Ⅰ aao工藝原理
A-A-O生物脫氮除磷工藝是傳統活性污泥工藝、生物硝化及反硝化工藝和生物除磷工藝的綜合。在該工藝流程內,BOD、SS和以各種形式存在的氮和磷將一並被去除。Ⅱ 污水生物脫氮的原理是什麼
首先你要明確反硝化的原理:硝態氮——亞硝態氮——no——n20——n2,因為你無法得到亞氮之後的數據,所以你可以間接的以亞氮的數據去分析n2o的數值。
但從你得到的數據來看,想把你原來的課題講清楚看來是很難的,參照你現在得到的實驗數據你可以和你老是商量下,分析反硝化過程中亞氮積累對反硝化的影響還是可以說清楚的,比如講你的亞氮很低,這就說明反硝化過程沒有亞氮的積累,說明反硝化效果是好的,如果你的亞氮比較多,說明你反硝化的進程不好,存在抑制因素。
我只提下我的建議,希望有幫助。還有,本科答辯不比過多再議,能把事情說清楚就可以了,沒要必要非做出來什麼效果。
Ⅲ 脫氮除磷工藝的原理
氨氮通過好氧亞硝化、硝化作用生成亞硝酸根、硝酸根,亞硝酸根、硝酸根通過缺氧反硝化生產氮氣,從水中逸出。
除磷菌在厭氧條件下釋放磷,再在好氧條件下過度吸磷,通過排泥除磷。
拓展資料:
生物脫氮機理
生物脫氮理論認為生物脫氮主要包括硝化和反硝化2個生化過程,並由有機氮氨化、硝化、反硝化及微生物的同化作用來完成。
氨化作用即水中的有機氮化合物在氨化細菌分解作用下轉化為氨氮。一般氨化過程與微生物去除有機物同時進行,氨化作用進行得很快,有機物去除結束時,氨化過程也已完成,故無需採取特殊的措施。
硝化作用即在供氧充足的條件下,水中的氨氮首先在亞硝化細菌的作用下被氧化成亞硝酸氮,然後再在硝化細菌的作用下進一步氧化成硝酸氮。由於亞硝化細菌和硝化細菌的生長速率低,所以要求較長的污泥齡。
反硝化作用是由反硝化細菌完成的生物化學過程。在缺氧條件下,反硝化細菌將硝化產生的亞硝酸氮和硝酸氮還原成氣態氮(N2)或N2O、NO。由於反硝化細菌是兼性厭氧菌,只有在缺氧或厭氧條件下才能進行反硝化,因此需要為其創造一個缺氧或厭氧的環境(好氧池的混合液迴流到缺氧池)。
Ⅳ 廢水生物脫氮除磷什麼原理
廢水生物脫氮的基本原理就是在將有機氮轉化為氨態氮的基礎上,先利用好氧段經硝化作用,由硝化細菌和亞硝化細菌的協同作用,將氨氮通過硝化作用轉化為亞硝態氮、硝態氮,即,將 轉化為 和 。在缺氧條件下通過反硝化作用將硝氮轉化為氮氣,即,將 (經反亞硝化)和 (經反硝化)還原為氮氣,溢出水面釋放到大氣,參與自然界氮的循環。水中含氮物質大量減少,降低出水的潛在危險性,達到從廢水中脫氮的目的。
該過程可分為三步:
第一步是氨化作用,即水中的有機氮在氨化細菌的作用下轉化成氨氮。(在普通活性污泥法中,氨化作用進行得很快,無需採取特殊的措施)
第二步是硝化作用,即在供氧充足的條件下,水中的氨氮首先在亞硝酸菌的作用下被氧化成亞硝酸鹽,然後再在硝酸菌的作用下進一步氧化成硝酸鹽。
三步是反硝化作用,即在缺氧或厭氧的條件下,硝化產生的亞硝酸鹽和硝酸鹽在反硝化細菌的作用下被還原成氮氣。
Ⅳ 生物脫氮的基本原理是什麼
生物脫氮是指在微生物的聯合作用下,污水中的有機氮及氨氮經過氨化作用、硝化反應、反硝化反應,最後轉化為氮氣的過程。
Ⅵ 總氮的去除方法及原理
1、廢水中總氮的構成
總氮元素主要由氨氮、有機氮、硝態氮、亞硝態氮以及氮氧化合物組成,其中氨氮主要來自於氨水以及諸如氯化銨等無機物。有機氮主要來自於一些有機物中的含氮基團,比如有機胺類等。氮氧化合物諸如一氧化氮以及二氧化氮等是有毒氣體,由於狀態不穩定,一般很少存在。硝態氮在自然界中比較穩定,且含量較高,比如國防工業ZhaYao製造過程中大量用◇◇作為原料,機械化學等工業使用大量與◇◇相關的原材料作為氧化劑,同時很多污水通過前期生化以及硝化以後也含有大量的◇◇,因為硝態氮十分穩定,且極易溶解於水,因此污染十分嚴重,極易擴散。
2、氨氮的去除辦法
