㈠ 生物化材料的研究具有什麼樣的意義
生物化材料的研究具有兩個革命性意義:一是創造了具有生物活性的材料;二是力求人體組織的完全天然修復和再生。這也表明人類已經進入了改造和創新生命形態的時代。這是生物、醫學、工程技術等合理分工、密切合作的結果,其發展必將為人類的健康造福。
㈡ 生物技術的發展對人類未來的影響
20世紀是生物科學發展史上最為輝煌的時代,特別是20世紀50年代以來,隨著數理科學的廣泛而深刻地滲人到生物科學領域以及一些先進的儀器設備和研究技術的問世,生物科學已進入從分子水平研究生命活動過程及其規律以及生命體與環境相互作用規律的生命科學的新時代.由於應用先進技術,生命科學在微觀和宏觀兩方面都取得了豐碩的成果:特別是生命科學的理論成就為自然科學的發展作出了巨大的貢獻.遺傳物質DNA雙螺旋結構的闡明被認為是20世紀自然科學的重大突破之一.由於生命科學的進步向數學、物理學、化學以及技術科學提出了許多新問題、新概念和新的研究領域,生命科學已成為ZI世紀的主流科學之一.,「人類基因組計劃」的實施和深入發展,將有可能從更深層次上了解人體生長、發育、正常生理活動以及各種疾病的病因和發病機理,並為醫學提供防治策略、途徑和方法.「水稻基因組計劃」的順利開展,對ZI世紀農業的發展,解決糧食問題,將產生巨大的影響.當今人類面臨的人口、食品、健康、環境、資源等重大問題都同生命科學有密切關系.由此看出,科學的目的在於認識世界,技術的目的在於利用、改造和保護自然,造福人類.生命科學要為人類造福轉化為生產力,必然與技術相結合,才能在生產上發揮巨大作用.於是在20世紀70年代,隨著生命科學理論的不斷發展,與丁程技術相結合,開辟了生物技術(也叫生物工程)新領域.例如,通過基因重組技術,PCR技術、DNA和蛋白質序列分析技術、分子雜交技術、細胞和組織培養技術、細胞融合技術、核移植技術,等等,促進了基因工程、蛋白質工程、細胞工程、發酵工程、酶工程、染色體工程、組織工程、胚胎工程等生物工程的誕生與發展,已在工業、農業、醫療衛生和環境保護等方面得到了廣泛應用,並取得了突破性進展
從當今世界生物技術的發展來看,研究成果層出不窮、日新月異,其產業化的勢頭強勁,國際間的競爭日趨激烈.
在 20世紀 70年代,生命科學領域取得了兩項對人類生活和經濟活動具有深刻影響的技術突破:一個是重組DNA技術,另一個是淋巴細胞雜交瘤技術.這兩項革命性技術的出現,帶動了生物技術的迅猛發展,初步形成了一個全新的現代生物技術群及新興產業.
