導航:首頁 > 生物信息 > 生物信息學中什麼是數據挖掘

生物信息學中什麼是數據挖掘

發布時間:2022-11-04 12:32:18

⑴ 什麼是數據挖掘 其功能是什麼

數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
數據挖掘的流程是:

定義問題:清晰地定義出業務問題,確定數據挖掘的目的。
數據准備:數據准備包括:選擇數據–在大型資料庫和數據倉庫目標中 提取數據挖掘的目標數據集;數據預處理–進行數據再加工,包括檢查數據的完整性及數據的一致性、去雜訊,填補丟失的域,刪除無效數據等。
數據挖掘:根據數據功能的類型和和數據的特點選擇相應的演算法,在凈化和轉換過的數據集上進行數據挖掘。
結果分析:對數據挖掘的結果進行解釋和評價,轉換成為能夠最終被用戶理解的知識。

⑵ 什麼是數據挖掘概念是什麼

數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

數據挖掘流程:

數據挖掘的技術,可粗分為:統計方法、機器學習方法、神經網路方法和資料庫方法。統計方法,可細分為:回歸分析(多元回歸、自回歸等)、判別分析(貝葉斯判別、CBR、遺傳演算法、貝葉斯信念網路等。神經網路方法,可細分為:前向神經網路(BP演算法等)、自組織神經網路(自組織特徵映射、競爭學習等)等。資料庫方法主要是基於可視化的多維數據分析或OLAP方法,另外還有面向屬性的歸納方法。

⑶ 什麼是數據挖掘

數據挖掘又譯為資料探勘、數據采礦。是一種透過數理模式來分析企業內儲存的大量資料,以找出不同的客戶或市場劃分,分析出消費者喜好和行為的方法,它是資料庫知識發現中的一個步驟。

數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性的信息的過程。主要有數據准備、規律尋找和規律表示3個步驟。數據挖掘的任務有關聯分析、聚類分析、分類分析、異常分析、特異群組分析和演變分析等。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。

⑷ 數據挖掘的定義是什麼

數據挖掘(Data Mining)是指通過大量數據集進行分類的自動化過程,以通過數據分析來識別趨勢和模式,建立關系來解決業務問題。換句話說,數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

原則上講,數據挖掘可以應用於任何類型的信息存儲庫及瞬態數據(如數據流),如資料庫、數據倉庫、數據集市、事務資料庫、空間資料庫(如地圖等)、工程設計數據(如建築設計等)、多媒體數據(文本、圖像、視頻、音頻)、網路、數據流、時間序列資料庫等。也正因如此,數據挖掘存在以下特點:

(1)數據集大且不完整
數據挖掘所需要的數據集是很大的,只有數據集越大,得到的規律才能越貼近於正確的實際的規律,結果也才越准確。除此以外,數據往往都是不完整的。

(2)不準確性
數據挖掘存在不準確性,主要是由雜訊數據造成的。比如在商業中用戶可能會提供假數據;在工廠環境中,正常的數據往往會收到電磁或者是輻射干擾,而出現超出正常值的情況。這些不正常的絕對不可能出現的數據,就叫做雜訊,它們會導致數據挖掘存在不準確性。

(3)模糊的和隨機的
數據挖掘是模糊的和隨機的。這里的模糊可以和不準確性相關聯。由於數據不準確導致只能在大體上對數據進行一個整體的觀察,或者由於涉及到隱私信息無法獲知到具體的一些內容,這個時候如果想要做相關的分析操作,就只能在大體上做一些分析,無法精確進行判斷。
而數據的隨機性有兩個解釋,一個是獲取的數據隨機;我們無法得知用戶填寫的到底是什麼內容。第二個是分析結果隨機。數據交給機器進行判斷和學習,那麼一切的操作都屬於是灰箱操作。

關於派可數據,用心創造數據價值 讓數據分析更簡單

⑸ 什麼是數據挖掘

你好!
數據挖掘是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。
數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。
數據挖掘是人工智慧和資料庫領域研究的熱點問題,所謂數據挖掘是指從資料庫的大量數據中揭示出隱含的、先前未知的並有潛在價值的信息的非平凡過程。
數據挖掘是一種決策支持過程,它主要基於人工智慧、機器學習、模式識別、統計學、資料庫、可視化技術等,高度自動化地分析企業的數據,作出歸納性的推理,從中挖掘出潛在的模式,幫助決策者調整市場策略,減少風險,作出正確的決策。

⑹ 數據挖掘是什麼

數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

數據挖掘流程:

⑺ 什麼是數據挖掘

數據挖掘是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。

數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。



數據挖掘對象

數據的類型可以是結構化的、半結構化的,甚至是異構型的。發現知識的方法可以是數學的、非數學的,也可以是歸納的。最終被發現了的知識可以用於信息管理、查詢優化、決策支持及數據自身的維護等。

數據挖掘的對象可以是任何類型的數據源。可以是關系資料庫,此類包含結構化數據的數據源;也可以是數據倉庫、文本、多媒體數據、空間數據、時序數據、Web數據,此類包含半結構化數據甚至異構性數據的數據源。

發現知識的方法可以是數字的、非數字的,也可以是歸納的。最終被發現的知識可以用於信息管理、查詢優化、決策支持及數據自身的維護等。

⑻ 什麼是數據挖掘

數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

數據挖掘流程:

⑼ 什麼是數據挖掘

數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

數據挖掘流程:

⑽ 數據挖掘是什麼

數據挖掘(Data Mining)是指通過大量數據集進行分類的自動化過程,以通過數據分析來識別趨勢和模式,建立關系來解決業務問題。換句話說,數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

閱讀全文

與生物信息學中什麼是數據挖掘相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:974
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1651
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059