㈠ 生物醫學工程分類
工程分支
醫用復合材料
生物醫用復合材料(biomedical composite materials)是由兩種或兩種以上的不同材料復合而成的生物醫用材料,它主要用於人體組織的修復、替換和人工器官的製造[1]。長期臨床應用發現,傳統醫用金屬材料和高分子材料不具生物活性,與組織不易牢固結合,在生理環境中或植入體內後受生理環境的影響,導致金屬離子或單體釋放,造成對機體的不良影響。而生物陶瓷材料雖然具有良好的化學穩定性和相容性、高的強度和耐磨、耐蝕性,但材料的抗彎強度低、脆性大,在生理環境中的疲勞與破壞強度不高,在沒有補強措施的條件下,它只能應用於不承受負荷或僅承受純壓應力負荷的情況。因此,單一材料不能很好地滿足臨床應用的要求。利用不同性質的材料復合而成的生物醫用復合材料,不僅兼具組分材料的性質,而且可以得到單組分材料不具備的新性能,為獲得結構和性質類似於人體組織的生物醫學材料開辟了一條廣闊的途徑,生物醫用復合材料必將成為生物醫用材料研究和發展中最為活躍的領域。
1.生物醫用復合材料組分材料的選擇要求
生物醫用復合材料根據應用需求進行設計,由基體材料與增強材料或功能材料組成,復合材料的性質將取決於組分材料的性質、含量和它們之間的界面。常用的基體材料有醫用高分子、醫用碳素材料、生物玻璃、玻璃陶瓷、磷酸鈣基或其他生物陶瓷、醫用不銹鋼、鈷基合金等醫用金屬材料;增強體材料有碳纖維、不銹鋼和鈦基合金纖維、生物玻璃陶瓷纖維、陶瓷纖維等纖維增強體,另外還有氧化鋯、磷酸鈣基生物陶瓷、生物玻璃陶瓷等顆粒增強體。
植入體內的材料在人體復雜的生理環境中,長期受物理、化學、生物電等因素的影響,同時各組織以及器官間普遍存在著許多動態的相互作用,因此,生物醫用組分材料必須滿足下面幾項要求:⑴具有良好的生物相容性和物理相容性,保證材料復合後不出現有損生物學性能的現象;⑵具有良好的生物穩定性,材料的結構不因體液作用而有變化,同時材料組成不引起生物體的生物反應;⑶具有足夠的強度和韌性,能夠承受人體的機械作用力,所用材料與組織的彈性模量、硬度、耐磨性能相適應,增強體材料還必須具有高的剛度、彈性模量和抗沖擊性能;⑷具有良好的滅菌性能,保證生物材料在臨床上的順利應用。此外,生物材料要有良好的成型、加工性能,不因成型加工困難而使其應用受到限制。
2.生物醫用復合材料的研究現狀與應用
陶瓷基生物醫用復合材料
陶瓷基復合材料是以陶瓷、玻璃或玻璃陶瓷基體,通過不同方式引入顆粒、晶片、晶須或纖維等形狀的增強體材料而獲得的一類復合材料。生物陶瓷基復合材料雖沒有多少品種達到臨床應用階段,但它已成為生物陶瓷研究中最為活躍的領域,其研究主要集中於生物材料的活性和骨結合性能研究以及材料增強研究等。
Al2O3、ZrO3等生物惰性材料自70年代初就開始了臨床應用研究,但它與生物硬組織的結合為一種機械的鎖合。以高強度氧化物陶瓷為基材,摻入少量生物活性材料,可使材料在保持氧化物陶瓷優良力學性能的基礎上賦予其一定的生物活性和骨結合能力。將具有不同膨脹系數的生物玻璃用高溫熔燒或等離子噴塗的方法,在緻密Al2O3陶瓷髖關節植入物表面進行塗層,試樣經高溫處理,大量的Al2O3進入玻璃層中,有效地增強了生物玻璃與Al2O3陶瓷的界面結合,復合材料在緩沖溶液中反應數十分鍾即可有羥基磷灰石的形成。為滿足外科手術對生物學性能和力學性能的要求,人們又開始了生物活性陶瓷以及生物活性陶瓷與生物玻璃的復合研究,以使材料在氣孔率、比表面積、生物活性和機械強度等方面的綜合性能得以改善。這些年來,對羥基磷灰石(HA)和磷酸三鈣(TCP)復合材料的研究也日益增多。30% HA與70%TCP在1150℃燒結,其平均抗彎強度達155MPa,優於純HA和TCP陶瓷,研究發現HA-TCP緻密復合材料的斷裂主要為穿晶斷裂,其沿晶斷裂的程度也大於純單相陶瓷材料。HA-TCP多孔復合材料植入動物體內,其性能起初類似於β-TCP,而後具有HA的特性,通過調整HA與TCP的比例,達到滿足不同臨床需求的目的。45SF1/4玻璃粉末與HA制備而成的復合材料,植入兔骨中8周後取出,骨質與復合材料之間的剪切破壞強度達27MPa,比純HA陶瓷有明顯的提高。
生物醫用陶瓷材料
生物醫用陶瓷材料由於其結構本身的特點,其力學可靠性(尤其在濕生理環境中)較差,生物陶瓷的活性研究及其與骨組織的結合性能研究,並未能解決材料固有的脆性特徵。因此生物陶瓷的增強研究成為另一個研究重點,其增強方式主要有顆粒增強、晶須或纖維增強以及相變增韌和層狀復合增強等[3,5~7]。當HA粉末中添加10%~50%的ZrO2粉末時,材料經1350~1400℃熱壓燒結,其強度和韌性隨燒結溫度的提高而增加,添加50%TZ-2Y的復合材料,抗折強度達400MPa、斷裂韌性為2.8~3.0MPam1/2。ZrO2增韌β-TCP復合材料,其彎曲強度和斷裂韌性也隨ZrO2含量的增加而得到增強。納米SiC增強HA復合材料比純HA陶瓷的抗彎強度提高1.6倍、斷裂韌性提高2倍、抗壓強度提高1.4倍,與生物硬組織的性能相當。晶須和纖維為陶瓷基復合材料的一種有效增韌補強材料,用於補強醫用復合材料的主要有:SiC、Si3N4、Al2O3、ZrO2、HA纖維或晶須以及C纖維等,SiC晶須增強生物活性玻璃陶瓷材料,復合材料的抗彎強度可達460MPa、斷裂韌性達4.3MPam1/2,其韋布爾系數高。
