分子之間的相互作用決定了一切生命活動。概括地說,核酸(主要是DNA)是生命的操縱者,蛋白質是生命的表現者,糖和脂肪是生命的能源物質,磷脂是生物膜的結構基礎,水是生命存在的介質環境,無機鹽參與和調節新陳代謝。
G. Mendel於1865年發現豌豆雜交後代性狀分離和自由組合的遺傳規律。F. Miescher於1868年發現核酸(當時稱核素),細胞學家和遺傳學家曾猜測核素可能與遺傳有關。19世紀開始知道有兩類核酸,直到20世紀40年代才了解DNA和RNA都是細胞的重要組成物質,前者可引起遺傳性狀的變化,後者可能參與蛋白質的生物合成。50年代初生物學家開始接受DNA是遺傳物質的觀點。1953年,Watson和Crick提出DNA的雙螺旋結構模型,才從分子結構上闡明了其遺傳功能。半個世紀以來,核酸研究已經成為生物化學與分子生物學研究的核心和前沿,其研究成果改變了生命科學的面貌,也促進了生物技術產業的迅猛發展,充分表明這類物質有重要的生物功能。
核酸的功能主要有以下三點:
1.DNA是主要的遺傳物質:DNA分布在細胞核內,是染色體的主要成分,而染色體是基因的載體。細胞內的DNA含量十分穩定,而且與染色體數目平行。基因是染色體上佔有一定位置的遺傳單位。基因有三個基本屬性:一是可通過復制,將遺傳信息由親代傳給子代;二是通過轉錄表達產生表型效應;三是可突變形成各種等位基因。但有些病毒的基因組是RNA,基因是RNA的一個片段。一些可作用於DNA的物理化學因素均可引起DNA突變從而引起遺傳性狀的改變。DNA的突變是生物進化的基礎,即突變的累積導致生物進化。
2.RNA參與蛋白質的生物合成:實驗表明,由3類RNA共同控制著蛋白質的生物合成。核糖體是蛋白質合成的場所。過去以為蛋白質肽鍵的形成是由核糖體的蛋白質所催化,稱轉肽酶。1992年H. F. Noller等證明23S rRNA具有核酶活性,能夠催化肽鍵形成。rRNA約占細胞總RNA的80%,它是裝配者並起催化作用。tRNA占細胞總RNA的15%,它是轉換器,攜帶氨基酸並起解譯作用。mRNA占細胞總RNA的3~5%,它是信使,攜帶DNA的遺傳信息並起蛋白質合成的模板作用。
3.RNA功能的多樣性:20世紀80年代RNA的研究揭示了RNA功能的多樣性,它不僅是遺傳信息由DNA傳遞到蛋白質的中間傳遞體,雖然這是它的核心功能,。歸納起來,RNA有5類功能:①控制蛋白質合成;②作用於RNA轉錄後加工與修飾;③基因表達和細胞功能的調節;④生物催化與其他細胞持家功能;⑤遺傳信息的加工與進化。病毒RNA是上述功能RNA的游離成分。
生物體通過DNA復制,而使遺傳信息由親代傳給子代;通過RNA轉錄和翻譯而使遺傳信息在子代得到表達。RNA具備諸多功能,無不關系著生物機體的生長和發育,其核心作用是基因表達的信息加工和調節。
脂類:生命的備用能源和生物膜的結構基礎
