⑴ 微生物計數方法有哪些
測定微生物細胞數目的方法有很多,介紹幾種
1.血細胞計數法
將稀釋的菌液樣品滴在血細胞計數板上,在顯微鏡下計算4~5個中格的細菌數,並求出每個小格所含細菌的平均數,再以此為依據,估算總菌數。
①此法的缺點是不能區分死菌和活菌。
②對壓在小方格界線上的細菌,應當取平均值計數。
③此法可用於測定培養液中酵母菌種群數量的變化
2.稀釋塗布平板法
原理:每個活細菌在適宜的培養基和良好的生長條件下可以通過生長形成菌落。培養基表面生長的一個菌落,來源於樣品稀釋液中的一個活菌。
①這一方法常用來統計樣品中活菌的數目
②統計的菌落數往往比活菌的實際數目低,原因是當兩個活多個細胞連在一起時,平板上觀察到的只是一個菌落。因此統計結果一般用菌落數而不是用活菌數來表示。
③土壤、水、牛奶、食品和其他材料中所含細菌、酵母、芽孢與孢子等的數量均可用此法測定。但不適於測定樣品中絲狀體微生物,例如放線菌或絲狀真菌或絲狀藍細菌等的營養體等。
④此法若不培養成菌落,可通過將一定量的菌液均勻地塗布在玻片上的一定面積上,經固定染色後在顯微鏡下計數,這樣又稱塗片計數法。染色可用台盼藍,台盼藍能使死細胞染成藍色,可分別計數死細胞和活細胞。
3.濾膜法
濾膜法是當樣品中菌數很低時,可將一定體積的湖水、海水或飲用水燈樣品通過膜過濾器。然後將濾膜乾燥、染色,並經處理使膜透明,再在顯微鏡下計算膜上(或一定面積上)的細菌數。
此法也可以通過培養觀察形成的菌落數來推算樣品中的菌數。例如測定飲用水中大腸桿菌的數目:將已知體積的水過濾後,將濾膜放在伊紅美藍培養基上培養。在該培養基上大腸桿菌的菌落呈現黑色,可根據培養基上黑色菌落的數目,計算出水樣中大腸桿菌的數目。
此法也是統計樣品中活菌的數目。
4.比濁法
原理是在一定范圍內,菌是懸液中細胞濃度與混濁度成正比,即與光密度成正比,菌越多,光密度越大。因此可藉助與分光光度計,在一定波長下,測定菌懸液的光密度,以光密度表示菌量。實驗測量時一定要控制在菌濃度與光密度成正比的線性范圍內,否則不準確。
5.顯微鏡直接計數法
在課本生物選修1生物技術實踐P22中「除了上述活菌計數法外,顯微鏡直接計數也是測定微生物數量的常用方法。」這里說的顯微鏡直接計數,我認為應該是在稀釋塗布的基礎上不培養成菌落而通過染色的方法在顯微鏡下直接計數。再如濾膜法也一樣,可以有兩種情況。
另外,微生物計數法發展迅速,多種多樣的快速、簡易、自動化的儀器和裝置等方法可以用來統計微生物的數目。
⑵ 微生物計數方法有哪些
測定微生物計數的方法有很多,主要有以下幾種:
1.血細胞計數法
將稀釋的菌液樣品滴在血細胞計數板上,在顯微鏡下計算4~5個中格的細菌數,並求出每個小格所含細菌的平均數,再以此為依據,估算總菌數.
①此法的缺點是不能區分死菌和活菌.
②對壓在小方格界線上的細菌,應當取平均值計數.
③此法可用於測定培養液中酵母菌種群數量的變化
2.稀釋塗布平板法
原理:每個活細菌在適宜的培養基和良好的生長條件下可以通過生長形成菌落.培養基表面生長的一個菌落,來源於樣品稀釋液中的一個活菌.
①這一方法常用來統計樣品中活菌的數目
②統計的菌落數往往比活菌的實際數目低,原因是當兩個活多個細胞連在一起時,平板上觀察到的只是一個菌落.因此統計結果一般用菌落數而不是用活菌數來表示.
③土壤、水、牛奶、食品和其他材料中所含細菌、酵母、芽孢與孢子等的數量均可用此法測定.但不適於測定樣品中絲狀體微生物,例如放線菌或絲狀真菌或絲狀藍細菌等的營養體等.
④此法若不培養成菌落,可通過將一定量的菌液均勻地塗布在玻片上的一定面積上,經固定染色後在顯微鏡下計數,這樣又稱塗片計數法.染色可用台盼藍,台盼藍能使死細胞染成藍色,可分別計數死細胞和活細胞.
3.濾膜法
濾膜法是當樣品中菌數很低時,可將一定體積的湖水、海水或飲用水燈樣品通過膜過濾器.然後將濾膜乾燥、染色,並經處理使膜透明,再在顯微鏡下計算膜上(或一定面積上)的細菌數.
此法也可以通過培養觀察形成的菌落數來推算樣品中的菌數.例如測定飲用水中大腸桿菌的數目:將已知體積的水過濾後,將濾膜放在伊紅美藍培養基上培養.在該培養基上大腸桿菌的菌落呈現黑色,可根據培養基上黑色菌落的數目,計算出水樣中大腸桿菌的數目.
此法也是統計樣品中活菌的數目.