數字信號處理
數字信號處理作為信號和信息處理的一個分支學科,已滲透到科學研究、技術開發、
工業生產、國防和國民經濟的各個領域,取得了豐碩的成果。對信號在時域及變換域的特性進行分析、處理,能使我們對信號的特性和本質有更清楚的認識和理解,得到我們需要的信號形式,提高信息的利用程度,進而在更廣和更深層次上獲取信息。數字信號處理系統的優越性表現為:1.靈活性好:當處理方法和參數發生變化時,處理系統只需通過改變軟體設計以適應相應的變化。2.精度高:信號處理系統可以通過A/D變換的位數、處理器的字長和適當的演算法滿足精度要求。3.可靠性好:處理系統受環境溫度、濕度,雜訊及電磁場的干擾所造成的影響較小。4.可大規模集成:隨著半導體集成電路技術的發展,數字電路的集成度可以作得很高,具有體積小、功耗小、產品一致性好等優點。
然而,數字信號處理系統由於受到運算速度的限制,其實時性在相當長的時間內遠不如模擬信號處理系統,使得數字信號處理系統的應用受到了極大的限制和制約。自70年代末80年代初DSP(數字信號處理)晶元誕生以來,這種情況得到了極大的改善。DSP晶元,也稱數字信號處理器,是一種特別適合進行數字信號處理運算的微處理器。DSP晶元的出現和發展,促進數字信號處理技術的提高,許多新系統、新演算法應運而生,其應用領域不斷拓展。DSP晶元已廣泛應用於通信、自動控制、航天航空、軍事、醫療等領域。
70年代末80年代初,AMI公司的S2811晶元,Intel公司的2902晶元的誕生標志著DSP晶元的開端。隨著半導體集成電路的飛速發展,高速實時數字信號處理技術的要求和數字信號處理應用領域的不斷延伸,在80年代初至今的十幾年中,DSP晶元取得了劃時代的發展。從運算速度看,MAC(乘法並累加)時間已從80年代的400 ns降低到40 ns以下,數據處理能力提高了幾十倍。MIPS(每秒執行百萬條指令)從80年代初的5MIPS增加到40 MIPS以上。DSP晶元內部關鍵部件乘法器從80年代初的占模片區的40%左右下降到小於5%,片內RAM增加了一個數量級以上。從製造工藝看,20世紀80年代初採用4μm的NMOS工藝而如今則採用亞微米CMOS工藝,DSP晶元的引腳數目從80年代初最多64個增加到200個以上,引腳數量的增多使得晶元應用的靈活性增加,使外部存儲器的擴展和各個處理器間的通信更為方便。和早期的DSP晶元相比,DSP晶元有浮點和定點兩種數據格式,浮點DSP晶元能進行浮點運算,使運算精度極大提高。DSP晶元的成本、體積、工作電壓、重量和功耗較早期的DSP晶元有了很大程度的下降。在DSP開發系統方面,軟體和硬體開發工具不斷完善。某些晶元具有相應的集成開發環境,它支持斷點的設置和程序存儲器、數據存儲器和DMA的訪問及程序的單部運行和跟蹤等,並可以採用高級語言編程,有些廠家和一些軟體開發商為DSP應用軟體的開發准備了通用的函數庫及各種演算法子程序和各種介面程序,這使得應用軟體開發更為方便,開發時間大大縮短,因而提高了產品開發的效率。
㈡ 生物科學的研究方法
生物科學的研究方法為觀察描述的方法、比較的方法和實驗的方法等。
觀察描述的方法在17世紀,近代自然科學發展的早期,生物科學的研究方法同物理學研究方法大不相同。生物科學的研究是考察那些將不同生物區別開來的、往往是不可測量的性質。生物科學用描述的方法來記錄這些性質,再用歸納法,將這些不同性質的生物歸並成不同的類群。
比較的方法。18世紀下半葉,生物科學不僅積累了大量分類學材料,而且積累了許多形態學、解剖學、生理學的材料。在這種情況下,僅僅作分類研究已經不夠了,需要全面地考察物種的各種性狀,分析不同物種之間的差異點和共同點,將它們歸並成自然的類群。比較的方法便被應用於生物科學。
實驗的方法前面提到的觀察和描述的方法有時也要對研究對象作某些處理,但這只是為了更好地觀察自然發生的現象,而不是要考察這種處理所引起的效應。實驗方法則是人為地干預、控制所研究的對象,並通過這種干預和控制所造成的效應來研究對象的某種屬性。
(2)生物材料如何加工擴展閱讀:
生物科學的進展有:
20世紀70年代以來,生物科學的新進展,新成就層出不窮。從總體上看,當代生物科學主要朝著微觀和宏觀兩個方面發展:在微觀方面,生物學已經從細胞水平進入到分子水平去探索生命的本質;在宏觀方面,生態學的發展正在為解決全球性的資源和環境等問題發揮著重要作用。
