導航:首頁 > 生物信息 > 生物統計與實驗設計的關系如何

生物統計與實驗設計的關系如何

發布時間:2022-10-29 08:56:32

『壹』 生物信息 生物統計

怎麼說呢
這個專業是以計算機為基礎發展起來的
進實驗室的幾率並不怎麼大
但是要計算機基礎過硬 我們生物專業的計算機很好的人比較少 所以報的人也少
我們學校就有收這個方向的博導
雖然是在生物方向 但是關聯並不怎麼大
而且這專業相對吃香些

你可以考慮下
但是單獨收這個專業的碩士的比較少吧
反正我們學校是在生物化學與分子生物學
導師來找人的
或者你看好了學校 然後跟那個導師聯系 說明下你的情況
看具體怎麼解決

祝你考上理想的學校

『貳』 生物統計 試驗設計的基本原則是什麼,其作用是什麼

  1. 分別有單一變數原則 ;對照性原則;等量原則;科學性原則。

  2. 試驗設計,也稱為實驗設計。,經濟地、科學地安排試驗的一項技術。試驗設計自20世紀20年代問世至今,其發展大致經歷了三個階段:即早期的單因素和多因素方差分析,傳統的正交試驗法和近代的調優設計法。

  3. 其在工業生產和工程設計中能發揮重要的作用,主要有:提高產量;減少質量的波動,提高產品質量水準;大大縮短新產品試驗周期;.降低成本;.試驗設計延長產品壽命。

『叄』 生物統計學的主要內容和作用是什麼

生物統計學是一門探討如何從事生物學實驗研究的設計,取樣,分析,資料整理與推論的科學.
應用數理統計學來處理生物現象的學問.與其說是生物學的一個分科不如看作是生物學的方法論.與生物測量學大致具有同一涵義,但前者幾乎尚沒有深入到現象的統計處理機制,因此生物測量學作為稍狹義的東西,有時也與生物統計學有所區別.在物理學的測量中,測量誤差是重要問題,與此相應在生物學的研究中必須應用統計處理,其首要原因是變異.有意識地將數理統計學引入到生物學以及人類學領域的先驅者是克韋泰來特(L.A.J.Quetelet),隨後由高爾頓(F.Galton)的工作鞏固了生物測量學和優生學的基礎.數學家泊松(K.Pearson)繼承了他們的研究工作,進行了回歸和相關特別是復相關、泊松型分布數、頻率累加法、X2測驗等數理統計學的研究,並製成了很多統計數值表.他們把人們觀測的或能得到手的資料的全部作為對象,把平均值和離差作為問題,來考查其中的數學規律.數理統計學方法已適用於生物學和農業科學的實驗或試驗領域,但也是以整個資料或比試驗資料更大的抽象資料為依據的,因此人們開始意識到,在其現實是一種不能以其一部分作為研究對象的局面.於是就提出母集團和樣本的區別和關聯,以及從少數資料進行正確有效的推論的問題,這些問題被戈塞特[筆名(Student)]和費希爾(W.S.Gosset和R.A.Fisher)解決了.費希爾的工作指出,統計方法的目的在於得到資料的要點,為此,其分布法則是要以較少的母集團中的數目為特徵推想到無限的母集團,而實際的資料就是從它們之中隨機抽出的樣本.基於此點,在母集團數的統計上的無偏性、一致性、有效性、充分性的概念,構成了解消假設的驗定,最優法等的理論.這就是費希爾派的數理統計學,也特稱推計學.

『肆』 生物統計與實驗分析

我們用的是黃皮的那本生物統計大實驗

『伍』 生物統計學的基本特徵

生物統計學是一門探討如何從不完整的信息中獲取科學可靠的結論從而進一步進行生物學實驗研究的設計,取樣,分析,資料整理與推論的科學。與生物測量學大致具有同一涵義,但前者幾乎尚沒有深入到現象的統計處理機制,因此生物測量學作為稍狹義的東西,有時也與生物統計學有所區別

