導航:首頁 > 生物信息 > 如何理解現代分子生物學發展的三大轉折

如何理解現代分子生物學發展的三大轉折

發布時間:2022-11-05 07:13:35

❶ 如何理解生物學的發展歷史

生物學是從分子、細胞、機體乃至生態系統等不同層次研究生命現象的本質、生物的起源進化、遺傳變異、生長發育等生命活動規律的科學。其包含的范疇相當廣泛,包括形態學、微生物學、生態學、遺傳學、分子生物學、免疫學、植物學、動物學、細胞生物學、環境化學等。生物學隨著人類認識世界及科學技術的發展,大概經歷了四個時期:萌芽時期、古代生物學時期、近代生物學時期和現代生物學時期。
1.萌芽時期
指人類產生(約300萬年前)到階級社會出現(約4000年前)之間的一段時期。這時人類處於石器時代,這一時期的人類還處於認識世界的階段,原始人開始栽培植物、飼養動物,並有了原始的醫術,這一切成為生物學發展的啟蒙。
2.古代生物學
到了奴隸社會後期(約4000年前開始)和封建社會,人類進入了鐵器時代。隨著生產的發展,出現了原始的農業、牧業和醫葯業,有了生物知識的積累,植物學、動物學和解剖學進入搜集事實的階段。在搜集的同時也進行了整理,被後人稱為,古代生物學。古代生物學在歐洲以古希臘為中心,著名的學者有亞里士多德(研究形態學和分類學)和古羅馬的蓋侖(研究解剖學和生理學),他們的學說整整統治了生物學領域1000年。其中亞里士多德沒有停留在搜集、觀察和純粹的自然描述上,而是進一步作出哲學概括。在解釋生命現象時,亞里士多德同先輩們一樣,認為有機體最初是從有機基質里產生的,無機的質料可以變成有機的生命。中國的古代生物學,則側重研究農學和醫葯學。賈思褫(約480—550年)著有《齊民要術》,系統地總結了農牧業生產經驗,提出了相關變異規律,首次提到根瘤菌的作用。沈括(1031—1095年)著有《夢溪筆談》,該書中有關生物學的條目近百條,記載了生物的形態、分布等相關資料。
3.近代生物學
從15世紀下半葉到19世紀,這一時期科學技術得到巨大發展,特別是工業革命開始後,生物學進入了全面繁榮的時代。如細胞的發現,達爾文生物進化論的創立,孟德爾遺傳學的提出。巴斯德和科赫等人奠定了微生物學的科學基礎,並在工農業和醫學上產生了巨大影響。17世紀建立起來的動物(包括人體)生理學到19世紀有了明顯的進展,著名學者有彌勒、杜布瓦·雷蒙、謝切諾夫和巴甫洛夫等。由於薩克斯、普費弗和季米里亞捷夫的努力,植物生理學在理論上達到了系統化。胡克改進了顯微鏡的使用方法,發表了《顯微鏡學》,內載生物學史上最早的細胞結構圖,並命名為「cell」。達爾文以博物學家的身份乘英國海軍勘探船「貝格爾」號,經歷了5年的環球旅行,之後出版了震動當時學術界的《物種起源》。該書從變異性、遺傳性、生存競爭和適應性等方面論述了生物界的進化現象,提出了以自然選擇、適者生存為基礎的進化學說。孟德爾多年從事植物雜交試驗研究,並在自然科學學會雜志發表了論文《植物雜交試驗》,文中提出了遺傳單位因子(現在稱為「基因」)的概念,闡明了生物遺傳的基本規律,即分離規律和自由組合定律(亦稱獨立分配定律),使生物學研究逐漸集中到分析生命活動的基本規律上,生物學的發展進入「實驗生物學階段」。巴斯德在實驗中嚴格控制無菌條件,並用長曲頸瓶凈化與無菌肉汁接觸的空氣,證實了肉汁腐敗的原因是來自外界的微生物污染,澄清了「自然發生說」謬論,為微生物學奠定了基礎。
4.現代生物學