生物工程方面生物工程(也叫生物技術)是生物科學與工程技術有機結合而興起的一門綜合性的科學技術。也就是說,它是以生物科學為基礎,運用先進的科學原理和工程技術手段來加工或改造生物材料,如DNA、蛋白質、染色體、細胞等,從而生產出人類所需要的生物或生物製品。
參考資料來源:網路—生物科學
㈢ 生物功能材料的生物功能材料分類
國家已將生命生物功能材料的發展可分為兩個方面,即功能生物材料和仿生功能材料。功能生物材料的研究在於開發生物材料的物理、化學、生物特性的應用。本文著重敘述了生物組織電性能的研究及生物光電材料的應用;提出從生物活性材料活動規律研究入手,由生物模型簡化為數學、物理模型從而設計出仿生功能材料的方法。舉例說明了生物功能材料的發展對改變傳統生產方式及對高科技產業的巨大影響,並對國民經濟的發展有很大的促進作用。
科學和新材料科學列為二十一世紀重點發展的領域,而生物材料學作為生命科學和材料科學的前沿性交叉學科,更是優先發展的重點。生物功能材料專業正是根據社會發展的需要,特別是生物醫學工程、組織工程和葯物釋放等交叉學科技術的迅速發展對專業人才的迫切需求而設立的。本專業培養具有材料科學與工程、生物學和醫學等領域的相關知識,掌握生物材料的基礎和專業知識,能在生物材料的制備、改性、加工成型及應用等領域從事基礎研究、應用研究和技術開發等的綜合型高級技術人才。
本專業是材料學、生物學和醫學等學科領域的跨學科專業,主幹學科有高分子材料科學與工程、生物醫學工程。本專業現有教師13人,其中教授6人,副教授4人,全部具有博士學位,主要從事生物材料和生物醫學工程方面的教學與科研工作。背靠學科—高分子材料與工程專業的師資力量也十分雄厚,目前有教授27名,副教授38名,主要從事高分子材料與工程方面的教學與科研工作。而且本專業在人才培養、學術交流等方面與國內外有廣泛的合作,已與韓國釜山大學和日本工學院大學生命科學建立了長期合作關系。
㈣ 納米生物工程包括哪些
納米生物工程
靳剛 應佩青
中國科學院力學研究所
(2000年11月-2001年2月)
自中國科學院納米科技網
納米生物工程是什麼意思?它究竟包括哪些內容?籠統地講它包括納米醫學、納米生物技術和納米生物材料等。實際上,醫學、生物技術和生物材料都是人們熟悉的名詞和內容,當戴上一頂納米的帽子就似乎有了懸念。這里我們先來回顧一下和我們所熟悉的名詞相關的物質和事物,然後再把這些與納米概念聯系起來,看看有了哪些新的變化,通過觀察一些相關的科學研究結果和應用實例,來理解納米生物工程。
一、納米醫學
大多數人都有生病、吃葯、打針的經歷,醫學就是研究疾病,治病救人的科學。那麼納米醫學又是什麼呢?我們知道人體是由多種器官組成的,如:大腦、心臟,肝,脾,胃,腸,肺,骨骼,肌肉和皮膚;器官又是由各種細胞組成的,細胞是器官的組織單元,細胞的組合作用才顯示出器官的功能。那麼細胞又是由什麼組成的呢?按現在的認識,細胞的主要成份是各種各樣的蛋白質、核酸、脂類和其它生物分子,可以統稱生物分子,它的種類在數十萬種。生物分子是構成人體的基本成分,它們各自具有獨特的生物活性的,正是它們不同的生物活性決定了它們在人體內的分工和作用。由於人體是由分子構成的,所有的疾病包括衰老本身也可歸因於人體內分子的變化。當人體的分子機器,如合成蛋白質的核糖體,DNA復制所需的酶等,出現故障或工作失常時,就會導致細胞死亡或異常。從分子的微觀角度來看,目前的醫療技術尚無法達到分子修復的水平。而納米醫學則是在分子水平上,利用分子工具和人體的分子知識,所從事的診斷、醫療、預防疾病、防止外傷、止痛、保健和改善健康狀況等科學技術,廣義地講都屬於納米醫學的范疇。換句話講,人們將從分子水平上認識自己,創造並利用納米裝置和納米結構來防病治病,改善人類的整個生命系統。首先需要認識生命的分子基礎,然後從科學認識發展到工程技術,設計製造大量的具有令人難以置信的奇特功效的納米裝置,這些微小的納米裝置的幾何尺度僅有頭發絲的千分之一左右,是由一個個分子裝配起來的,能夠發揮類似於組織和器官的功能,並且更准確和更有效地發揮作用。他們可以在人體的各處暢游,甚至出入細胞,在人體的微觀世界裡完成特殊使命。例如:修復畸變的基因、扼殺剛剛萌芽的癌細胞、捕捉侵入人體的細菌和病毒,並在它們致病前就消滅它們;探測機體內化學或生物化學成分的變化,適時地釋放葯物和人體所需的微量物質,及時改善人的健康狀況。最終實現納米醫學,使人類擁有持續的健康。未來的納米醫學將是強大的,它又會是令人驚訝得小,因為在其中所發揮作用的葯物和醫療裝置都是肉眼所無法看到的。但是它的功能會令世人驚嘆。
需要說明,不要馬上跑到大夫那兒去要納米處方。上面所談的納米醫學景觀尚處於設計和萌芽階段,還有很多的未知需要去探索,例如:這些納米裝置該由什麼製成?他們是否可以被人體接受?並發揮所預期的作用?科學家們正在全力以赴地把納米醫學的科學想法變成醫學現實。終有一天,醫葯櫃越小,效力越大。