脂類是動物體內的第三大類物質。脂類大都是非極性物質,很難溶於水,脂類分為脂肪和類脂兩大類。脂肪是由甘油和脂肪酸縮合而成,類脂有磷脂、膽固醇及膽固醇酯等形式。脂肪的含量不穩定,是體內貯存的能源物質,變化很大,稱為可變脂或貯脂,一般成年男性脂肪占體重的10~20%。磷脂由於是細胞的結構成分,因此含量是穩定的,稱固定脂或膜脂,約占體重的5%。
1. 三脂醯甘油(脂肪)的丙三醇頭部是親水的,而3條脂肪酸尾部是疏水的。
2. X基團是極性的,常見的有膽鹼、乙醇胺、絲氨酸等。
3. 磷脂和糖脂只有2條或1條疏水性尾部,其餘都是親水的,因此磷脂和糖脂很容易形成油與水的分界膜。
脂類的主要作用有以下三點:
1.脂肪是貯存的能源物質:脂肪是高度還原的能源物質,含氧很少,因此相同質量的脂肪和糖相比氧化釋放的能量很多,可達糖的兩倍以上,並且由於脂肪疏水,因此可以大量貯存,但脂肪作為能源物質的缺點也是明顯的,因為疏水,所以脂肪的動員速度比親水的糖要慢。脂肪主要的貯存部位是皮下、大網膜、腸系膜和臟器周圍,貯存量可達15~20kg,足以維持一個人一個月的能量需要。
2.磷脂是生物膜的結構基礎:磷脂是脂肪的一條脂肪酸鏈被含磷酸基的短鏈取代的產物,因為這條磷酸基鏈的存在,使磷脂的親水性比脂肪的大,能夠自發形成磷脂雙分子層膜。生物膜的骨架就是磷脂雙分子層,再加上一系列的蛋白質和多糖就構成生物膜。生物膜在細胞中是廣泛存在的,因此,一個細胞的膜表面積很大。膜分隔細胞的空間使不同類的化學反應可以在不同的區間完成而不互相干擾,很多化學反應在膜的表面上進行。神經元細胞由於樹突軸突的存在,細胞膜面積十分巨大,因此神經組織是體內含磷脂最豐富的組織。
3.膽固醇的衍生物是重要的生物活性物質:膽固醇可在肝臟轉化為膽汁酸排入小腸,膽汁酸可以乳化脂類食物而加速脂類食物的消化;7-脫氫膽固醇可在皮膚中(日光照射下)轉化為維生素D3,然後在肝臟和腎臟的作用下形成1,25-(OH)2-D3,通過促進腸道和腎臟對鈣磷的吸收使骨骼牙齒得以生長發育;膽固醇可在腎上腺皮質轉化為腎上腺皮質激素和性激素;膽固醇可在性腺轉化為性激素。另外,不飽和脂肪酸也是體內其他一些激素或活性物質的代謝前體,膽固醇也作為生物膜的結構成分出現。
脂類物質是貯存的能源物質、生物膜的結構成分和體內一些生理活性物質的代謝前體。
DNA分子
DNA即脫氧核糖核酸(英文Deoxyribonucleic acid的縮寫),又稱去氧核糖核酸,是染色體的主要化學成分,同時也是組成基因的材料。有時被稱為「遺傳微粒」,因為在繁殖過程中,父代把它們自己DNA的一部分復制傳遞到子代中,從而完成性狀的傳播。原核細胞的染色體是一個長DNA分子。真核細胞核中有不止一個染色體,每個染色體也只含一個DNA分子。不過它們一般都比原核細胞中的DNA分子大而且和蛋白質結合在一起。DNA分子的功能是貯存決定物種性狀的幾乎所有蛋白質和RNA分子的全部遺傳信息;編碼和設計生物有機體在一定的時空中有序地轉錄基因和表達蛋白完成定向發育的所有程序;初步確定了生物獨有的性狀和個性以及和環境相互作用時所有的應激反應.除染色體DNA外,有極少量結構不同的DNA存在於真核細胞的線粒體和葉綠體中。DNA病毒的遺傳物質也是DNA,極少數為RNA.