現代生物技術,是指人們利用生物體及其亞細胞結構和分子,研究、設計和製造新產品,或預期性地改變生物的特性乃至創造新的物種或品種,使之獲得人們所期望的品質 它是一門以應用為主的綜合性技術體系.在 20世紀 90年代,克隆羊多莉的誕生,體細胞克隆技術的重大突破,以及DNA擴增PCR技術的問世又進一步推動了生物技術革命性的發展.生物技術革命是20世紀末科技領域的重大事件,是蒸汽機和電能應用以來世界近代史上的又一個里程碑,也是世界新技術革命的重要組成部分.現代生物技術已經成為人類認識和改造自然界,克服自身所面臨的人口膨脹、糧食短缺、環境污染、疾病危害.能源和資源匾乏、生態平衡破壞及生物物種消亡等一系列重大問題的可靠手段和工具.我國在ZI世紀也將面臨著人日、資源和環境等一系列問題的嚴重挑戰.加強生物技術的發展,有利於解決糧食等涉及國家經濟安全的重大問題;有利於改善廣大群眾的健康狀況,提高生活質量;有利於促進那些高污染、高耗能的傳統產業改造和產業升級;有利於帶動有效需求,產生新的經濟增長點.發展生物技術將是對世紀我國實施可持續發展戰略的重要手段,必將帶動和促進國民經濟的快速發展.正如信息技術支持著今天蓬勃發展的經濟一樣,生物技術也將成為經濟發展的重要推動力。
㈢ 求一篇關於生物材料的論文,急
在觀察大自然的過程中我偶然發現,樹乾的形態都近似圓的——空圓錐狀。樹干為什麼是圓錐狀的?圓錐狀樹干有哪些好處?為了探索這些問題,我進行了更深入的觀察、分析研究。
在輔導老師的幫助下,我查閱了有關資料,了解到植物的莖有支持植物體、運輸水分和其他養分的作用。樹木的莖主要由維管束構成。莖的支持作用主要由木質部木纖維承擔,雖然木本植物的莖會逐年加粗,但是在一定時間范圍內,莖的木纖維數量是一定的,也就是樹木莖的橫截面面積一定。接著,我們圍繞樹干橫截面面積一定,假設樹干橫截面長成不同形狀,設計試驗,探索樹干呈圓錐狀的原因和優點。 中學生科技網 www.zxskj.com
經過實驗,我們發現:(1)橫截面積和長度一定時,三稜柱狀物體縱向支持力最大,橫向承受力最小;圓柱狀物體縱向支持力不如三稜柱狀物體,但橫向承受力最大;(2)等質量不同形狀的樹干,矮個圓錐體形樹干承受風力最大;(3)風是一種自然現象,影響著樹木橫截面的形狀和樹木生長的高矮。近似圓錐狀的樹干,重心低,加上龐大根系和大地連在一起,重心降得更低,穩度更大;(4)樹干橫截面呈圓形,可以減少損傷,具有更強的機械強度,能經受住風的襲擊。同時,受風力的影響,樹干各處的彎曲程度相似,不管風力來自哪個方向,樹干承受的阻力大小相似,樹干不易受到破壞。
以上的實驗反映了自然規律、自然界給我們啟示:(1)橫截面呈三角形的柱狀物體,具有最大縱向支持力,其形態可用於建築方面,例如角鋼等;(2)橫截面是圓形的圓狀物體,具有最大的橫向承受力,類似形態的建築材料隨處可見,如電視塔、電線桿等。
在我的觀察、試驗和分析過程中,逐漸解釋、揭示了樹干呈圓錐狀的奧秘,增長了知識,把學到的知識聯系實際加以應用,既鞏固了學到的知識,又提高了學習的興趣,還初步學會了科學觀察和分析方法。
㈣ 生物材料的發展
自90年代後期以來,世界生物材料科學和技術迅速發展,即使在當今全球經濟低迷的大環境下,生物材料依然保持著每年13%高速增長,充分體現了其強大的生命力和廣闊的發展前景。
現代醫學正向再生和重建被損壞的人體組織和器官、恢復和增進人體生理功能、個性化和微創治療等方向發展。傳統的無生命的醫用金屬、高分子、生物陶瓷等常規材料已不能滿足醫學發展的要求,生物醫學材料科學與工程面臨著新的機遇與挑戰。