一定有人會問:納米醫學是不是科學幻想?它離我們到底有多遠?還要等多久才能看到醫學實現?事實上,它已經開始步入現實,並獲得蓬勃發展。下面讓我們看一看這一領域所取得的科學進展。
(1) 智能葯物
這是納米醫學中的一個非常活躍的領域,適時准確地釋放葯物是它的基本功能之一。科學家正在為糖尿病人研製超小型的,模仿健康人體內的葡萄糖檢測系統。它能夠被植入皮下,監測血糖水平,在必要的時候釋放出胰島素,使病人體內的血糖和胰島素含量總是處於正常狀態。最近,美國麻省理工學院的研究者做出了微型葯房的雛形:一種具有上千個小葯庫的微型晶元,每一個小葯庫里可以容納25納升的任何葯物,例如止痛劑或抗生素等。它的研究者之一Robert Langer說,目前這個晶元的尺寸還相當於一個小硬幣,可以把它做得更小,並計劃裝上一個"智能化"的感測器,使它可以適時和適量地釋放葯物。能否在形成致命的腫瘤之前,早期殺滅癌細胞?美國密西根大學的James R. Baker Jr.博士正在設計一種納米"智能炸彈",它可以識別出癌細胞的化學特徵(chemical "signatures")。這種"智能炸彈"很小,僅有20納米左右,能夠進入並摧毀單個的癌細胞。此裝置的研製剛剛開始,而初步的人體實驗至少要五年以後才能進行。
(2) 人工紅血球
人工紅細胞的結構和工作示意圖
隨著轉子的轉動,氣體分子與轉子上的結合位點結合再釋放,從金剛石腔體進入到血漿中
納米醫學不僅具有消除體內壞因素的功能,而且還有增強人體功能的能力。我們知道,腦細胞缺氧6至10分鍾即出現壞死,內臟器官缺氧後也會呈現衰竭。設想一種裝備超小型納米泵的人造紅血球,攜氧量是天然紅血球的200倍以上。當人的心臟因意外,突然停止跳動的時候,醫生可以馬上將大量的人造紅血球注入人體,隨即提供生命賴以生存的氧,以維持整個機體的正常生理活動。美國的納米技術專家Robert Freitas初步提出的人造紅血球(respirocyte)的設計,已成為納米技術的標志性結果。這個血球是個一微米大小的金剛石的氧氣容器,內部有1000個大氣壓,泵浦動力來自血清葡萄糖。它輸送氧的能力是同等體積天然紅細胞的236倍,並維持生物炭活性。 它可以應用於貧血症的局部治療、人工呼吸、肺功能喪失和體育運動需要的額外耗氧等。它的基本設計和結構功能,以及與生物體的相容性等已有專著詳細論述。在此僅對其結構功能做簡單介紹。圖是此人工紅細胞的結構和工作示意圖。
它的腔體外殼是與生物體相容的金剛石,腔內儲氧,開口處是一個可以從腔內向外傳遞氧的轉子,隨其旋轉,將氧分子輸入血液。
(3)納米葯物輸運
納米微粒葯物輸送技術也是重要發展方向之一。按目前的認識,有半數以上的新葯存在溶解和吸收的問題。由於葯物顆粒縮小時,葯物與胃腸道液體的有效接觸面積將增加,所以葯物的溶解速率隨葯物顆粒尺度的縮小而提高。葯物的吸收又受其溶解率的限制,因此,縮小葯物的顆粒尺度成為提高葯物利用率的可行方法。 納米晶體技術可將葯物顆粒轉變成穩定的納米粒子,同時提高溶解性,以提高難溶性葯物的葯效率。粉碎過程會使粒子間的相互作用力增加,為了避免納米顆粒在粉碎過程中聚合,加工中,不溶的葯物是被懸浮在含一般認為安全的穩定劑和賦形劑的懸浮液中。深入研究的制粉技術已經能夠將葯物縮小到400納米以下。 同時,這些賦形劑在胃腸道中起表面活性劑的作用,也提高了納米葯物顆粒的溶解率。一旦,不溶性葯物轉變成穩定的納米顆粒,就適合於口服或者注射了。
納米醫學將給醫學界,諸如癌症、糖尿病和老年性痴獃等疾病的治療帶來變革,已經獲得越來越多的認同。利用納米技術能夠把新型基因材料輸送到已經存在的DNA里,而不會引起任何免疫反應。樹形聚合物(dendrimers) 就是提供此類輸送的良好候選材料。因為,它是非生物材料,不會誘發病人的免疫反應,沒有形成排異反應的危險;所以,可以作為葯物的納米載體,攜帶葯物分子進入人體的血液循環,使葯物在無免疫排斥的條件下,發揮治病的效果。這種技術用於糖尿病和癌症治療是很有希望的。
(4) 捕獲病毒的納米陷阱
密西根大學的Donald Tomalia等已經用樹形聚合物發展了能夠捕獲病毒的納米陷阱。體外實驗表明納米陷阱能夠在流感病毒感染細胞之前就捕獲它們,同樣的方法期望用於捕獲類似愛滋病病毒等更復雜的病毒。此納米陷阱使用的是超小分子,此分子能夠在病毒進入細胞致病前即與病毒結合,使病毒喪失致病的能力。
通俗地講,人體細胞表面裝備著含硅鋁酸成分的"鎖",只准許持"鑰匙"者進入。不幸的是,病毒竟然有硅鋁酸受體"鑰匙"。Tomalia的方法是把能夠與病毒結合的硅鋁酸位點覆蓋在陷阱細胞(glycodendrimers)表面。當病毒結合到陷阱細胞表面,就無法再感染人體細胞了。陷阱細胞由外殼、內腔和核三部分組成。內腔可充填葯物分子;將來有可能裝上化療葯物,直接送到腫瘤上。陷阱細胞能夠繁殖,生成不同的後代,個子較大的後代可能攜帶更多的葯物。盡管原因尚不明確,所觀察的特點是越大效果越好。研究者希望發展針對各種致病病毒的特殊陷阱細胞和用於醫療的陷阱細胞庫。