4.比濁法
原理是在一定范圍內,菌是懸液中細胞濃度與混濁度成正比,即與光密度成正比,菌越多,光密度越大.因此可藉助與分光光度計,在一定波長下,測定菌懸液的光密度,以光密度表示菌量.實驗測量時一定要控制在菌濃度與光密度成正比的線性范圍內,否則不準確.
5.顯微鏡直接計數法
在課本生物選修1生物技術實踐P22中「除了上述活菌計數法外,顯微鏡直接計數也是測定微生物數量的常用方法.」這里說的顯微鏡直接計數,我認為應該是在稀釋塗布的基礎上不培養成菌落而通過染色的方法在顯微鏡下直接計數.再如濾膜法也一樣,可以有兩種情況.
另外,微生物計數法發展迅速,多種多樣的快速、簡易、自動化的儀器和裝置等方法可以用來統計微生物的數目.
⑶ 微生物檢測手段及注意事項
1. 微生物計量法
1.1 體積測量法
又稱測菌絲濃度法,通過測定一定體積培養液中所含菌絲的量來反映微生物的生長狀況。方法是,取一定量的待測培養液(如10 mL)放在有刻度的離心管中,設定一定的離心時間(如5 min)和轉速(如5000 rpm),離心後,倒出上清夜,測出上清夜體積為v,則菌絲濃度為(10-v)/10。菌絲濃度測定法是大規模工業發酵生產上微生物生長的一個重要監測指標。這種方法比較粗放,簡便,快速,但需要設定一致的處理條件,否則偏差很大,由於離心沉澱物中夾雜有一些固體營養物,結果會有一定偏差。
1.2稱 乾重法
可用離心或過濾法測定。一般乾重為濕重的10~20%。在離心法中,將一定體積待測培養液倒入離心管中,設定一定的離心時間和轉速,進行離心,並用清水離心洗滌1~5次,進行乾燥。乾燥可用烘箱在105 ℃或100 ℃下烘乾,或採用紅外線烘乾,也可在80 ℃或40 ℃下真空乾燥,乾燥後稱重。如用過濾法,絲狀真菌可用濾紙過濾,細菌可用醋酸纖維膜等濾膜過濾,過濾後用少量水洗滌,在40 ℃下進行真空乾燥。稱乾重發法較為煩瑣,通常獲取的微生物產品為菌體時,常採用這種方法,如活性乾酵母(Activity Dry Yeast, ADY),一些以微生物菌體為活性物質的飼料和肥料。
1.3 比濁法
微生物的生長引起培養物混濁度的增高。通過紫外分光光度計測定一定波長下的吸光值,判斷微生物的生長狀況。對某一培養物內的菌體生長作定時跟蹤時,可採用一種特製的有側臂的三角燒瓶。將側臂插入光電比色計的比色座孔中,即可隨時測定其生長情況,而不必取菌液。該法主要用於發酵工業菌體生長監測。如使用UNICO公司的紫外-可見分光光度計,在波長600 nm處用比色管定時測定發酵液的吸光光度值OD600,以此監控E.coli的生長及誘導時間。
1.4 菌絲長度測量法
對於絲狀真菌和一些放線菌,可以在培養基上測定一定時間內菌絲生長的長度,或是利用一隻一端開口並帶有刻度的細玻璃管,到入合適的培養基,卧放,在開口的一端接種微生物,一段時間後記錄其菌絲生長長度,藉此衡量絲狀微生物的生長。
2. 微生物計數法
2.1 血球計數板法
血球計數板是一種有特別結構刻度和厚度的厚玻璃片,玻片上有四條溝和兩條嵴,中央有一短橫溝和兩個平台,兩嵴的表比兩平台的表面高0.1 mm,每個平台上刻有不同規格的格網,中央0.1 mm2面積上刻有400個小方格。通過油鏡觀察,統計一定大格內微生物的數量,即可算出1 mL菌液中所含的菌體數。這種方法簡便,直觀,快捷,但只適宜於單細胞狀態的微生物或絲狀微生物所產生的孢子進行計數,並且所得結果是包括死細胞在內的總菌數。
2.2 染色計數法
為了彌補一些微生物在油鏡下不易觀察計數,而直接用血球計數板法又無法區分死細胞和活細胞的不足,人們發明了染色計數法。藉助不同的染料對菌體進行適當的染色,可以更方便的在顯微鏡下進行活菌計數。如酵母活細胞計數可用美藍染色液,染色後在顯微鏡下觀察,活細胞為無色,而死細胞為藍色。
2.3 比例計數法
將已知顆粒(如黴菌孢子或紅細胞)濃度的液體與一待測細胞濃度的菌液按一定比例均勻混合,在顯微鏡視野中數出各自的數目,即可得未知菌液的細胞濃度。這種計數方法比較粗放。並且需要配製已知顆粒濃度的懸液做標准。
2.4 液體稀釋法
對未知菌樣做連續十倍系列稀釋,根據估計數,從最適宜的三個連續的10倍稀釋液中各取5 mL試樣,接種1 mL到3組共15隻裝培養液的試管中,經培養後記錄每個稀釋度出現生長的試管數,然後查最大或然數表MPN(Most Probable Number)得出菌樣的含菌數,根據樣品稀釋倍數計算出活菌含量。該法常用於食品中微生物的檢測,例如飲用水和牛奶的微生物限量檢查。
2.5 平板菌落計數法