未來,生物醫用材料的市場佔有率大有可能將趕上葯物。因此,加強生物醫用材料的臨床應用研究和推廣應用,重點發展我國生物醫用材料的研究、開發、生產、營銷緊密結合的一體化體系是當務之急。
實際上,國家當前在生物材料科學基礎研究方面已經取得了重大突破進展,走在了世界先進行列,但產業化水平尚待提高,產業規模小、發展相對滯後,還不能滿足全民醫療保健的實際需要。在國家政策、經濟的大力支持下,我國生物材料的產業化發展將提速。企業應增強自主創新的能力,進一步解決依靠進口的局面,同時加大出口力度,實現跨越發展,擴大中國生物材料產品在國際上的影響力。
㈤ 生物醫用材料的應用與發展前景
迄今為止 ,被詳細研究過的生物材料已有一千多種,醫學臨床上廣泛使用的也有幾十種,涉及到材料學的各個領域。生物醫用材料得以迅猛發展的主要動力來自人口老齡化、中青年創傷的增多、疑難疾病患者的增加和高新技術的發展。人口老齡化進程的加速和人類對健康與長壽的追求,激發了對生物醫用材料的需求。目前生物醫用材料研究的重點是在保證安全性的前提下尋找組織相容性更好、可降解、耐腐蝕、持久、多用途的生物醫用材料。
當代生物材料的發展不僅強調材料自身理化性能和生物安全性、可靠性的改善,而且更強調賦予其生物結構和生物功能,以使其在體內調動並發揮機體自我修復和完善的能力,重建或康復受損的人體組織或器官。結合南開大學俞耀庭教授的觀點和2004年中國新材料發展報告,可以將目前國際上生物醫用材料學科的最新進展和發展趨勢概括如下: 組織工程是指應用生命科學與工程的原理和方法,構建一個生物裝置,來維護、增進人體細胞和組織的生長,以恢復受損組織或器官的功能。它的主要任務是實現受損組織或器官的修復和再建,延長壽命和提高健康水乎。其方法是,將特定組織細胞種植於一種生物相容性良好、可被人體逐步降解吸收的生物醫用材料(組織工程材料)上,形成細胞-生物醫用材料復合物;生物醫用材料為細胞的增長繁殖提供三維空間和營養代謝環境;隨著材料的降解和細胞的繁殖,形成新的具有與自身功能和形態相應的組織或器官;這種具有生命力的活體組織或器官能對病損組織或器宮進行結構、形態和功能的重建,並達到永久替代。近10 年來,組織工程學發展成為集生物工程、細胞生物學、分子生物學、生物醫用材料、生物技術、生物化學、生物力學以及臨床醫學於一體的一門交叉學科。
生物醫用材料在組織工程中占據非常重要的地位,同時組織工程也為生物醫用材料提出問題和指明發展方向。由於傳統的人工器官(如人工腎、肝)不具備生物功能(代謝、合成),只能作為輔助治療裝置使用,研究具有生物功能的組織工程人工器官已在全世界引起廣泛重視。構建組織工程人工器官需要三個要素,即種子細胞、支架材料、細胞生長因子。最近,由於幹細胞具有分化能力強的特點,將其用作種子細胞進行構建人工器官成為熱點。組織工程學已經在人工皮膚、人工軟骨、人工神經、人工肝等方面取得了一些突破性成果,展現出美好的應用前景。
當前軟組織工程材料的研究和發展主要集中在研究新型可降解生物醫用材料,用物理、化學和生物方法以及基因工程手段改造和修飾原有材料,材料與細胞之間的反應和信號傳導機制以及促進細胞再生的規律和原理,細胞機制的作用和原理等,以及研製具有選擇通透性和表面改性的膜材,發展對細胞和組織具有誘導作用的智能高分子材料等方面。