DNA分子就是帶有以上特徵結構的分子。DNA結構的發現是科學史
DNA結構的發現是科學史上最具傳奇性的「章節」之一。發現DNA結構是劃時代的成就,但發現它的方法是模型建構法,模型建構法就像小孩子拼圖游戲一樣的「拼湊」法。而在這場「拼湊」中表現最出色的是沃森和克里克。
1928年4月6日,沃森出生於美國芝加哥。16歲就在芝加哥大學畢業,獲得動物學學士學位,在生物學方面開始顯露才華。22歲時取得博士學位,隨後沃森來到英國劍橋大學的卡文迪什實驗室,結識了早先已在這里工作的克里克,從此開始了兩人傳奇般的合作生涯。克里克於1916年6月8日生於英格蘭的北安普敦,21歲在倫敦大學畢業。二戰結束後,來到劍橋的卡文迪什實驗室,克里克和沃森一樣,對DNA有著濃厚的興趣,從物理學轉向研究生物學。
當時人們已經知道,DNA是一種細長的高分子化合物,由一系列脫氧核苷酸鏈構成,脫氧核苷酸又是由脫氧核糖、磷酸和含氮鹼基組成,鹼基有4種。在1951年,很多科學家對DNA的結構研究展開了一場競賽。當時有兩個著名的DNA分子研究小組,一個是以著名的物理學家威爾金斯和化學家富蘭克林為首的英國皇家學院研究小組,他們主要用X射線衍射來研究DNA結構。一個是以著名化學家鮑林為首的美國加州理工大學研究小組,他們主要用模型建構法研究DNA結構,並且已經用該方法發現蛋白質a螺旋。
1951年2月,威爾金斯將富蘭克林拍的一張非常精美的DNA的X光衍射照片在義大利舉行的生物大分子結構會議上展示,一直對DNA有濃厚興趣的沃森看到這張圖時,激動得話也說不出來,他的心怦怦直跳,根據此圖他斷定DNA的結構是一個螺旋體。他打定主意要製作一個DNA模型。他把這種想法告訴了他的合作者克里克,得到了克里克的認可。
沃森和克里克構建DNA分子結構模型的工作始於1951年秋。他們用模型構建法,仿照著名化學家鮑林構建蛋白質α螺旋模型的方法,根據結晶學的數據,用紙和鐵絲搭配脫氧核苷酸。
他們構建了一個又一個模型,都被否定了。但沃森堅持認為,DNA分子可能是一種雙鏈結構。因為自然界中的事物,很多是成雙成對的,細胞中的染色體也是成對的。之後他們分別完成了以脫氧核糖和磷酸交替排列為基本骨架,鹼基排在外面的雙螺旋結構(如圖一),和以脫氧核糖和磷酸交替排
列為基本骨架,鹼基排在內部,且同型鹼基配對的雙螺旋結構(如圖二)。
1952年,生物化學家查伽夫訪問劍橋大學時向報道了他對人、豬、牛、羊、細菌和酵母等不同生物DNA進行分析的結果。查伽夫的結果表明,雖然在不同生物的DNA之間,4種脫氧核苷酸的數量和相對比例很不相同,但無論哪種物質的DNA中,都有A=T和G=C,這被稱為DNA化學組成的「查伽夫法則」。1952年7月,查伽夫訪問卡文迪什實驗室時,向克里克詳細解釋了A:T=G:C=1:1的法則。之後,克里克的朋友,理論化學家格里菲斯通過計算表明,DNA的4種脫氧核苷酸中,A必須與T成鍵,G必須與C成鍵。這與查伽夫法則完成一致。隨後,鮑林以前的同事多諾告訴沃森,A-T和G-C配對是靠氫鍵維系的。以上這些工作,就成了沃森和克里克DNA分子模型中A—T配對、G—C配對結構的基礎。