這是一種最常用的活菌計數法。將待測菌液進行梯度稀釋,取一定體積的稀釋菌液與合適的固體培養基在凝固前均勻混合,或將菌液塗布於已凝固的固體培養基平板上。保溫培養後,用平板上出現的菌落數乘以菌液稀釋度,即可算出原菌液的含菌數。一般以直徑9 cm的平板上出現50~500個菌落為宜。但方法比較麻煩,操作者需有熟練的技術。平板菌落計數法不僅可以得出菌液中活菌的含菌數,而且同時將菌液中的'細菌進行了一次分離培養,獲得了單克隆。
2.6 試劑紙
在平板計數法的基礎上,發展了小型商品化產品以供快速計數用。形式有小型厚濾紙片,瓊脂片等。在濾紙和瓊脂片中吸有合適的培養基,其中加入活性指示劑2, 3, 5-氯化三苯基四氮唑(TTC,無色)待蘸取測試菌液後置密封包裝袋中培養。短期培養後在濾紙上出現一定密度的玫瑰色微小菌落與標准紙色板上圖譜比較即可估算出樣品的含菌量。試劑紙法計數快捷准確,相比而言避免了平板計數法的人為操作誤差。
2.7 膜過濾法
用特殊的濾膜過濾一定體積的含菌樣品,經丫叮橙染色,在紫外顯微鏡下觀察細胞的熒光,活細胞會發橙色熒光,而死細胞則發綠色熒光。
3. 間接測定法
微生物的生長伴隨著一系列生理指標發生變化,例如酸鹼度,發酵液中的含氮量,含糖量,產氣量等,與生長量相平行的生理指標很多,它們可作為生長測定的相對值。因此可利用生理指標等間接參數來測定生物量。
3.1 測定含氮量
大多數細菌的含氮量為乾重的12.5%,酵母為7.5%,黴菌為6.0%。根據含氮量×6.25,即可測定粗蛋白的含量。含氮量的測定方法有很多,如用硫酸,過氯酸,碘酸,磷酸等消化法和Dumas測N2氣法。Dumas測N2氣法是將樣品與CuO混合,在CO2氣流中加熱後產生氮氣,收集在呼吸計中,用KOH吸去CO2後即可測出N2的量。
3.2 測定含碳量
將少量(乾重0.2~2.0 mg)生物材料混入1 mL水或無機緩沖液中,用2 mL 2%的K2Cr2O7溶液在100 ℃下加熱30分鍾後冷卻。加水稀釋至5 mL,在580 nm的波長下讀取吸光光度值,即可推算出生長量。需用試劑做空白對照,用標准樣品做標准曲線。
3.3還原糖測定法
還原糖通常是指單糖或寡糖,可以被微生物直接利用,通過還原糖的測定可間接反映微生物的生長狀況,常用於大規模工業發酵生產上微生物生長的常規監測。方法是,離心發酵液,取上清液,加入斐林試劑,沸水浴煮沸3分鍾,取出加少許鹽酸酸化,加入Na2S2O3臨近終點時加入澱粉溶液,繼續加Na2S2O3至終點,查表讀出還原糖的含量。
3.4 氨基氮的測定
離心發酵液,取上清液,加入甲基紅和鹽酸作指示劑,加入0.02 mol/L的NaOH調色至顏色剛剛褪去,加入底物18%的中性甲醛,反應數刻,加入0.02 mol/L的使之變色,根據NaOH的用量折算出氨基氮的含量。根據培養液中氨基氮的含量,可間接反映微生物的生長狀況。
3.5 其他生理物質的測定
P,DNA,RNA,ATP,NAM(乙醯胞壁酸)等含量以及產酸,產氣,產CO2(用標記葡萄糖做基質),耗氧,黏度,產熱等指標,都可用於生長量的測定。也可以根據反應前後的基質濃度變化,最終產氣量,微生物活性三方面的測定反映微生物的生長。如在BMP-2的發酵生產上,隨時監測溶氧量的變化和酸鹼度的變化,判斷細菌的長勢。
4. 商業化快速微生物檢測法
微生物的檢測,其發展方向是快速,准確,簡便,自動化,當前很多生物製品公司利用傳統微生物檢測原理,結合不同的檢測方法,設計了形式各異的微生物檢測儀器設備,正逐步廣泛應用於醫學微生物檢測和科學研究領域。例如:
4.1 試劑盒,培養基等手段
抗干擾培養基和微生物數量快速檢測技術結合解決了傳統微生物檢測手段不能解決的難題,為建立一套完整的抗干擾微生物檢測系統奠定了堅實的基礎。如:抗干擾微生物培養基,新型生化鑒定管,微生物計數卡,環境質量檢測試劑盒等,可方便的用於多項檢測。
4.2 藉助新型先進儀器
BACTOMETER全自動各類總菌數及快速細菌檢測系統可以數小時內獲得監測結果,樣本顏色及光學特徵都不影響讀數,對酵母和黴菌檢測同樣高度敏感原理是利用電阻抗法(Impedance Technology)將待測樣本與培養基置於反應試劑盒內,底部有一對不銹鋼電極,測定因微生物生長而產生阻抗改變。如微生物生長時可將培養基中的大分子營養物經代謝轉變為活躍小分子,電阻抗法可測試這種微弱變化,從而比傳統平板法更快速監測微生物的存在及數量。測定項目包括總生菌數,酵母菌,大腸桿菌群,黴菌,乳酸菌,嗜熱菌,革蘭氏陰性菌,金黃色葡萄球菌等。