當前硬組織工程材料的研究和應用發展主要集中在碳纖維/高分子材料、無機材料(生物陶瓷、生物活性玻璃)、高分子材料的復合研究。 納米生物材料,在醫學上主要用作葯物控釋材料和葯物載體。從物質性質上可以將納米生物材料分為金屬納米顆粒、無機非金屬納米顆粒和生物降解性高分子納米顆粒;從形態上可以將納米生物材料分為納米脂質體、固體脂質納米粒、納米囊(納米球)和聚合物膠束。
納米技術在90 年代獲得了突破性進展,在生物醫學領域的應用研究也不斷得到擴展。目前的研究熱點主要是葯物控釋材料及基因治療載體材料。葯物控釋是指葯物通過生物材料以恆定速度、靶向定位或智能釋放的過程。具有上述性能的生物材料是實現葯物控釋的關鍵,可以提高葯物的治療效果和減少其用量和毒副作用。由於人類基因組計劃的完成及基因診斷與治療不斷取得進展,科學家對使用基因療法治療腫瘤充滿信心。基因治療是導人正常基因於特定的細胞(癌細胞)中,對缺損的或致病的基因進行修復;或者導人能夠表達出具有治療癌症功能的蛋白質基因,或導人能阻止體內致病基因合成蛋白質的基因片斷來阻止致病基因發生作用,從而達到治療的目的。這是治療學的一個巨大進步。基因療法的關鍵是導人基因的載體,只有藉助於載體,正常基因才能進人細胞核內。目前,高分子納米材料和脂質體是基因治療的理想載體,它具有承載容量大,安全性高的特點。近來新合成的一種樹枝狀高分子材料作為基因導人的載體值得關注。
此外,生物醫用納米材料在分析與檢測技術、納米復合醫用材料、與生物大分子進行組裝、用於輸送抗原或疫苗等方面也有良好的應用前景。納米碳材料可顯著提高人工器官及組織的強度、韌度等多方面性能;納米高分子材料粒子可以用於某些疑難病的介入診斷和治療;人工合成的納米級類骨磷灰石晶體已成為制備納米類骨生物復合活性材料的基礎。該領域未來的發展趨勢是,納米生物醫用材料「部件」與納米醫用無機材料及晶體結構「部件」的結合發展,如由納米微電子控制的納米機器人、葯物的器官靶向化;通過納米技術使介入性診斷和治療向微型、微量、微創或無創、快速、功能性和智能性的方向發展;模擬人體組織成分、結構與力學性能的納米生物活性仿生醫用復合材料等。 組織反應是指局部組織對生物醫用材料所發生的反應。組織反應是機體對異物入侵產生的防禦性反應,可以減輕異物對組織的損傷,促進組織的修復和再生。然而,組織反應本身也可能對機體造成危害。根據病理變化不同,可以分成以下兩種反應:
1、以滲出為主的組織反應
多見於植入初期和植入材料的性質穩定等情況。以中性粒細胞、漿液、纖維蛋白原滲出為主。如植入物周圍組織出現中性粒細胞聚集;長期植入的、穩定的材料周圍,可由於纖維蛋白原的滲出而出現纖維囊。
2、以增生為主的組織反應
多見於植入物長期存在並損傷機體的情況。以巨噬細胞為主,也可見淋巴細胞、漿細胞和嗜酸性粒細胞,並伴有明顯的組織增生,可逐漸發展為肉芽腫或腫瘤。
在使用生物醫用材料的過程中,由組織反應引起的兩種嚴重的並發症是炎症和腫瘤。炎症包括感染性炎症和無菌性炎症。感染性炎症可能是由於材料植入的過程中損傷組織,使病原體趁虛而入;也可能是由於植入物本身未經嚴格的消毒滅菌處理,成為了病原體的載體。無菌性炎症不是由於病原體侵入引起,而是由於影響機體內的炎症和抗炎系統的調節而引發的炎症反應。生物材料植入引起腫瘤是一個緩慢的過程,可能是由於材料本身釋放毒性物質,也可能是由於材料的外形和表面性能所致。因此,在應用長期植入物之前,進行植入物的慢性毒性、致突變和致癌的生物學試驗是十分必要的。 生物醫用材料血液相容性包含不引起血液凝聚和不破壞血液成分兩個方面。