至此,DNA模型已經浮現。2月28日,沃森用紙板做成4種鹼基的模型,將紙板粘到骨架上朝向中心配對,克里克馬上指出,只有兩條單鏈的走向相反才能使鹼基完善配對,這正好與X光衍射資料一致。完整的DNA分子結構模型完成於1953年3月7日。根據這個模型,DNA分子是一個雙螺旋結構,每一個螺旋單位包含10對鹼基,長度為34埃(1埃=10-10米)。螺旋直徑為20埃。4月15日,沃森和克里克關於該模型的第一篇論文在《自然》(Nature)雜志上發表。
DNA分子雙螺旋結構模型的發現,是生物學史上的一座里程碑,它為DNA復制提供了構型上的解釋,使人們對DNA作為基因的物質基礎不再懷疑,並且奠定了分子遺傳學的基礎。DNA雙螺旋模型在科學上的影響是深遠的。
『柒』 生物分類分為:界、門、綱、目、科、屬、種 最具體是什麼
1、界
在很長一段時間里,界(Kingdom)是生物科學分類法中最高的類別。一開始人只將生物分為動物和植物兩界。
微生物被發現後,也長時期被分入動物或植物界:好動的微生物被分入動物界,有色素(藻類)的或細菌被分為植物,有些甚至被同時放入兩界。
後來,沒有細胞核的細菌被獨立為一界,再後來真菌被分出植物界,也成為獨立的一界,最後自立為界的是古細菌。
按照原本公認的分類-六界法將生物分為病毒界、原核生物界、真菌界、原生生物界、植物界以及動物界。
最新的基因研究發現這種分類法並不十分正確,因此引入了域作為生物最高的類別。現有的生物被分入非細胞生物域、真核生物域或原核生物域,沒有細胞核的生物(細菌和古細菌)被分入原核生物。
只有在真核生物中還有界的分法。真核生物中分四個界:原生生物界、真菌界、植物界和動物界。總共九個界:
類病毒界、病毒界、古細菌界、細菌界、藍藻界、原生生物界、真菌界、植物界、動物界。
2、門
生物學中把具有最基本最顯著的共同特徵的生物分為若干群,每一群叫一門,如原生動物門、裸子植物門等。門以下為綱。
3、綱
綱在門之下、目之上。有時還上有總綱、下有亞綱。例如哺乳綱(屬於動物界、脊索動物門、脊椎動物亞門,下有食肉目、奇蹄目、偶蹄目等),單子葉植物綱(屬於植物界、種子植物門、被子植物亞門,下有鴨拓草亞綱、禾本科等)。
4、目
目上有綱或亞綱,下有科。也可能有總目、亞目存在。例如食肉目(屬動物界、脊索動物門、脊椎動物亞門、哺乳綱,下有貓科、熊科、犬科、熊貓科等),莎草目(屬植物界、種子植物門、被子植物亞門、單子葉植物綱、鴨拓草亞綱,下有禾本科、莎草科等)。
5、科
科位於目和屬之間。有人科、十字花科、猴科。
6、屬
屬隸於科,其用途是將該「目」內的生物再詳細分類。例如:獼猴屬、芸苔屬、人。
7、種
又稱物種,生物分類的基本單位,位於生物分類法中最後一級,在屬之下。較為籠統的概念,是指一群或多或少與其它這樣的群體形態不同,並能夠交配繁殖且子代可育的相關的生物群體。
參考資料來源:網路——生物分類
『捌』 生物學名的構成
在生物學中,雙名法是為生物命名的標准.正如「雙」所說的,為每個物中命名的名字有兩部分構成:屬名和種名.
故選:C
『玖』 大學生物專業基礎知識總結
1.生物體具有共同的物質基礎和結構基礎。
2. 從結構上說,除病毒以外,生物體都是由細胞構成的。細胞是生物體的結構和功能的基本單位。
3.新陳代謝是活細胞中全部的序的化學變化總稱,是生物體進行一切生命活動的基礎。
4.生物體具應激性,因而能適應周圍環境。
5.生物體都有生長、發育和生殖的現象。
6.生物遺傳和變異的特徵,使各物種既能基本上保持穩定,又能不斷地進化。
7.生物體都能適應一定的環境,也能影響環境。