微生物OD值是反映菌體生長狀態的一個指標,OD是Optical Density(光密度)的縮寫,表示被檢測物吸收掉的光密度。通常400~700 nm 都是微生物測定的范圍,需要紫外分光光度計測最大吸收波長。用得最多的是:505 nm測菌絲菌體、560 nm測酵母、600 nm測細菌。用測OD方法畫微生物生長曲線時,同一株菌的起始培養濃度可以准備多管(根據檢測點的需要,如需檢測10個點,就准備10管),然後每個點取一管出來測OD值就行了。
一般測菌體密度的OD的波長范圍是580 nm-660 nm,如枯草芽孢桿菌用600 nm,已經屬於可見光區(200 nm~400 nm為紫外光區,400 nm~800 nm為可見光區)。空白如用水做,需要離心洗滌菌體;空白如用不接種的培養基做就不需要洗滌,但是不接種的培養基要和接種的同時培養以求條件一致,最後注意一般OD值在控制在0.1~0.4最好,在這個區內的值就可靠,如果OD大於1.0,一般要稀釋後再測,因為OD太大,分光光度計的靈敏度就會顯著降低。
一般都測吸光值,而且最好是整個實驗過程中,保持發酵液或菌體的稀釋倍數一致,吸光值與稀釋倍數不一定成正比,可保證整個實驗點有可比性。且取值的時候要連續讀數,重復3次的數最好。
另,用分光光度計測微生物的OD值為什麼要把波長設為600 nm
這個波長其實只是針對濁度,而分光光度計在600 nm處對濁度的反應比較靈敏。測吸收峰的實際意義並不大,比如LB搖瓶培養過夜的大腸桿菌,其實在400多納米處的吸收最大,但那很可能是培養液的吸收峰。
⑷ .進行微生物的培養與觀察時怎樣記錄結果
記錄菌落的特徵,包括形狀、大小、顏色等。
⑸ 試述微生物活菌計數方法有哪幾種
v常用測定微生物生長的方法有:1)稱乾重法。可用離心法或過濾法測定。優點:可適用於一切微生物,缺點:無法區別死菌和活菌。2)比濁法。原理:由於微生物在液體培養時,原生質的增加導致混濁度的增加,可用分光光度計測定。優點:比較准確。3)測含氮量,大多數微生物的含氮量占乾重的比例較一致,根據含氮量再乘以6.25即可測得其粗蛋白的含量。4)血球計數板法。優點:簡便、快速、直觀。缺點:結果包括死菌和活菌。5)液體稀釋法。對未知菌樣作連續的10倍系列稀釋,經培養後,記錄每個稀釋度出現生長的試管數,然後查MPN表,再根據樣品的稀釋倍數就可計算其中的活菌含量。優點:可計算活菌數,較准確。缺點:比較繁瑣。6)平板菌落計數法。取一定體積的稀釋菌液塗布在合適的固體培養基,經培養後計算原菌液的含菌數。優點,可以獲得活菌的信息。缺點:操作繁瑣,需要培養一定時間才能獲得,測定結果受多種因素的影響。
⑹ 微生物生長的常用檢測方法
一、生長量測定法
1.1體積測量法:又稱測菌絲濃度法。
通過測定一定體積培養液中所含菌絲的量來反映微生物的生長狀況。方法是,取一定量的待測培養液(如10毫升)放在有刻度的離心管中,設定一定的離心時間(如5分鍾)和轉速(如5000rpm),離心後,倒出上清夜,測出上清夜體積為v,則菌絲濃度為(10-v)/10。菌絲濃度測定法是大規模工業發酵生產上微生物生長的一個重要監測指標。這種方法比較粗放,簡便,快速,但需要設定一致的處理條件,否則偏差很大,由於離心沉澱物中夾雜有一些固體營養物,結果會有一定偏差。
1.2稱乾重法:
可用離心或過濾法測定。一般乾重為濕重的10-20%。在離心法中,將一定體積待測培養液倒入離心管中,設定一定的離心時間和轉速,進行離心,並用清水離心洗滌1-5次,進行乾燥。乾燥可用烘箱在105℃或100℃下烘乾,或採用紅外線烘乾,也可在80℃或40℃下真空乾燥,乾燥後稱重。如用過濾法,絲狀真菌可用濾紙過濾,細菌可用醋酸纖維膜等濾膜過濾,過濾後用少量水洗滌,在40℃下進行真空乾燥。稱乾重發法較為煩瑣,通常獲取的微生物產品為菌體時,常採用這種方法,如活性乾酵母(activitydryyeast,ADY),一些以微生物菌體為活性物質的飼料和肥料。
1.3比濁法:
微生物的生長引起培養物混濁度的增高。通過紫外分光光度計測定一定波長下的吸光值,判斷微生物的生長狀況。對某一培養物內的菌體生長作定時跟蹤時,可採用一種特製的有側臂的三角燒瓶。將側臂插入光電比色計的比色座孔中,即可隨時測定其生長情況,而不必取菌液。該法主要用於發酵工業菌體生長監測。如我所使用UNICO公司的紫外-可見分光光度計,在波長600nm處用比色管定時測定發酵液的吸光光度值OD600,以此監控E.Coli的生長及誘導時間。
1.4菌絲長度測量法:
對於絲狀真菌和一些放線菌,可以在培養基上測定一定時間內菌絲生長的長度,或是利用一隻一端開口並帶有刻度的細玻璃管,到入合適