『陸』 生物統計附試驗設計

第一章緒論

1.生物統計學的內容:統計原理、統計方法和試驗設計。
2.生物統計的作用:a.科學地整理分析數據;b.判斷試驗結果的可能性;c.確定事物之間的相互關系;d.提供試驗設計的原理。
3.樣本容量常記為n,通常把n≤30的樣本稱為小樣本,n.>30的樣本稱為大樣本。
4.名解:(重)①生物統計:生物統計是應用概率論和數據統計的原理和方法來研究生物界數量變化的學科;
②總體:是被研究對象的全體,據所含的個體的多少,總體分為有限總體和無限總體。
③樣本:是指總體內隨機抽取出來若干個體所組成的單位。
④隨機誤差:由於許多無法控制的內在和外在的偶然因素所造成的誤差,內在如個體差異,外在如環境,它影響試驗的精確性。
(了)①參數:從總體計算出來的數量特徵值,它是一個真值,沒有抽樣變動的影響,一般用平均數u,標准差s。
②統計量:是從樣本計算出來的數量特徵值,它是參數的估計值,受樣本變動的影響,一般用拉丁字母表示,如平均數。
③系統誤差:主要是試驗動物的初始條件不同,試驗條件相差較大,儀器不準,標准試劑未經校正,葯品批次不同,葯品用量與種類不符合試驗計劃要求,以及觀察,記錄抄案,計算中的錯誤所引起的誤差,它影響試驗的准確性。
④准確性:指在試驗或調查中某試驗指標或形狀的觀測值與其真值接近的程度。
⑤精確性:指試驗或調查中一試驗指標或形狀的重復觀測值彼此接近的程度。

第二章資料的整理

1.統計資按性質分為:計量資料、次數資料和半定量資料。
2.計量資料是指用量測方式獲得的數量性狀資料,即用度、量、衡等計量工具直接測量獲得的數量性狀資料。計量資料整理的五步驟如下:
(1)求全距,即資料中最大值和最小值之差R=Max(x)—Min(x);
(2)確定組數即按樣本大小而定;
樣本含量與組數
樣本含量 組數
30~60 6~8
60~100 8~10
100~200 10~12
200~500 12~17
500以上 17~30
(3)確定組距,每組最大值與最小值之差記為i ,公式:組距(i)=全距(R)/組數k ;(4)確定組中值及組限,各組的最大值和最小值稱為組限,最小值為下限,最大值為上限,每組的中點值稱為組中值,組中值=(下限+上限)/2=下限+組距/2=上限-組距/2;(5)歸組劃線計數,作次數分布表。
3.常用的五種統計圖為長條圖、圓圖、線圖、直方圖、折線圖,掌握直方圖和折線圖的繪制。
4.原始資料的檢查核對主要進行下面三性的檢查:①檢查資料的完整性;②檢查資料的正確性;③檢查資料的精確性。
5大樣本資料需整理成次數分布表。

第三章資料的統計描述

1.平均數包括以下五種算術平均數、中位數、眾數、幾何平均數及調和平均數。
2.用來度量資料變異程度的指標主要有極差、方差、標准差、變異系數。
3.平均數的基本性質是(1)樣本各觀測值與平均數之差的和為零,簡述為離均差之和為;(2)樣本各觀測值與平均數之差的平方和為最小,簡述為離均差平方和為最小。
4.10頭母豬第一胎產仔數為9、8、7、10、12、10、11、14、8、9(頭)計算10頭母豬第一胎產仔數的平均數、中位數、標准差和變異系數。
解:①平均數Σx=9+8+7+10+12+10+11+14+8+9=98,n=10

②資料數據按小到大排列如:7、8、8、9、9、10、10、11、12、14
中位數
③標准差
④變異系數

第四章常用概率分布

1.事件概率具有以下性質:①對於任何事件A,有0≤P(A)≤1;②必然事件的概率為1,即P(Ω)=1:③不可能的事件概率為0,即P(Ø)=0。
2.(1)正態分布:若連續型隨機變數X的概率分布密度函數為
其中 為平均數,σ2為方差,則稱隨機變數X服從正態分布,記為X~ 。相應的概率分布函數為
正態分布密度曲線為:

(2)標准正態分布::當μ=0、σ=l時,正態總體稱為標准正態總體,其相應的函數表示式是,(-∞<x<+∞)
其相應的曲線稱為標准曲線;.標准正態總體的概率問題:

對於標准正態總體N(0,1), 是總體取值小於 的概率,
即 ,
其中 ,圖中陰影部分的面積表示為概率 只要有標准正態分布表即可查表解決.從圖中不難發現:當 時, ;而當 時,Φ(0)=0.5;標准正態總體 在正態總體的研究中有非常重要的地位,為此專門製作了「標准正態分布表」.在這個表中,對應於 的值 是指總體取值小於 的概率,即 , .
若 ,則 .
利用標准正態分布表,可以求出標准正態總體在任意區間 內取值的概率,即直線 , 與正態曲線、x軸所圍成的曲邊梯形的面積 .
(3)有關概率計算的公式:
P(0≤u<u1)=Φ(u1)-0.5
P(u≥u1) =Φ(-u1)
P(|u|≥u1)=2Φ(-u1)
P(|u|<u1)=1-2Φ(-u1)
P(u1≤u<u2)=Φ(u2)-Φ(u1)
註:用曲線圖和面積來理解記憶。
(4)關於標准正態分布要熟記下列幾種常用概率:
P(-1≤u<1)=0.6826
P(-2≤u<2)=0.9545
P(-3≤u<3)=0.9973
P(-1.96≤u<1.96)=0.95
P (-2.58≤u<2.58)=0.99
(5)例:①已知u~N(0,1),試求: (1) P(u<-1.64)=? (2) P (u≥2.58)=? (3) P (|u|≥2.56)=? (4) P(0.34≤u<1.53) =?
利用(4-12)式,查附表1得:
(1) P(u<-1.64)=0.05050
(2) P (u≥2.58)=Φ(-2.58)=0.024940
(3) P (|u|≥2.56)=2Φ(-2.56)=2×0.005234=0.010468
(4) P (0.34≤u<1.53)=Φ(1.53)-Φ(0.34)=0.93669-0.6331=0.30389
②已知u~N(0,1)試求:
(1) P(u<- )+P(u≥ )=0.10的
(2) P(- ≤u< ﹚=0.86的
因為附表2中的α值是:

所以
(1) P(u<- )+ P(u≥ )=1- P(- ≤u< ﹚=0.10=α
由附表2查得: =1.644854
(2) P (- ≤u< )=0.86 ,α=1- P (- ≤u< )=1-0.86=0.14
由附表2查得: =1.475791
對於x~N(μ,σ2),只要將其轉換為u~N(0,1),即可求得相應的雙側分位數。
③已知豬血紅蛋白含量x服從正態分布N(14.52, ), 若P(x<1.1) =0.025, P(x> )=0.025,P(x< ) =0.005,P(x> )=0.005,求 , , , 。
由題意可知,α/2=0.025,α=0.05 又因為

P(x> )=
故 P(x< =+ P(x> )= P(u<- =+ P(u> )
=1- P(- <P< )=0.05=α
由附表2查得: =1.959964,所以
( -14.52)/1.68=-1.959964, ( -14.52)/1.68=1.959964
即 ≈11.23, ≈17.81。
同理 =2.575829,所以
( -14.52)/1.68=-2.575829, ( -14.52)/1.68=2.575829
即 ≈10.19, ≈18.85。
④已知豬血紅蛋白含量x服從正態分布N(12.86, ), 若P(x< ) =0.03, P(x≥ )=0.03,求 , 。
由題意可知,α/2=0.03,α=0.06 又因為
P(x≥ )=
故 P(x< =+ P(x≥ )= P(u<- =+ P(u≥ )
=1- P(- ≤P< )=0.06=α
由附表2查得: =1.880794,所以
( -12.86)/1.33=-1.880794, ( -12.86)/1.33=1.880794
即 ≈10.36, ≈15.36。
3. ①雙側概率(重):把隨機變數X落在平均數 左右標准差σ一定倍數區間之外的概率記作σ;②單側概率:指所求得隨機變數X小於平均數 左側標准差σ一定倍數或大於平均數 右側標准差σ一定倍數的概率記作σ/2。