(5)識別血液異常的生物晶元
美國聖地亞國家實驗室的發現實現了納米愛好者的預言。正像所預想的那樣,納米技術可以在血流中進行巡航探測,即時地發現諸如病毒和細菌類型的外來入侵者,並予以殲滅,從而消除傳染性疾病。 Micheal Wisz做了一個雛形裝置,發揮晶元實驗室的功能,它可以沿血流流動並跟蹤像鐮狀細胞血症和感染了愛滋病的細胞。血液細胞被導入一個發射激光的腔體表面, 從而改變激光的形成。癌細胞會產生一種明亮的閃光;而健康細胞只發射一種標准波長的光,以此鑒別癌變。
二、納米生物技術
納米生物技術是納米技術和生物技術相結合的產物,它即可以用於生物醫學,也可以服務於其它社會需求。所包含的內容非常豐富,並以極快的速度增加和發展,難以概述。在此僅舉一些研究結果為例。
(1) 生物晶元技術
生物晶元是不同於半導體電子晶元的另一類晶元。半導體電子晶元是集成具有特定電子學功能的微單元,所形成的電子集成電路;而生物晶元則是在很小幾何尺度的表面積上,裝配一種或集成多種生物活性,僅用微量生理或生物采樣,即可以同時檢測和研究不同的生物細胞、生物分子和DNA的特性,以及它們之間的相互作用,獲得生命微觀活動的規律。生物晶元可以粗略地分為細胞晶元、蛋白質晶元(生物分子晶元)和基因晶元(即DNA晶元)等幾類,都有集成、並行和快速檢測的優點,已成為二十一世紀生物醫學工程的前沿科技。
近兩年,已經通過微製作(MEMS)技術,製成了微米量級的機械手,能夠在細胞溶液中捕捉到單個細胞,進行細胞結構,功能和通訊等特性研究。美國哈佛大學的Whitesides教授領導的研究人員,發展了微電子工業普遍使用的光刻技術在生物學領域的應用,並研製出效果更好的軟光刻方法(soft lithography)。以此,制出了可以捕捉和固定單個細胞的生物晶元,通過調節細胞間距等,研究細胞分泌和胞間通訊。此類細胞晶元還可以作細胞分類和純化等。它的功能原理非常簡單,僅利用晶元表面微單元的幾何尺寸和表面改性,即可達到選擇和固定細胞,及細胞面密度控制。
圖2:多元蛋白質晶元模型 圖中按順時針方向分別表示:
1)在格式化的改性表面上,固定配基;
2)含配基的晶元與蛋白溶液相互作用,蛋白特異性結合形成蛋白復合物;
3)對晶元進行檢測以確定蛋白間的相互作用。
蛋白質晶元的發展已經經歷了約十年的時間,現已出現了相對成熟的技術,如瑞典的BIACORE的單元晶元,中科院力學所的多元蛋白質光學晶元和美國的SELDI質譜晶元等。它們的共同特點都是將生物分子作為配基,固定在固體晶元表面或表面微單元上,以單一、或面陣、或序列式。利用生物分子間的特異結合的自然屬性,待測分子與配基分子在晶元表面會形成生物分子復合物。然後,檢測此復合物的存在與否,達到對蛋白質的探測、識別和純化的目的。以上不同技術的差異僅在探測方法的不同。BIACORE技術利用表面等離子體共振技術檢測晶元,進行單一蛋白質檢測;多元蛋白質光學晶元是光學成象法,可以同時檢測多種混合的蛋白質;SELDI技術則採用質譜法,以時間順序檢測序列蛋白質。
圖3:研究蛋白相互作用的晶元 Protein G、p50和FRB等三種蛋白分別以點狀陣列固定到玻片上。三種熒游標記的探針IgG(藍)、 I B (綠) 、FKBP12(紅)分別以其中的一種(A、B、C)或三種(E)同時出現進行探測。三種探針分別與三種蛋白發生特異性相互作用。D表示無任何探針的狀態。
隨著人類基因工程的發展,基因晶元(即DNA晶元)得到迅速的發展。DNA 晶元又稱為寡核苷酸陣列或雜交陣列分析,它是根據DNA雙螺旋原理而發展的核酸鏈間分子雜交的技術。它的基本結構類似於面陣型蛋白質晶元,在晶元表面能夠制備成千上萬的基因單元作為配基,對待測基因進行篩選。待測基因通過PCR擴增技術得到數量放大,再進行熒游標記,使其在篩選過程中產生可識別的熒光發射或光譜轉移。此熒光信號被熒光顯微鏡檢出,達到基因識別的目的。將已知的DNA(探針)和未知的核酸序列之間的一方以有序的陣列固定到載玻片或矽片上,再與熒游標記的另一方進行雜交。當熒游標記的一方在DNA晶元上發現互補序列時即發生雜交,雜交的結果以熒光和模式識別分析來檢測。DNA晶元技術可以快速分析大量的基因信息,從而使生物醫學工作者可以研究並收集基因表達和變異信息。目前國內外已有公司生產並銷售的DNA晶元有兩類,一類是在晶元上原位合成待測的寡核苷酸,再與熒游標記的DNA探針放在一起,當DNA探針雜交到寡核苷酸陣列上後,互補序列通過熒光掃描確定。該寡核苷酸陣列格式可用於檢測變異,在基因中定位目標區域,和基因表達的研究,以及確定基因功能。另一類DNA晶元利用微量點樣技術在晶元上製作互補DNA(cDNA)陣列,再與熒游標記的DNA探針雜交。cDNA陣列格式用於快速篩選。如位於Santa Clara, CA 的Affymetrix公司生產的GeneChip? 含高密度的DNA探針陣列,可以用於人類基因組中遺傳信息的分析。具特殊用途的DNA探針陣列可以在人類基因組中快速篩選已知的DNA序列。