含氨氮廢水目前市場上技術已經非常成熟,一般通過以下幾種辦法去除。
第一,折點加氯氧化法,通過加入次◇◇或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二,利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞◇◇和◇◇,然後再進行反硝化,將◇◇轉化為氮氣。其反應原理圖如下所示:
2NH3 + 3O2 → HNO2 + H2O + 能量(亞硝化作用)
2HNO2 + O2 → 2HNO3 + 能量(硝化作用)
HNO3 + CH3OH → N2 + CO2 + H2O + 能量(反硝化作用)
3、有機氮的去除辦法
在一些廢水中含有有機氮,有機氮大多通過微生物去除。在轉化中,主要包括氨化、硝化和反硝化三個階段。在氨化過程中,水中有機氮在微生物作用下轉化為氨氮。硝化過程中,首先在亞硝化桿菌的作用下,氨氮轉化為亞◇◇氮,然後在硝化桿菌作用下,亞◇◇氮進一步被氧化成◇◇氮。反硝化過程中,◇◇氮轉化為氮氣,釋放到空氣中,也正是在這個過程中,水中的氮被徹底去除了。
4、硝態氮的去除辦法
硝態氮主要是指◇◇根離子,目前有採用離子交換、膜滲透、吸附以及生物脫氮的方法。其中離子交換法、膜滲透法以及吸附法都只是◇◇根離子的濃縮與轉移,無法真正去除總氮,濃縮以後的◇◇根廢液需要進一步處理。
在生物脫氮中,主要是指◇◇根離子通過反硝化細菌降解轉化為氮氣的過程。在傳統的生化方法中,需要極大地佔地面積,而且由於微生物密度低,微生物脫氮效率很低,而且出水不清澈,有懸浮物,不耐毒性物質。
蘇州湛清環保科技有限公司新設計一種高效反硝化生物濾池裝置,經過特殊結構設計的高效反硝化生物濾池,專為工業廢水處理研發,適應工業廢水高鹽分、高毒性、高硝氮、波動大的水質特點。
該技術具有以下特點:
脫氮效率高——正常運行脫氮負荷2kg N/m³·d,出水總氮穩定達標
佔地面積小——10t/h的處理量,降低20mg/L總氮,佔地面積僅3㎡
易操作維護——全自動控制,無需更換填料,反沖洗水量少、頻率低
污泥產量少——反沖洗排出的少量微生物迴流至生化池繼續分解
運行成本低——去除20 mg/L的總氮,噸水成本約0.7元
Ⅶ 污水生物脫氮的原理是什麼
生物脫氮,該過程可分為三步:
第一步是氨化作用, 即水中的有機氮在氨化細菌的作用下轉化成氨氮。(在普通活性污泥法中, 氨化作用進行得很快, 無需採取特殊的措施)
第二步是硝化作用, 即在供氧充足的條件下, 水中的氨氮首先在亞硝酸菌的作用下被氧化成亞硝酸鹽, 然後再在硝酸菌的作用下進一步氧化成硝酸鹽。
三步是反硝化作用, 即在缺氧或厭氧的條件下,硝化產生的亞硝酸鹽和硝酸鹽在反硝化細菌的作用下被還原成氮氣。
Ⅷ 利用好氧和厭氧組合來進行生物脫氮和除磷的原理 利用好氧和厭氧組合來進行生物脫
(一)生物脫氮機理概述
污水生物脫氮的基本原理是在好氧條件下通過硝化反應先將氨氮氧化為硝酸鹽,再通過缺氧條件下(溶解氧不存在或濃度很低)的反硝化反應將硝酸鹽異化還原成氣態氮從水中除去。因此所有的生物脫氮工藝都包含缺氧段(池)和好氧段(池)。
生物脫氮的反應過程是:
1、氨化與硝化
在未經處理的新鮮廢水中,含氮化合物存在的主要形式有:
①有機氮:如蛋白質、氨基酸、尿素、胺類化合物、硝基化合物等;
②氨態氮(NH3、NH4+),一般以前者為主。
含氮化合物在微生物作用下,相繼產生下列反應:
(1)氨化反應
有機氮化合物,在氨化菌的作用下,分解、轉化為氨態氮,這一過程稱之為「氨化反應」。
(2)硝化反應
在硝化菌的作用下,氨態氮進一步分解氧化,就此分兩個階段進行,首先在硝化菌的作用下,使氨(NH4)轉化為亞硝酸氨,反應式為
NH4++3/2O2 NO2-+H2O——2H+-ΔF (ΔF=278.42KJ)
繼之,亞硝酸氨在硝酸菌的作用下,進一步轉化為硝酸氨,其反應式為:
NO2-+1/2O2 NO3--ΔF (ΔF=72.27KJ)
硝化反應的總反應式為:
NH4++2O2 NO3-+H2O+2H+-ΔF (ΔF=351KJ)
2、反硝化反應
反硝化反應是指硝酸氮(NO3-N)和亞硝酸氮(NO2-N)在反硝化菌的作用下,被還原為氣態氮(N2)的過程。
反硝化菌是屬於異養型兼性厭氧菌的細菌。在厭氧菌(缺氧)條件下,以硝酸氮(NO3-N)為電子受體,以有機物(有機碳)為電子供體。在反硝化過程中,硝酸氮通過反硝化菌的代謝活動,可能有兩種轉化途徑,一種途徑是同化反硝化(合成),最終形成有機氮化合物,成為菌體的組成部分,另一種途徑是異化反硝化(分解),最終產物是氣態氮。
(二)生物除磷機理概述
在常規二級生物處理系統中, 磷作為活性污泥微生物正常生長所需求的元素也成為生物污泥的組分, 從而引起磷的去除, 活性污泥含磷量一般為乾重的1.5%—2.3%, 通過剩餘污泥的排放僅能獲得10%-30%的除磷效果。
在污水生物除磷工藝中, 通過厭氧段和好氧段的交替操作, 利用活性污泥的超量磷吸收現象, 使細胞含磷量相當高的細菌群體能在處理系統的基質競爭中取得優勢, 剩餘污泥的含磷量可達到3%-7%, 進入剩餘污泥的總磷量增大, 處理出水的磷濃度明顯降低。
生物除磷的反應過程如下:
1、厭氧區
發酵作用:在沒有溶解氧和硝態氧存在的厭氧狀態下,兼性細菌將溶解性BOD轉化為VFAS(低分子發酵產物);
生物貯磷菌(或稱除磷菌)獲得VFA:這些細菌吸收厭氧區產生的或來自原污水的VFA,並將其運送到細胞內,同化成胞內碳能源存貯物(PHB/PHV),所需的能量來源於聚磷的水解以及細胞內糖的酵解,並導致磷酸鹽的釋放。
2、好氧區
磷的吸收:細菌以聚磷的形式存貯超出生長需求的磷量,通過PHB/PHV的氧化代謝產生能量,用於磷的吸收和聚磷的合成,能量以聚磷酸高能鍵的形式捕積存貯,磷酸鹽從液相去除;
全成新的貯磷菌細胞,產生富磷污泥,在某些條件下,貯磷菌合成和存貯細胞內糖。
3、除磷系統
剩餘污泥排放:通過剩餘污泥排放,將磷從系統中除去。
好氧吸收磷的前提條件是混合液必須經過磷的厭氧釋放,在有效釋放過程中,磷的厭氧釋放可使微生物的好氧吸磷能力大大提高。好氧吸磷速度的不同是由厭氧放磷速度不同引起的。厭氧段放磷速度大,磷釋放量大,合成的PHB就多,那麼在好氧段時由於分解PHB而合成的聚酸鹽速度就較大,所以表現出來的好氧吸磷速度也就大;磷吸收對磷釋放也有影響,磷吸收完成得越徹底、聚磷量越大,相應厭氧狀態下磷的有效釋放也越有保證。
磷的有效釋放與Sbs(溶解性可快速生物降解COD)直接相關,Sbs量大小對磷的去除有決定性的影響。A、B、C類分別表示低分子有機酸、中長鏈脂肪酸和其餘類可生物降解的高分子酸類。城市污水的Sbs由SA、SB和SC的磷釋放與SA相近,可算作SA。SA可近似地用污水中的低分子量有機酸表示,SB則由Sbs減支SA求得。
SB需酸化成SA才能誘發磷的釋放,因此酸化過程是總過程的速率限制步驟,混合液中磷的厭氧釋放速度可表達成:
DP/dt = KPKPAX+(KmSn/KSB+SB)K』PX
如果所選定的停留時間內都是有效釋放的話,則好氧條件下的磷吸收能力為: Pn=KuΔP
式中 Pu——吸磷能力,mgP/L進水;
Ku——單位有效釋磷產生的吸磷能力,mgP/mgP;
ΔP——厭氧釋灰磷量mgP/L進水。
考慮到厭氧區中存在無效釋放,因此ΔP取值應適當降低,此時乘安全系數Sfp=0.8~1.0。
Ⅸ 廢水生物脫氮除磷什麼原理
生物脫氮一般採用好氧和厭氧聯合的方式,好氧將氨氮轉化為硝態氮,厭氧將硝態氮轉化為氮氣,實現脫氮,一般厭氧放在好氧之前,所以要求由部分的消化液迴流。除磷主要靠嗜磷菌的過量吸收和排泥來實現,脫氮除磷的機理相對較復雜不是一兩句話能說清楚的,如果您有興趣的話可以查閱一些相關的書籍。希望對你有幫助!