的培養基,卧放,在開口的一端接種微生物,一段時間後記錄其菌絲生長長度,藉此衡量絲狀微生物的生長
二、微生物計數法
2.1血球計數板法:
血球計數板是一種有特別結構刻度和厚度的厚玻璃片,玻片上有四條溝和兩條嵴,中央有一短橫溝和兩個平台,兩嵴的表比兩平台的表面高0.1mm,每個平台上刻有不同規格的格網,中央0.1mm2面積上刻有400個小方格。通過油鏡觀察,統計一定大格內微生物的數量,即可算出1毫升菌液中所含的菌體數。這種方法簡便,直觀,快捷,但只適宜於單細胞狀態的微生物或絲狀微生物所產生的孢子進行計數,並且所得結果是包括死細胞在內的總菌數。
2.2染色計數法:
為了彌補一些微生物在油鏡下不易觀察計數,而直接用血球計數板法又無法區分死細胞和活細胞的不足,人們發明了染色計數法。藉助不同的染料對菌體進行適當的染色,可以更方便的在顯微鏡下進行活菌計數。如酵母活細胞計數可用美藍染色液,染色後在顯微鏡下觀察,活細胞為無色,而死細胞為藍色。
2.3比例計數法:
將已知顆粒(如黴菌孢子或紅細胞)濃度的液體與一待測細胞濃度的菌液按一定比例均勻混合,在顯微鏡視野中數出各自的數目,即可得未知菌液的'細胞濃度。這種計數方法比較粗放。並且需要配製已知顆粒濃度的懸液做標准。
2.4液體稀釋法:
對未知菌樣做連續十倍系列稀釋,根據估計數,從最適宜的三個連續的10倍稀釋液中各取5毫升試樣,接種1毫升到3組共15隻裝培養液的試管中,經培養後記錄每個稀釋度出現生長的試管數,然後查最大或然數表MPN(mostprobablynumber)得出菌樣的含菌數,根據樣品稀釋倍數計算出活菌含量。該法常用於食品中微生物的檢測,例如飲用水和牛奶的微生物限量檢查。
2.5平板菌落計數法:
這是一種最常用的活菌計數法。將待測菌液進行梯度稀釋,取一定體積的稀釋菌液與合適的固體培養基在凝固前均勻混合,或將菌液塗布於已凝固的固體培養基平板上。保溫培養後,用平板上出現的菌落數乘以菌液稀釋度,即可算出原菌液的含菌數。一般以直徑9cm的平板上出現50-500個菌落為宜。但方法比較麻煩,操作者需有熟練的技術。平板菌落計數法不僅可以得出菌液中活菌的含菌數,而且同時將菌液中的細菌進行了一次分離培養,獲得了單克隆。
2.6試劑紙法:
在平板計數法的基礎上,發展了小型商品化產品以供快速計數用。形式有小型厚濾紙片,瓊脂片等。在濾紙和瓊脂片中吸有合適的培養基,其中加入活性指示劑2,3,5-氯化三苯基四氮唑(TTC,無色)待蘸取測試菌液後置密封包裝袋中培養。短期培養後在濾紙上出現一定密度的玫瑰色微小菌落與標准紙色板上圖譜比較即可估算出樣品的含菌量。試劑紙法計數快捷准確,相比而言避免了平板計數法的人為操作誤差。
2.7膜過濾法:
用特殊的濾膜過濾一定體積的含菌樣品,經丫叮橙染色,在紫外顯微鏡下觀察細胞的熒光,活細胞會發橙色熒光,而死細胞則發綠色熒光。
2.8生理指標法:
微生物的生長伴隨著一系列生理指標發生變化,例如酸鹼度,發酵液中的含氮量,含糖量,產氣量等,與生長量相平行的生理指標很多,它們可作為生長測定的相對值。
2.9測定含氮量:
大多數細菌的含氮量為乾重的12.5%,酵母為7.5%,黴菌為6.0%。根據含氮量×6.25,即可測定粗蛋白的含量。含氮量的測定方法有很多,如用硫酸,過氯酸,碘酸,磷酸等消化法和Dumas測N2氣法。Dumas測N2氣法是將樣品與CuO混合,在CO2氣流中加熱後產生氮氣,收集在呼吸計中,用KOH吸去CO2後即可測出N2的量。
2.10測定含碳量:
將少量(乾重0.2-2.0mg)生物材料混入1毫升水或無機緩沖液中,用2毫升2%的K2Cr2O7溶液在1000C下加熱30分鍾後冷卻。加水稀釋至5毫升,在580nm的波長下讀取吸光光度值,即可推算出生長量。需用試劑做空白對照,用標准樣品做標准曲線。
2.11還原糖測定法:
還原糖通常是指單糖或寡糖,可以被微生物直接利用,通過還原糖的測定可間接反映微生物的生長狀況,常用於大規模工業發酵生產上微生物生長的常規監測。方法是,離心發酵液,取上清液,加入斐林試劑,沸水浴煮沸3分鍾,取出加少許鹽酸酸化,加入Na2S2O3臨近終點時加入澱粉溶液,繼續加Na2S2O3至終點,查表讀出還原糖的含量。
2.12氨基氮的測定:
方法是,離心發酵液,取上清液,加入甲基紅和鹽酸作指示劑,加入0.02N的NaOH調色至顏色剛剛褪去,加入底物18%的中性甲醛,反應數刻,加入0.02N的使之變色,根據NaOH的用量折算出氨基氮的含量。根據培養液中氨基氮的含量,可間接反映微生物的生長狀況。