DNA晶元還可用於監測不同的人體細胞和組織基因表達,以檢測癌症或其它疾病所對應的基因的變化。隨著DNA晶元及雜交技術的發展,DNA晶元將有可能直接應用於臨床診斷,葯物開發和人類遺傳診斷。
圖4:基因表達的微陣列圖 以兩種顏色的熒游標記來自於兩種細胞的樣品,雜交後,對微陣列的每一位點進行熒光掃描。每一位點的光強度正比於它所結合的熒光cDNA的量。光強越強,樣品中該基因的表達水平越高。如微陣列的位點無熒光,說明兩種細胞均不表達該基因。如某一位點顯示一種熒光,說明該標記的基因只在此細胞樣品中表達。同一位點顯示兩種熒光,說明該基因在兩種細胞樣品中均表達。
(2)分子馬達
分子馬達是由生物大分子構成,利用化學能進行機械做功的納米系統。天然的分子馬達,如:驅動蛋白、RNA聚合酶、肌球蛋白等,在生物體內參與了胞質運輸、DNA復制、細胞分裂、肌肉收縮等一系列重要生命活動。分子馬達包括線性推進和旋轉式兩大類。其中線性分子馬達是將化學能轉化為機械能,並沿著一條線性軌道運動的生物分子,主要包括肌球蛋白(myosin)、驅動蛋白(kinesin)、DNA解旋酶(DNA helicase)和RNA聚合酶(RNA polymerase)等。其中肌肉肌球蛋白是研究得較為深入的一種,它們以肌動蛋白(actin)為線性軌道,其運動過程與ATP水解相偶聯。而驅動蛋白則以微管蛋白為軌道,沿微管的負極向正極運動,並由此完成各種細胞內外傳質功能。目前對於驅動蛋白運動機制提出了步行("hand-over-hand")模型,驅動蛋白的兩個頭部交替與微管結合,以步行方式沿微管運動,運動的步幅是8 nm(圖5)。目前, ATP水解與肌球蛋白和驅動蛋白的機械運動之間的化學機械偶聯的關系還不清楚。近來的研究發現它們有相同的中心核結構,並以相似的構象變化將ATP能量轉變為蛋白運動。DNA解旋酶作為線性分子馬達,以DNA分子為軌道,與ATP水解釋放的能量相偶聯,在釋放ADP和Pi的同時將DNA雙鏈分開成兩條互補單鏈。RNA聚合酶則在DNA轉錄過程中,沿DNA模板迅速移動,消耗的能量來自核苷酸的聚合及RNA的折疊反應。
圖5:肌肉肌球蛋白(左)和驅動
蛋白(右)的運動周期模型
旋轉式分子馬達工作時,類似於定子和轉子之間的旋轉運動,比較典型的旋轉式發動機有F1-ATP酶。ATP酶是一種生物體中普遍存在的酶。如圖所示:它由兩部分組成,一部分結合在線粒體膜上,稱為F0;另一部分在膜外,稱為F1。F0-ATP酶的a、b和c亞基構成質子流經膜的通道。當質子流經F0時產生力矩,從而推動了F1-ATP酶的g亞基的旋轉。g亞基的順時針與逆時針旋轉分別與ATP的合成和水解相關聯。F1-ATP酶直徑小於12 nm,能產生大於100 pN 的力,無載荷時轉速可達17轉/秒。F1-ATP酶與納米機電系統(nanoNEMS)的組合已成為新型納米機械裝置。
圖6:ATP酶的結構示意圖
美國康納爾大學的科學家利用ATP酶作為分子馬達,研製出了一種可以進入人體細胞的納米機電設備--"納米直升機"。該設備共包括三個組件,兩個金屬推進器和一個附屬於與金屬推進器相連的金屬桿的生物分子組件。其中的生物分子組件將人體的生物"燃料"ATP轉化為機械能量,使得金屬推進器的運轉速率達到每秒8圈。這種技術仍處於研製初期,它的控制和如何應用仍是未知數。將來有可能完成在人體細胞內發放葯物等醫療任務。
圖7:美國康納爾大學研製成的"納米直升機"示意圖
(3) 硅蟲晶體管
美國和北愛爾蘭的研究者偶然發現了一種活的半導體(half bacterium, half microchip),它能夠嗅出生物戰所用的毒氣。這一發現竟來自科學家為消除計算機晶元生產線上的某些特殊細菌的屢屢失敗。為消除這些微生物,研究者試用了從紫外線到強氧化劑,但是,細菌仍可倖存。紐約州立大學的生物學家Robert Baier解釋了此現象。在清洗半導體晶元時,超純水能夠溶解一些半導體材料,如氧化鍺,而這些半導體材料會圍繞細菌結晶,使細菌在晶體的"家"中存活得極好,而不會受到損傷。微生物用半導體材料建立了一個"活"的單元。此現象提出了廣闊的想像空間。亞利桑納大學的物理學家O'Hanlon 和 Baier認為外麵包上硬殼的細菌可以用於製造生物晶體管。在普通三極體中,由源極到漏極的電流受門極電壓的控制。而這種細菌半導體晶體恰好可以用作生物晶體管的門極。當在呼吸和光合作用等產生電子轉移的生物過程中,光照或者器官的水汽能誘導細菌產生電子,猶如打開了這個生物晶體管。這種精巧的靈敏裝置能夠探測到生物戰毒氣。
他們在半導體表面用純水製作細菌晶體單元,下一步是使它發揮晶體管的功能,並獲得更多的應用。