第五章假設檢驗

1.顯著性檢驗:就是指在對資料進行統計分析時,先提某一問題對樣本所在總體的參數提出一個統計假設,然後根據從樣本獲得的統計量所服從的概率分布,對這一假設進行檢驗;其目的是主要是看樣本是否來自於均數相同的總體即通過對樣本的研究來對總體作出統計推斷;檢驗的對象是在統計學中,是以樣本平均數差異x1- x2的大小時樣本所在的總樣本平均數 1、 2是否相同作出推斷。
2.為什麼以樣本均數作為檢驗對象呢?是因為樣本平均數具有下述特性:
(1)離均差的平方和 (xi- )2最小。說明樣本平均數與樣本各個觀測值最接近,平均數是資料的代表數。
(2)樣本平均數是總體平均數的無偏估計值,即E( )= 。
(3)根據統計學中心極限定理,樣本平均數 服從或逼近正態分布。
所以,以樣本平均數作為檢驗對象,由兩個樣本平均數x1和x2的差異去推斷樣本所屬總體平均數是否相同時有依據的。
3.(了) ①標准誤(平均數抽樣總體的標准差) 的大小反映樣本平均數 的抽樣誤差的大小,即精確性的高低。標准誤大,說明各樣本平均數 間差異程度大,樣本平均數的精確性低。反之, 小,說明 間的差異程度小,樣本平均數的精確性高。 的大小與原總體的標准差σ成正比,與樣本含量n的平方根成反比。從某特定總體抽樣,因為σ是一常數,所以只有增大樣本含量才能降低樣本平均數 的抽樣誤差。在實際工作中,總體標准差σ往往是未知的,因而無法求得 。此時,可用樣本標准差S估計σ。於是,以 估計 。記 為 ,稱作樣本標准誤或均數標准誤。②區別:樣本標准差與樣本標准誤是既有聯系又有區別的兩個統計量, = 已表明了二者的聯系。二者的區別在於:樣本標准差S是反映樣本中各觀測值 , ,…, 變異程度大小的一個指標,它的大小說明了 對該樣本代表性的強弱。樣本標准誤 是樣本平均數 的標准差,它是 抽樣誤差的估計值, 其大小說明了樣本間變異程度的大小及 精確性的高低。
4. ①小概率事件通常指發生的概率小於5%的事件,認為在一次試驗中該事件是幾乎不可能發生的。隨機事件的概率表示了隨機事件在一次試驗中出現的可能性大小。若隨機事件的概率很小,例如小於0.05、0.01、0.001,稱之為小概率事件。小概率事件雖然不是不可能事件,但在一次試驗中出現的可能性很小,不出現的可能性很大,以至於實際上可以看成是不可能發生的。在統計學上,把小概率事件在一次試驗中看成是實際不可能發生的事件稱為小概率事件實際不可能性原理,亦稱為小概率原理。小概率事件實際不可能性原理是統計學上進行假設檢驗(顯著性檢驗)的基本依據。
②一統計資料進行統計推斷判斷的原則如下:
Ⅰ、當 < ,P>0.05 時,差異不顯著,用「NS」表示,不能否H0 ;
Ⅱ、當 ≤ ≤ ,0.01< P <0.05時,差異顯著,用「*」表示,接受HA,否定H0 ;
Ⅲ、當 ≥ ,P≤0.01時,差異極顯著,用「**」表示,接受HA,否定H0 。
5.計算題:了解樣本均數與總體均數的差異性顯著檢驗及兩樣本均數的差異性顯著檢驗;重點知道正態總體平均數 的置信區間。
例:①計算下列資料總體平均數的95%,99%置信區間,119、22、104、32、53、31、118、57、30、101、、58、48、68、70。
解:資料總體平均數的95%,99%置信區間
df=n-1=14-1=13,故 =2.160, =3.012
=65.0714 ,S=33.3293, 9.2431
所以⑴95%置信半徑為 =19.9668
95%置信下限為 — =45.1046
95%置信上限為 — =85.0382
即該資料總體平均數u 的95%置信區間為45.1046≤u≤85.0382
⑵99%置信半徑為 =27.8426
99%置信下限為 — =37.2288
99%置信上限為 — =92.9140
即該資料總體平均數u 的99%置信區間為37.2288≤u≤92.9140 。
②隨機抽測了10隻兔的直腸溫度,其數據為:38.7、39.0、38.9、39.6、39.1、39.8、38.5、39.7、39.2、38.4℃。已知該品種兔直腸溫度的總體平均數為 ℃,檢驗該樣本平均數溫度與 是否有顯著性差異?
解:⑴提出無效假設與備擇假設
H0 : =39.5,HA: <39.5
⑵計算t值 經計算得 =39.09,S=0.4909
t=( - )/ =-2.6411
⑶統計推斷
由df=n-1=10-1=9,查附表得臨界t值
=2.262 =3.250, <︱t︱< ,0.01< P < 0.05
否定H0,HA接受,表明樣本平均數 與已知總體平均數 差異顯著。