2.13其他生理物質的測定:
P,DNA,RNA,ATP,NAM(乙醯胞壁酸)等含量以及產酸,產氣,產CO2(用標記葡萄糖做基質),耗氧,黏度,產熱等指標,都可用於生長量的測定。也可以根據反應前後的基質濃度變化,最終產氣量,微生物活性三方面的測定反映微生物的生長。如我所在BMP-2的發酵生產上,隨時監測溶氧量的變化和酸鹼度的變化,判斷細菌的長勢。
拓展:微生物的現代定義
肉眼難以看清,需要藉助光學顯微鏡或電子顯微鏡才能觀察到的一切微小生物的總稱。微生物包括細菌、病毒、真菌和少數藻類等。(但有些微生物是肉眼可以看見的,像屬於真菌的蘑菇、靈芝等。)病毒是一類由核酸和蛋白質等少數幾種成分組成的「非細胞生物」,但是它的生存必須依賴於活細胞。根據存在的不同環境分為空間微生物、海洋微生物等,按照細胞結構分類分為原核微生物和真核微生物。
微生物的主要特徵
體小面大
一個體積恆定的物體,被切割的越小,其相對表面積越大。微生物體積很小,如一個典型的球菌,其體積約1mm,可是其表面積卻很大。這個特徵也是賦予微生物其他如代謝快等特性的基礎。
吸多轉快
微生物通常具有極其高效的生物化學轉化能力。據研究,乳糖菌在1個小時之內能夠分解其自身重量1000-10000倍的乳糖,產朊假絲酵母菌的蛋白合成能力是大豆蛋白合成能力的100倍。
生長繁殖快
相比於大型動物,微生物具有極高的生長繁殖速度。大腸桿菌能夠在12.5-20分鍾內繁殖1次。不妨計算一下,1個大腸桿菌假設20分鍾分裂1次,1小時3次,1晝夜24小時分裂24×3=72次,大概可產生4722366500萬億個(2的72次方),這是非常巨大的數字。但事實上,由於各種條件的限制,如營養缺失、競爭加劇、生存環境惡化等原因,微生物無法完全達到這種指數級增長。 已知大多數微生物生長的最佳pH范圍為7.0 (6.6~7.5)附近,部分則低於4.0。
微生物的這一特性使其在工業上有廣泛的應用,如發酵、單細胞蛋白等。微生物是人類不可或缺的好朋友。
適應強 易變異
分布廣 種類多
微生物對我們生活的影響
微生物對人類最重要的影響之一是導致傳染病的流行。在人類疾病中有50%是由病毒引起。微生物導致人類疾病的歷史,也就是人類與之不斷斗爭的歷史。在疾病的預防和治療方面,人類取得了長足的進展,但是新現和再現的微生物感染還是不斷發生,像大量的病毒性疾病一直缺乏有效的治療葯物。一些疾病的致病機制並不清楚。大量的廣譜抗生素的濫用造成了強大的選擇壓力,使許多菌株發生變異,導致耐葯性的產生,人類健康受到新的威脅。一些分節段的病毒之間可以通過重組或重配發生變異,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都與前次導致感染的株型發生了變異,這種快速的變異給疫苗的設計和治療造成了很大的障礙。而耐葯性結核桿菌的出現使原本已近控制住的結核感染又在世界范圍內猖獗起來。
微生物千姿百態,有些是腐敗性的,即引起食品氣味和組織結構發生不良變化。當然有些微生物是有益的,它們可用來生產如乳酪,麵包,泡菜,啤酒和葡萄酒。微生物非常小,必須通過顯微鏡放大約1000 倍才能看到。比如中等大小的細菌,1000個疊加在一起只有句號那麼大。
微生物能夠致病,能夠造成食品、布匹、皮革等發霉腐爛,但微生物也有有益的一面。最早是弗萊明從青黴菌抑制其它細菌的生長中發現了青黴素,這對醫葯界來講是一個劃時代的發現。後來大量的抗生素從放線菌等的代謝產物中篩選出來。抗生素的使用在第二次世界大戰中挽救了無數人的生命。一些微生物被廣泛應用於工業發酵,生產乙醇、食品及各種酶制劑等;一部分微生物能夠降解塑料、處理廢水廢氣等等,並且可再生資源的潛力極大,稱為環保微生物;還有一些能在極端環境中生存的微生物,例如:高溫、低溫、高鹽、高鹼以及高輻射等普通生命體不能生存的環境,依然存在著一部分微生物等等。看上去,我們發現的微生物已經很多,但實際上由於培養方式等技術手段的限制,人類現今發現的微生物還只佔自然界中存在的微生物的很少一部分。
微生物間的相互作用機制也相當奧妙。例如健康人腸道中即有大量細菌存在,稱為正常菌群,其中包含的細菌種類高達上百種。在腸道環境中這些細菌相互依存,互惠共生。食物、有毒物質甚至葯物的分解與吸收,菌群在這些過程中發揮的作用,以及細菌之間的相互作用機制還不明了。一旦菌群失調,就會引起腹瀉。
隨著醫學研究進入分子水平,人們對基因、遺傳物質等專業術語也日漸熟悉。人們認識到,是遺傳信息決定了生物體具有的生命特徵,包括外部形態以及從事的生命活動等等,而生物體的基因組正是這些遺傳信息的攜帶者。因此闡明生物體基因組攜帶的遺傳信息,將大大有助於揭示生命的起源和奧秘。