圖8: 載激光束(藍色)的納米感測器探針穿過活細胞,以檢測該細胞是否曾置於致癌物質下
(4) 納米探針
一種探測單個活細胞的納米感測器,探頭尺寸僅為納米量級,當它插入活細胞時,可探知會導致腫瘤的早期DNA損傷。
為了模仿暴露於致癌物質,將細胞浸入含有苯並吡 (BaP)的代謝物的液體中。 苯並吡是城市污染空氣中普遍存在的致癌物質。在一般暴露情況下,細胞攝取苯並吡,並代謝掉。苯並吡和細胞DNA的代謝反應形成一種可水解的DNA加合物BPT ( benzo(a)pyrene tetrol)。納米探針是一支直徑50納米,外麵包銀的光纖,並傳導一束氦-鎘激光。它的尖部貼有可識別和結合BPT的單克隆抗體。325納米波長的激光將激發抗體和BPT所形成的分子復合物產生熒光。此熒光進入探針光纖後,由光探測器接收。Tuan Vo-Dinh和他的同事認為此高選擇和高靈敏的納米感測器,可以用於探測很多細胞化學物質,可以監控活細胞的蛋白質和其它所感興趣的生物化學物質。
此感測器還可以探測基因表達和靶細胞的蛋白生成,用於篩選微量葯物,以確定哪種葯物能夠最有效地阻止細胞內,致病蛋白的活動。隨著納米技術的進步,最終實現評定單個細胞的健康狀況。
三、納米生物材料
生物材料已是大家熟知的內容,例如:用於制衣、皮帶的動物皮革是生物材料;用於鑲牙和製作隱形眼睛的材料,盡管不是生物製品,但是被用於生物體內,也可以歸於生物材料。納米生物材料也可以分為兩類,一種是適合於生物體內應用的納米材料,它本身即可以是具有生物活性的,也可以不具有生物活性,而僅僅易於被生物體接受,而不引起不良反應。另一類是利用生物分子的特性而發展的新型納米材料,它們可能不再被用於生物體,而被用於其它納米技術或微製造。
(1) 活的電線
在很多方面,DNA幾乎是構築納米尺度結構的理想材料。近來,科學家通過在DNA的表面覆蓋金屬原子的培植方法,合成了導電的DNA鏈。然而,由於DNA完全被金屬覆蓋,僅起一種支架的作用,不再具備選擇性結合其它生物分子這一很有價值的特性。 Saskatchewan大學的研究者逐漸發現了將DNA發展成新一代生物感測器和半導體導線的途徑。生物化學教授Jeremy Lee 實驗室的研究者發現DNA很容易把鋅、鎳、鈷等離子並入它的雙螺旋的中心,並找到了在高pH值等基本條件下,穩定DNA含有金屬離子的狀態,獲得了新的DNA導電體。 並且,此類金屬DNA仍然保持選擇性結合其它分子的能力。正在開發的應用之一是遺傳畸變探測生物感測器。類似於其它的DNA探測,在此感測器上裝配上所要探測的特製DNA序列。在此,DNA鏈是導電的。雜交DNA所引起的刪除或變化,均起阻礙電流的作用,計算機能夠簡單地通過測量電導的變化,來識別DNA的異常。
這種生物感測器還能用於鑒別混合物,如:環境毒素、毒品、或蛋白質等,當這類分子結合到金屬DNA上,將把金屬離子排斥出來,導致電流中斷。由於,信號強度的減小正比於污染物的濃度,所以,能夠很容易地確定環境毒素的量。金屬DNA還可以用於篩選結合於DNA的抗腫瘤葯物,用作微細半導體線路的導線等。
(2) 組織工程中的納米生物材料
材料支架在組織工程中起重要作用,因為貼壁依賴型細胞只有在材料上粘附後,才能生長和分化。模仿天然的細胞外基質--膠原的結構,製成的含納米纖維的生物可降解材料已開始應用於組織工程的體外及動物實驗,並將具良好的應用前景。國內清華大學研究開發的納米級羥基磷灰石/膠原復合物在組成上模仿了天然骨基質中無機和有機成分,其納米級的微結構類似於天然骨基質。多孔的納米羥基磷灰石/膠原復合物形成的三維支架為成骨細胞提供了與體內相似的微環境。細胞在該支架上能很好地生長並能分泌骨基質。體外及動物實驗表明,此種羥基磷灰石/膠原復合物是良好的骨修復納米生物材料。
通過以上所述,可以明顯地看出納米醫學、納米生物技術和納米生物材料等內容,並無明顯的界線,可以說是相互交叉,相互依賴,共同發展的。這正是納米生物工程的含義。
隨著進入21世紀,納米技術的發展將使今天的科學幻想成為明天世人普遍接受的實用技術。
㈤ 可降解生物材料制備與加工過程中需要注意什麼
嚴格遵守操作規程,穿戴好規定的勞保用品。
2.熟悉圖紙和有關工藝要求,充分了解所加工的零件的幾何形狀和尺寸要求。
3.按圖紙工藝所要求的材料規格領料,並檢查材料是否符合工藝的要求。
4.選擇合適的加工刀具。
5.針對加工零件,備好所需的量具。
6.檢查設備是否正常及安全防護齊全,各潤滑油孔加註潤滑油,設備空運轉檢查。
7.裝夾校正工件,裝夾可靠。
8.按工藝要求正常加工。
9.做好工序自檢。
10.加工後經互檢,叫檢驗人員專檢。
11.操作完成後,立即清理設備上的油污切屑及工作現場,零件擺放整齊。
12.關閉電源,做好設備維護保養。分享來自金瑞五金。
所以為了配件加工的質量和自身的安全,一定要注意以上幾點。
㈥ 殼聚糖的制備:以蝦殼為原料,來提取殼聚糖。 急!急!急!急!希望高手來幫助啊!萬分感謝!