在一定限度內即使在材料表面張力的剪切作用下,對血液中的紅細胞等有一定的破壞(即發生溶血),由於血液具有很強的再生能力,隨時間的推移其不利影響並不顯著;而如果在材料表面有血栓形成,由於有累計效應,隨著時間的推移,凝血程度越來越高,對人體造成嚴重的影響。因此,材料在血液中最受關注的是其抗凝血性能。材料與血液接觸導致凝血及血栓形成的途徑如圖1所示。正常人體心血管系統內的血液保持液體狀態,環流不息,並不發生凝固。當醫用材料與血液接觸時會引起血液一系列變化。首先是血漿蛋白在材料表面的吸附,依材料表面結構性能不同,在1分鍾甚至幾秒鍾,在材料表面就會產生白蛋白和球蛋白以及各種蛋白質的競爭吸附,在生物材料表面形成復雜的蛋白質吸附層。當材料表面吸附球蛋白、纖維蛋白原時易於使血小板粘附表面,進而導致血小板變形聚集,引發凝血。蛋白表面也可引起紅細胞的粘附。雖然紅細胞在凝血中的作用仍然不十分清楚,但是如若紅細胞發生細胞膜破裂,即出現溶血,紅細胞釋放的血紅蛋白和二磷酸腺苷簡稱ADP(促血小板聚集物質)。它們可以引起血小板的粘附、變形和聚集,進而導致凝血。
`
圖1 凝血機制
抗凝系統包括抗凝和纖溶作用。抗凝作用主要是通過一些抗凝因子(如抗凝血酶Ⅲ、肝素)來實現。纖溶過程包括纖溶酶原轉化為纖溶酶,纖溶酶降解纖維蛋白。血栓形成是常見的生物醫用材料植入引發的局部血液循環障礙。內皮細胞的損傷、血流動力學的改變和血液的高凝狀態,其中任何一個因素都可以導致血栓形成。完整的內皮細胞可以通過表達肝素樣分子與抗凝血酶Ⅲ結合使IIa、Xa、IXa 失活,合成 PGI2、NO 、ADP 酶抑制血小板聚集及合成tPA 使纖維蛋白降解等作用抑制血栓形成。血流動力學的改變可以誘發血栓形成。正常血流是分層流動的,當血流減慢或層流被破壞時,血小板與內膜接觸並激活,凝血因子也可以在局部聚集。當處於創傷、手術等情況時,血液的凝血系統亢進和(或)抗凝系統減弱也可導致血栓形成。 免疫系統是人體的「軍隊」和「警察」,它可以識別自己和非己。免疫系統的主要功能包括針對病原微異原分子免疫防禦功能、針對自體衰老和病變細胞的免疫自穩功能和針對腫瘤細胞的免疫監視功能。免疫系統由天然免疫系統和獲得性免疫系統組成。天然免疫系統包括肥大細胞、巨噬細胞、自然殺傷細胞、中性粒細胞和補體等。天然免疫系統可以早期識別、清除病原體,然而它對於病原體的識別不具有特異性。在受到病原體刺激後,再次接觸病原體時能夠針對性地做出反應的免疫系統成為獲得性的免疫系統。獲得性免疫系統又可分為由B 細胞介導的體液免疫和由T 細胞介導的細胞免疫。由於生物醫用材料造成免疫系統的功能(包括免疫識別和反應程度)紊亂,可以發生以下免疫反應:
1、免疫抑制
由於有些生物醫用材料造成免疫防禦功能不足,使得機體抵抗病原微生物的能力降
低。
2、變態反應
由於有些生物醫用材料造成免疫防禦功能亢進,免疫反應過於強烈損傷人體。如殘留乳膠、雙酚A、丙烯酸添加劑等低分子量有機分子或單體。
3、自身免疫
由於有些生物醫用材料造成免疫自穩功能亢進,免疫系統不能和識別自己和非己,對自體正常組織產生免疫反應。如聚四氟乙烯、聚酯等。 界面是一個有一定厚度(通常小於0.1μm)的區域,物質的能量可以通過這個區域從一個相連續地變化到另一個相。根據植入材料的不同,與生物體組織作用的界面可分為:惰性材料與生物體組織作用的界面和活性材料與生物體組織作用的界面。