工業微生物涉及食品、制葯、冶金、采礦、石油、皮革、輕化工等多種行業。通過微生物發酵途徑生產抗生素、丁醇、維生素C以及一些風味食品的制備等;某些特殊微生物酶參與皮革脫毛、冶金、採油采礦等生產過程,甚至直接作為洗衣粉等的添加劑;另外還有一些微生物的代謝產物可以作為天然的微生物殺蟲劑廣泛應用於農業生產。通過對枯草芽孢桿菌的基因組研究,發現了一系列與抗生素及重要工業用酶的產生相關的基因。乳酸桿菌作為一種重要的微生態調節劑參與食品發酵過程,對其進行的基因組學研究將有利於找到關鍵的功能基因,然後對菌株加以改造,使其更適於工業化的生產過程。國內維生素C兩步發酵法生產過程中的關鍵菌株氧化葡萄糖酸桿菌的基因組研究,將在基因組測序完成的前提下找到與維生素C生產相關的重要代謝功能基因,經基因工程改造,實現新的工程菌株的構建,簡化生產步驟,降低生產成本,繼而實現經濟效益的大幅度提升。對工業微生物開展的基因組研究,不斷發現新的特殊酶基因及重要代謝過程和代謝產物生成相關的功能基因,並將其應用於生產以及傳統工業、工藝的改造,同時推動現代生物技術的迅速發展。
經濟作物柑橘的致病菌是國際上第一個發表了全序列的植物致病微生物。還有一些在分類學、生理學和經濟價值上非常重要的農業微生物,例如:胡蘿卜歐文氏菌、植物致病性假單胞菌以及中國正在開展的黃單胞菌的研究等正在進行之中。日前植物固氮根瘤菌的全序列也剛剛測定完成。借鑒已經較為成熟的從人類病原微生物的基因組學信息篩選治療性葯物的方案,可以嘗試性地應用到植物病原體上。特別像柑橘的致病菌這種需要昆蟲媒介才能完成生活周期的種類,除了殺蟲劑能阻斷其生活周期以外,只能通過遺傳學研究找到毒力相關因子,尋找抗性靶位以發展更有效的控制對策。固氮菌全部遺傳信息的解析對於開發利用其固氮關鍵基因提高農作物的產量和質量也具有重要的意義。[10]
在極端環境下能夠生長的微生物稱為極端微生物,又稱嗜極菌。嗜極菌對極端環境具有很強的適應性,極端微生物基因組的研究有助於從分子水平研究極限條件下微生物的適應性,加深對生命本質的認識。
⑺ 微生物計數方法有哪些我想知道詳細的操作步驟
微生物的顯微直接計數法
一、實驗目的
了解血球計數板的構造、計數原理和計數方法,掌握顯微鏡下直接計數的技能。
二、實驗原理
測定微生物細胞數量的方法很多,通常採用的有顯微直接計數法和平板計數法。
顯微計數法適用於各種含單細胞菌體的純培養懸浮液,如有雜菌或雜質,常不易分辨。菌體較大的酵母菌或黴菌孢子可採用血球計數板,一般細菌則採用彼得羅夫·霍澤(Petrof Hausser)細菌計數板。兩種計數板的原理和部件相同,只是細菌計數板較薄,可以使用油鏡觀察。而血球計數板較厚,不能使用油鏡,計數板下部的細菌不易看清。
血球計數板是一塊特製的厚型載玻片,載玻片上有4條槽而構成3個平台。中間的平台較寬,其中間又被一短橫槽分隔成兩半,每個半邊上面各有一個計數區(圖21-1),計數區的刻度有兩種:一種是計數區分為16個大方格(大方格用三線隔開),而每個大方格又分成25個小方格;另一種是一個計數區分成25個大方格(大方格之間用雙線分開),而每個大方格又分成16個小方格。但是不管計數區是哪一種構造,它們都有一個共同特點,即計數區都由400個小方格組成。
計數區邊長為1mm,則計數區的面積為l mm2,每個小方格的面積為1/400mm2。蓋上蓋玻片後,計數區的高度為0.1mm,所以每個計數區的體積為0.1mm3,每個小方格的體積為1/4000mm3。
使用血球計數板計數時,先要測定每個小方格中微生物的數量,再換算成每毫升菌液(或每克樣品)中微生物細胞的數量。
已知:1mm3體積=10 mm×10 mm×10 mm= 1000mm3
所以:1mm3體積應含有小方格數為1000mm3/1/4000mm3=4×106個小方格,即系數K=4×106 。
因此:每ml菌懸液中含有細胞數= 每個小格中細胞平均數(N)×系數(K)×菌液稀釋倍數(d)
三、實驗器材
1.活材料:釀酒酵母(Saccharomyces cerevisiae)斜面或培養液。
2.器材:顯微鏡、血球計數板、蓋玻片(22mm×22mm)、吸水紙、計數器、滴管、擦鏡紙。
四、實驗方法
1.視待測菌懸液濃度,加無菌水適當稀釋(斜面一般稀釋到10-2),以每小格的菌數可數為度。
2.取潔凈的血球計數板一塊,在計數區上蓋上一塊蓋玻片。