『柒』 求助——醫學統計學與統計學,衛生統計學,生物統計學的聯系與區別

什麼叫醫學統計學?醫學統計學與統計學、衛生統計學、生物統計學有何聯系與區別?醫學統計學:是運用統計學原理和方法研究生物醫學資料的搜索、整理、分析和推斷的一門學科。統計學:是研究數據的收集、整理、分析與推斷的科學。衛生統計學:是把統計理論、方法應用於居民健康狀況研究、醫療衛生實踐、衛生事業管理和醫學科研的一門應用學科。生物統計學:是一門探討如何從不完整的信息中獲取科學可靠的結論從而進一步進行生物學實驗研究的設計,取樣,分析,資料整理與推論的科學。醫學統計學與生物統計學、衛生統計學是統計學原理和方法在互有聯系的不同學科領域的應用,三者間雖有區別,但無截然界限。生物統計學應用於生物學研究,從生物范疇也包括人的角度來說,它比醫學統計學的范圍更廣。醫學統計學和衛生統計學應用於醫學研究,前者側重於醫學的生物學方面,後者側重於醫葯衛生的社會方面(社會衛生事業管理和人民健康狀況研究)。

『捌』 生物統計有什麼用

生物統計學是一門探討如何從不完整的信息中獲取科學可靠的結論從而進一步進行生物學實驗研究的設計、取樣、分析、資料整理與推論的科學。由此可見,對於研究人員,是不可多得的研究工具。對於純粹是為了考試的人來說,那就這樣咯——為了考試唄~~

『玖』 什麼是生物統計

生物統計(shengwu tongji,biostatistics,biometry,biometrics)含義 應用於中的數理統計方法。即用數理統計的原理和方法,分析和解釋生物界的種種現象和數據資料,以求把握其本質和規律性。
發展簡況
最早提出生物統計思想的是比利時數學家L.A.J.凱特萊,他試圖把統計學的理論應用於解決生物學、醫學和社會學中的問題。1866年,揭示了遺傳的基本規律,這是最早運用數理統計於生物實驗的一個成功的範例(見)。1889年,在《自然的遺傳》一書中,通過對人體身高的研究指出,子代的身高不僅與親代的身高相關,而且有向平均值「回歸」的趨勢,由此提出了「回歸」和「相關」的概念和演算法,從而奠定了生物統計的基礎。高爾頓的學生K.皮爾遜進一步把統計學應用於生物研究,提出了實際測定數與理論預期數之間的偏離度指數即卡方差()的概念和演算法,這在屬性的統計分析上起了重要作用。1899年,他創辦了《生物統計》雜志,還建立了一所數理統計學校。他的學生W.S.戈塞特對樣本標准差作了許多研究,並於1908年以「Student」的筆名將t-檢驗法發表於《生物統計》雜志上。此後,t-檢驗法就成了生物統計學中的基本工具之一。英國數學家指出,只注意事後的數據分析是不夠的,事先必須作好實驗設計。他使實驗設計成了生物統計的一個分支。他的學生G.W.斯奈迪格把變異來源不同的均方比值稱為F值,並指出當值大於理論上 5%概率水準的值時,該項變異來源的必然性效應就從偶然性變數中分析出來了,這就是「方差分析法」。上述這些方法對於農業科學、生物學特別是的研究,起了重大的推動作用,20世紀20年代以來,各種數理統計方法陸續創立,它們在實驗室、田間、飼養和臨床實驗中得到廣泛應用並日益擴大到整個工業界。70年代,隨著計算機的普及,使本來由於計算量過大而不得不放棄的統計方法又獲得了新的生命力,應用更為廣泛,並在現代科技中佔有十分重要的地位。

『拾』 生物統計學

生物統計學屬生物工程專業。生物統計學是一門探討如何從不完整的信息中獲取科學可靠的結論,從而進一步進行生物學實驗研究的設計,取樣,分析,資料整理與推論的科學。應用數理統計學來處理生物現象的學問。與其說是生物學的一個分科不如看作是生物學的方法論。與生物測量學大致具有同一涵義,但前者幾乎尚沒有深入到現象的統計處理機制,因此生物測量學作為稍狹義的東西,有時也與生物統計學有所區別。生物工程專業通過掌握生物技術及其產業化的科學原理、工藝技術過程和工程設計等基礎理論,基本技能,能在生物技術與工程領域從事設計生產管理和新技術研究、新產品開發的工程技術人才。

閱讀全文

與生物統計與實驗設計的關系如何相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:976
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1651
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059