1、惰性生物醫用材料與生物體組織作用的界面惰性生物醫用材料的特點是在生物體內保持穩定,幾乎不參加生物體的化學反應。長期植入惰性材料,植入物與機體發生滲出性組織反應,其中以纖維蛋白原滲出為主,形成纖維包囊。如果材料無毒性物質滲出,包囊將逐漸變薄,淋巴細胞消失,鈣鹽沉積。這一類的材料有氧化鋁、碳纖維、鈦合金等。如果材料持續釋放金屬離子或有機單體等毒性離子,會促使局部組織反應遷延不愈,轉變為慢性炎症。纖維薄膜逐漸變厚,淋巴細胞增多,鈣鹽沉積,可發展為肉芽腫,甚至腫瘤。
2、活性生物醫用材料與生物體組織作用的界面活性生物醫用材料可以與機體發生化學反應,與組織之間形成化學鍵。這里我們主要介紹表面活性生物醫用材料與生物體組織作用的界面、可降解生物陶瓷與生物體組織作用的界面和雜化生物醫用材料與生物體組織作用的界面。
(1)表面活性生物醫用材料與生物體組織作用的界面:表面活性生物醫用材料其表面成分與組織成分相近,能與組織結合形成穩定的結合界面。這種材料與組織親和性好。如表面含羥基磷灰石的生物材料。
(2)可降解生物陶瓷與生物體組織作用的界面:陶瓷可在組織內釋放組織所需的成分,加速組織的生長,並逐漸為新生的組織所取代。如β-磷酸三鈣陶瓷可在體液中釋放Ca2+、PO4
3+離子,促進骨組織的生長,並逐漸為之取代。
(3)雜化生物醫用材料與生物體組織作用的界面:雜化材料由活體組織和非活體組
織復合而成。由於活體組織的存在是使材料的免疫反應減輕,使材料具有很好的相容性。
這類材料有各種人工材料與生物高分子的復合物,合成材料與細胞的復合物等。
3、界面理論及其研究方法
(1)界面潤濕理論;主要研究液體對固體表面的親和狀況。材料植入首先是與由血漿、組織液組成的液體環境接觸,所以材料與機體組織親和性與液體與材料表面的潤濕作用密切相關。一般通過研究固體表面潤濕臨界張力和液體在固體上的潤濕角測定界面能。
(2)界面吸附理論;通過研究界面對水分子、各種細胞、氨基酸、蛋白質和各種離子的吸附作用,為材料界面改性提供參考。可以運用生物流變學的原理和方法,了解材料的形態表面對細胞吸附作用的影響。
(3)界面化學鍵合理論;理論上講,植入物與人體組織同處於人體的內環境中,存在形成各種化學鍵的可能性。主要採用電子探針、電子能譜、質譜、核磁共振、拉曼光譜等分析界面元素及化合態。
(4)界面分子結合理論 植入材料由於的表面極性、表面電荷及活性基團不同,對人體組織的作用也存在差異。通過測量生物壓電材料所產生的微電流,評價其對於細胞界面形成的影響。
(5)界面酸鹼理論;由於界面細胞的生長與界面局部的酸鹼度直接相關,所以可以通過研究界面酸鹼度,了解並改善生物醫用材料與組織的親和性。在離體實驗中,通常採取常規的pH 值測定法和納米級超微電極測定界面pH 值。
(6)界面物理結合理論;植入體與人體組織的結合首先是物理結合,組織細胞通過微孔長入植入體以增加其結合強度。微孔的大小關系著組織細胞能否長入植入體,微孔的比率決定著植入體的強度。主要採用各種感測技術及光彈應力分析法、有限元計算分析法等測定界面結合強度與應力。
另外,界面研究方法還包括界面的形態學研究。主要通過透射電鏡、掃描電鏡及各種立體成像技術觀察界面處的形態。 一般來講,生物醫用材料在體內首先與體液接觸,通過水解作用,某些材料可能由高分子物質轉變為水溶性的小分子物質。這些小分子物質經由血液循環,運輸到呼吸系統、消化、泌尿系統,經呼吸、糞、尿的方式排出體外。在代謝的過程中,可能有酶參與其中。生物醫用材料經過一系列的反應,可能完全降解由體內排出,也可能會有部分材料或其降解產物長期存在於人體內。