3.將酵母菌懸液搖勻,用滴管吸取少許,從計數板中間平台兩側的溝槽內沿蓋玻片的下邊緣摘入一小滴(不宜過多),讓菌懸液利用液體的表面張力充滿計數區,勿使氣泡產生,並用吸水紙吸去溝槽中流出的多餘菌懸液。也可以將菌懸液直接滴加在計數區上,不要使計數區兩邊平台沾上菌懸液,以免加蓋蓋玻片後,造成計數區深度的升高。然後加蓋蓋玻片(勿使產生氣泡)。4.靜置片刻,將血球計數板置載物台上夾穩,先在低倍鏡下找到計數區後,再轉換高倍鏡觀察並計數。由於生活細胞的折光率和水的折光率相近,觀察時應減弱光照的強度。
5.計數時若計數區是由16個大方格組成,按對角線方位,數左上、左下、右上、右下的4個大方格(即100小格)的菌數。如果是25個大方格組成的計數區,除數上述四個大方格外,還需數中央l個大方格的菌數(即80個小格)。如菌體位於大方格的雙線上,計數時則數上線不數下線,數左線不數右線,以減少誤差。
6.對於出芽的酵母菌,芽體達到母細胞大小一半時,即可作為兩個菌體計算。每個樣品重復計數2—3次(每次數值不應相差過大,否則應重新操作),求出每一個小格中細胞平均數(N),按公式計算出每ml(g)菌懸液所含酵母菌細胞數量。
7.測數完畢,取下蓋玻片,用水將血球計數板沖洗干凈,切勿用硬物洗刷或抹擦,以免損壞網格刻度。洗凈後自行晾乾或用吹風機吹乾,放入盒內保存。
五、實驗作業:
將實驗結果填入下表中:
計數次數 每個大方格菌數 稀 釋
倍 數 試管斜面中的總菌數 平均值
1 2 3 4 5
第一次
第二次
⑻ 微生物培養記錄
1、觀察時間
2、培養溫度
3、菌落觀察(性狀、顏色),液體培養的話主要記錄顏色(觀察時振盪幾下),一些微生物培養時還要記錄氣味等
4、做生化試驗的話,記錄每個生化試驗的結果
⑼ 研究微生物的重要經典技術有哪些
微生物學的研究方法和技術有:
顯微技術,純種培養技術,無菌技術,純種分離純化技術和微生物保藏技術。
顯微技術(micros):顯微技術是利用光學系統或電子光學系統設備,觀察肉眼所不能分辨的微小物體形態結構及其特性的技術。包括:①各種顯微鏡的基本原理、操作和應用的技術;②顯微鏡樣品的制備技術;③觀察結果的記錄、分析和處理的技術。
純培養:純培養最重要的是在於微生物的生理研究,方法是依靠滅菌和分離,是由巴斯德(L.Pasteur)和柯赫(R.Koch)建立起來的。在自然界中,有的培養條件很困難,特別是具有密切共生關系的生物及進行寄生性營養的生物;也有一些在理論上不可能進行純粹培養的生物。純培養(pure culture)——微生物學中把從一個細胞或一群相同的細胞經過培養繁殖而得到的後代,稱純培養。
無菌技術:無菌技術是在醫療護理操作過程中,保持無菌物品、無菌區域不被污染、防止病原微生物 侵入人體的一系列操作技術。無菌技術(aseptic technique) 是指在執行醫療、護理技術過程中,防止一切微生物侵入機體和保持無菌物品及無菌區域不被污染的操作技術和管理方法。
純化:純化是將多糖混合物分離為單一多糖的過程。在進行菌種鑒定時,所用的微生物一般均要求為純的培養物。得到純培養的過程稱為分離純化。
⑽ 微生物的菌落特徵主要從哪些方面來描述
細菌菌落的特徵描述應當包括:菌落的大小、形態、顏色、光澤度、透明度、質地、隆起狀態、邊緣特徵等。常用的描述詞彙如下:
1、大小:菌落覆蓋的范圍,一般描述菌落的直徑即可。
2、形態:指菌落的外觀形狀,常用詞彙包括圓形、卵圓形、三角形、形狀不規則等。
3、顏色:包括正反面顏色,即氣生菌絲和基內菌絲顏色,常用詞彙包括:白色、乳白色、紅色、粉色、黑色、無色等。
4、光澤度:指表面有無光澤,可直接描述為菌落表面有光澤、無光澤、表面光滑、粗糙等。一般有莢膜的菌落表面有光澤,無莢膜的菌落表面無光澤。
5、透明度:描述菌落透光的性質,常用詞彙包括:透明、半透明、不透明。
6、質地:指菌落的粘性、脆性等,常用詞彙包括:蠟狀、乾燥、易挑起、粘稠感等。
7、隆起狀態:指菌落切面的形態,常用詞彙包括:隆起、凸起、扁平等。
8、邊緣特徵:指菌落周邊的形狀,常用詞彙包括:波狀、完整、粉粒狀、嚙齒狀等。
(10)微生物常用的記錄有哪些方面擴展閱讀
菌落特徵比較:
細菌:濕潤,粘稠,易挑起,一般形成較小的圓形菌落,顏色有白色、黃色等,表面光滑或不光滑。
放線菌:乾燥,多皺,難挑起,菌落較小,多有色素,菌落背面有同心圓形紋路。這點可以和細菌菌落區分。
酵母菌:濕潤,粘稠,易挑起,表面光華,比細菌的菌落大而厚,菌落為淡黃色,光滑,半透明,
黴菌:菌絲細長,菌落疏鬆,成絨毛狀、蜘蛛網狀、棉絮狀,無固定大小,多有光澤,不易挑起。