蝦殼蟹殼漂洗----脫鈣及無機鹽----脫蛋白質及脂----脫鹼,漂洗----水洗;烘乾----甲殼素產品----濃鹼處理----水洗;烘乾----殼聚糖初產品----提純----殼聚糖初產品----提純-----殼聚糖產品
㈦ 家聯科技
家聯科技12月7日晚間披露上市公告書,公司股票將於2021年12月9日在深圳證券交易所創業板上市。股票簡稱為家聯科技。股票代碼為301193。 2021年半年報顯示,家聯科技的主營業務為塑料製品餐飲具、塑料製品-家居用品、紙製品及其他、生物全降解材料製品-家居用品、生物材料製品餐飲具,占營收比例分別為:75.95%、10.28%、4.76%、4.38%、2.77%。公司經營范圍包括:新型塑料和生物材料的研發、生產、技術推廣;日用品、工藝品、塑料製品的製造、加工;自動化設備、家居用品的研發;自營和代理各類貨物及技術的進出口,但國家限定經營或禁止進出口的貨物和技術除外(分支機構經營場所設在寧波市石化經濟技術開發區川浦路269號)等。
拓展資料:
家聯科技主營業務的競爭優勢:
1、 公司採用以自主研發為主的研發模式,組建了專業且從業經驗豐富、創新意識突出的研發團隊,以市場發展為導向,充分考慮客戶需求並積極加強與外部科研院所合作,藉助外部力量促進研發能力提升,保證技術、工藝、產品等方面的持續創新。
2、 在生產自動化方面,公司聚焦於定製化產品生產工藝的自動化效率提升,通過逐年加大生產自動化相關的技術與設備投入,引入多關節工業機器人、多件套自動包裝機、實時監控系統、中央供料系統、伺服控制系統等自動化、數字化、智能化配套設備、系統,對新建車間及現有車間進行升級與改造,實現了製造過程中的生產自動化、關鍵節點中的監控數字化與管理中的決策智能化。
3、 在生物降解材料方面,由於 PLA 等生物降解材料必需經過改性以後才能加工生產出符合客戶要求的成品,如果直接使用,其加工出的產品在硬度、色澤、韌性、抗壓、抗高溫、抗水解等指標都無法滿足正常的使用標准。公司較早布局且聚焦於藉助物理、化學手段的生物降解材料改性,通過多年的團隊研究,發行人已經自主開發並掌握對生物降解材料進行定製化改性的工藝技術和流程。
4、 塑料餐飲具、家居用品等終端產品與居民日常飲食、生活健康和人身安全等密切相關,因此產品質量對於餐飲、商超等客戶而言都是重中之重。此外,公司下游終端客戶對公司產品的外觀、性能及良品率有著極高的要求,一旦出現產品品質問題,不僅會導致客戶大規模退換貨,更會直接影響客戶與公司的後續合作。
㈧ 生物材料在生產加工過程中可直接進行表面改性嗎
機械加工圖紙中原材料表面無需加工的符號是√上面加以一個ο
㈨ 四川大學高分子考研生物材料加工都是學什麼啊
專業課有點差別、前者叫高分子化學與物理學、後者叫高分子化學與物理,前者高化高物所佔比例差不多(高化主要選擇、寫反應,高物主要為大題)、後者高物偏多
追問
材料學 材料工程有啥區別 考研以及研究生後面的學習問題
回答
川大高分子學院專業包括這些:材料學(研究材料制備、機理、結構、性能之類的)、高分子科學與工程(合成、改性、加工)、復合材料(共混、樹脂基復合材料、納米材料等)、 生物醫學工程(生物材料、人工器官之類) 、材料加工工程(研究加工技術、原理、成型方法、模具之類的)、材料工程(材料加工、合金化、功能化等等)
材料工程是專業碩士,兩年制 其餘學術性碩士、、、、、
提問者評價
材料工程專業碩士 這個一年交學費不
㈩ 生物可降解材料具體有哪些有什麼具體的應用案例嗎
生物可降解材料是在細菌、真菌、藻類等自然界存在的微生物作用下能發生化學、生物或物理降解或酶解的高分子材料。
最理想的可降解生物材料是利用可再生資源得到,降解後可以被生物所重新利用,產物最好是二氧化碳和水,從而使這種材料的生產和使用納入自然界的循環。
生物可降解材料的具體類型:
1. 聚乳酸(PLA):PLA具有無毒無刺激、良好的生物相容性、強度高、可加工性好,可生物降解等特點,製成的片材、纖維、薄膜經過熱成型、紡絲等二次加工後廣泛用於包裝、紡織和醫療等領域,其廢棄物可通過微生物分解成水和二氧化碳。
2. 聚羥基脂肪酸酯(PHA):PHA是由很多微生物合成的一種細胞內聚酯,是一種天然的高分子生物材料,同時具有良好的生物相容性、生物可降解性和塑料的熱加工性能,可作為生物醫用材料和生物可降解包裝材料。
3. 聚丁二酸丁二醇酯(PBS):PBS綜合性能優異,性價比合理,用途極為廣泛,可用於包裝、餐具、化妝品瓶及葯品瓶、一次性醫療用品、農用薄膜、農葯及化肥緩釋材料、生物醫用高分子材料等領域。
4. 聚己內酯(PCL):PCL除了具有熱塑性塑料易加工的特點外,還有生物可降解性、生物相容性、形狀溫控記憶性等特點,主要應用為可控釋葯物載體,完全可降解塑料手術縫合線等醫用材料。
生物可降解材料具體的應用案例:
1、生物醫用:心臟支架、人造皮膚、手術縫合線…
以上內容均節選自《揭秘未來100大潛力新材料(2019年版)》_新材料在線;
想了解更多關於超導材料的信息,XCLZX_HL,歡迎一起交流討論。