生物醫用材料在體內代謝的中間產物和終產物可能對人體有利也可能有害,因此對於材料在生物體內的代謝產物和途徑的研究具有十分重要的意義。材料在體內的代謝受很多方面因素的影響,如材料本身的因素、植入環境的因素等。目前,材料在體內代謝的研究方法主要分為體外試驗和體內試驗。體外降解試驗主要是在體外模擬體內的環境條件,從外形、力學性能、質量等方面進行評價。這種試驗主要用於研究固體生物醫用材料。體內試驗主要是在動物體內進行。體內試驗是將生物醫用材料植入動物體內觀察材料的改變。具體可以通過解剖、X 線、放射性標記示蹤等方法。這種試驗方法的優點是可以獲得更接近人體的試驗結果。
㈥ 生物醫學材料的基本要求是什麼
生物醫學材料基本的要求:無毒性,不致癌,不致畸,不引起人體細胞的突發和組織細胞的反應;與人體組織相容性好,不引起中毒、溶血凝血、發熱和過敏等現象;
化學性質穩定,抗體液、血液及酶的作用;具有與天然組織相適應的物理機械特性;針對不同的使用目的具有特定的功能。
生物醫用材料是一類用於診斷、治療、修復和替換人體組織、器官或增進其功能的新型高技術材料,涉及學科較為廣泛,學科交叉較深;
(6)生物材料的發展給材料工作者什麼啟示擴展閱讀:
生物材料的發展綜合體現了材料學、生物學、醫學等多個領域科學與工程技術的水平。同時,生物再生材料產業作為材料科學、生物技術、臨床醫學的前沿和重點發展領域,以及整個生物醫學工程的基礎,已發展為整個經濟體系中最具活力的產業之一。
其不僅是構成現代醫學基礎的生物醫學工程和生物技術的重要基礎,且對材料科學和生命科學等相關學科的發展有重要的促進作用。
㈦ 生物化材料能起到什麼作用
自然界中,有許多生物具有再生與修復能力。海參在遇到敵人襲擊時,會把自己的內臟拉出來,然後自己趁機逃走,不久以後,它又會長出一副新內臟;蜥蜴在被砍掉尾巴後,能夠再生出尾巴來;把一條蚯蚓從中間砍成兩段,其頭部(帶胸節的)能再生成新的蚯蚓;人的皮膚被劃傷或骨折後在一定程度上也能癒合,大家想想,要是不能癒合,那將是很可怕的。但是我們人的這種自我修復能力是有限的(比如,如果皮膚上傷口裂開較大,就必須縫針來幫助傷口癒合)。長期以來,人們一直在努力研究能夠使其受損傷的、病變的組織與器官完美再生和修復的材料及裝置。20世紀80年代以來,這種材料的研究開始興起。它能夠調節、控制和誘導人體組織的自身修復、再生的能力,使再生的天然健康組織和器官能夠取代病變的組織和器官。
對於發生病變和損傷組織與器官的修復,現在我們較為熟悉的做法是進行組織和器官的移植,如給大面積燒傷病人移植皮膚,給腎衰竭和尿毒症患者換腎等。但是因為人本身的器官會對移植進來的器官產生排異反應,這使移植技術受到限制,事實上,在進行過的此類手術中,有不少患者就因為排異反應而死亡。另外,也並不是所有的器官都能進行移植。因此,要徹底解決病變和損傷組織與器官的修復問題還必須另闢蹊徑,比如利用生物化材料培植健康的組織和器官。
運用生物化材料,可以從以下兩個方面進行:
第一是利用需要移植的人本身的一小片健康組織或細胞進行體外繁殖培養,然後再送回人體的組織細胞中培養。比如,把我們人體皮膚細胞的纖維枝芽細胞接種到一種叫做「膠原—硫酸軟骨素」的多孔膜上,可以得到有生命力的人造皮膚。可是這種細胞的培養繁殖需要較長的時間,病人很難等待,另外培養的技術也不完善。這種技術和植物中的嫁接技術比較像,比如我們要培養一棵梨樹樹苗,就可以把它先嫁接在其它果樹上培養,然後再取下來種植。
第二種是選擇合適的載體材料和調節細胞生長分化的物質,並對其作用進行定位調控。我們知道,人體的基本組成單位是細胞,一個原始的受精卵細胞能發育、繁殖、生長並逐漸分化成各種組織和器官。現在的生物技術能夠對這些細胞的分化、繁殖和生長進行調節控制。患者需要什麼,我們就調控細胞朝什麼方向發展。
㈧ 為人類造福的生物醫學材料有哪些作用
當一個人發生骨折時,醫生要用石膏為他固定患處;而患了齟齒時,則要用光固性高分子修補材料補上齟洞;而進行X光透視時所服用的鋇餐,對很多人而言也不陌生。這些材料都是生物醫學材料,又稱生物材料,是用以和生物系統結合,以診斷、治療或替換機體中的組織、器官或增進其功能。
生物醫學材料有很多種類,它可以是天然產物,也可以是合成材料,或者是它們的結合,還可用有生命力的活體細胞或天然組織與無生命的材料結合而成混雜材料。生物醫學材料不同於葯物,其主要治療目的不必要通過體內的化學反應或新陳代謝來實現,但是可以起到葯理作用,甚至起葯理活性物質的作用。與生物物質直接結合是生物醫學材料最基本的特性,如直接進入人體的植入材料,人工心肺、肝、腎等體外輔助裝置中與血液直接接觸的材料等。除應滿足一定的物理化學性質要求外,生物醫學材料還必須滿足生物學性能要求,即生物相容性要求,這是區別於其他功能材料的最重要特徵。
生物醫學材料按照組成和性質分為醫用金屬和合金、醫用高分子材料、生物陶瓷以及它們結合而成的生物醫學復合材料。經過處理的天然組織,由於其來源特殊,另成一類生物衍生材料。根據在生物環境中發生的生物化學反應水平,可分為近於惰性的、生物活性的以及可生物降解和吸收的材料。還可根據臨床用途,分為骨、關節、肌腱等骨骼——肌肉系統修復和替換材料;皮膚、乳房、食道、呼吸道、膀胱等軟組織材料;人工心瓣膜、血管、心血管內插管等醫用膜材料;組織粘合劑和縫線材料;葯物釋放載體材料;臨床診斷及生物感測器材料及齒科材料等。生物醫學材料事關人們健康,生產和使用都必須遵守國際標准化組織或中國國家標准,嚴格地進行安全性、可靠性評價並認可之後,才能投入使用。
㈨ 未來材料的發展趨勢
①復合材料是結構材料發展的重點。其中主要包括樹脂基高強度、高模嫩纖維復合材料,金屬鰭復合材料,陶瓷基復合材料及碳碳基復合材料等表面塗層或改性是另一類復合材料,其量大面廣、經濟實用,具有廣闊的發展前景。
②功能材料與器件相結合,並趨於小型化與多功能化特別是外延技術與超晶格理論的發展,使材料與器件的制備可以控制在原子尺度上,這將成為發展的重點。
③開發低維材料。低維材料具有體材料不具備的性質例如,零維的納米級金屬顆粒是電的絕緣體及吸光的黑體,以納米微粒製成的陶瓷具有較高的韌性和超塑性;納米級金屬鋁的硬度為塊休鋁的8倍;作為一維材料的高強度有機纖維、光導纖維,作為一維材料的金剛石薄膜、超導薄膜等都已顯小出廣闊的商用前景。
④信息功能材料增加品種、提高性能。這里主要指半導體、激光、紅外、光電子、液品、敏感及磁性材料等,它們是發展信息產業的基砒。高溫超導材料繼續得到重視。
⑤生物材料將得到更多的應用和發展。一是生物醫學材料,可用以代替或修復人的各種器官、血液及組織等;二是生物模擬材料,即模擬生物的機能,如反滲透膜等。
⑥傳統材料仍佔有重要位置。金屬材料在性能價格比、工藝及現有裝備上都具有明顯優勢,而且新品種不斷涌現有很強的生命力。高分了材料大大發展,性能更優異,特別是高分子功能材料。工程陶瓷在性能提高、成本降低的條件下得到發展。功能陶瓷已在功能材料中佔主要地位,還將不斷發展。
⑦碳60的出現為發展新材料開辟了條嶄新的途徑。利用原子簇技術可發展出更多的新材料。