20世紀的生物學屬於現代生物學的范疇,隨著科學技術的進一步發展,生物學向理論(包括生物進化)和實踐((主要是植物育種)兩個方面深入發展。與此同時,由於物理學、化學和數學對生物學的滲透及許多新的研究手段的應用,一些新的邊緣學科如生物物理、生物數學應運而生,隨著分子生物學和分子遺傳學的發展及形態研究的深入,細胞學也進入分子水平,出現了細胞生物學。現代生物學正向微觀和綜合方向深入。宏觀方面,從研究生物體的器官、整體到研究種群、群落和生物圈,生態學為典型代表。現代生態學是研究生物有機體與生活場所的相互關系的科學,亦有人稱之為研究生物生存條件、生物與環境相互作用過程及規律的科學,其目的是指導人與生物圈,即自然資源與環境的協調發展。第二次世界大戰以後,人類社會經濟與科技飛速發展,工業廢物、農葯化肥殘毒、交通工具尾氣、城市垃圾等造成了環境污染,破壞了自然生態系統的自我調節和相對平衡。全球變暖、臭氧層破壞、水土流失、沙漠擴大、水源枯竭、氣候異常、森林消失等生態危機都是人類不適當的活動造成的。根據生態學中物種共生、物質再生循環及結構與功能協調等原則,以人與自然協調關系為基礎、高效和諧為方向,將生態應用於廢水污水資源化處理、湖泊富營養化控制、作物種植、森林管理、鹽場管理、水產養殖、土地改良、廢棄地開發和資源再生等方面,收到了顯著的效果。微觀方面,如「細胞生物學」「分子生物學」「量子生物學」的發展,分子生物學為其中典型代表。現代分子生物學是通過研究生物大分子(核酸、蛋白質)的結構、功能和生物合成等方面闡明各種生命現象本質的科學。其目的是在分子水平上,對細胞的活動、生長發育、消亡、物質和能量代謝、遺傳、衰老等重要生命活動進行探索。分子生物學的研究關繫到人類的方方面面。如不同種類生物間的親緣關系,過去主要根據不同種類生物在形態構造上的異同確定,這對形態結構較為簡單的生物如細菌就很困難。通過對不同種類生物的蛋白質或核酸分子的測定,可以克服上述困難,並能更客觀地反映生物間的親緣關系。分子生物學與醫學、農業、生物工程等方面的關系十分密切。分子生物學的研究成果使不同生物體之間的基因轉移成為可能,在農業上開辟了育種的新途徑,在醫學上有可能治療某些遺傳性疾病,在工業上形成了以基因工程為基礎的新興工業,從而有可能生產出許多用常規技術從天然來源無法得到或無法大量得到的生物製品。目前的克隆技術只是分子生物學的一個應用,可以想像未來隨著研究的深入及分子生物學的進一步發展,人類的生活必將更美好。
綜上所述,生物學發展經歷了四個主要時期,即萌芽時期、古代生物學時期、近代生物學時期和現代生物學時期。21世紀不但要認識世界、改造世界,而且要保護世界,對生物學的深層探討和研究必將會帶來豐厚的社會、經濟和生態效益,生物學正成為新的科技革命的重要推動力。然而無論累積了多少生物學知識,已知的與未知的相比,不過是滄海一粟。時代在演變,科學技術在發展,人類對世界的認識亦不斷前進,隨著歷史的發展,生物學必將迎來嶄新的篇章。

❷ 簡述2-3件基因分子生物學發展史中最具有影響力的事件它是如何推動相關研究領域的發展

內容太多 參考http://bio.cersp.com/swjssh/SWJSSH/200607/645.html

分子生物學的發展大致可分為三個階段。
一、准備和醞釀階段
確定了蛋白質是生命的主要基礎物質
19世紀末Buchner兄弟證明酵母無細胞提取液能使糖發酵產生酒精,第一次提出酶(enzyme)的名稱,酶是生物催化劑。20世紀20-40年代提純和結晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黃酶、細胞色素C、肌動蛋白等),證明酶的本質是蛋白質。隨後陸續發現生命的許多基本現象(物質代謝、能量代謝、消化、呼吸、運動等)都與酶和蛋白質相聯系,可以用提純的酶或蛋白質在體外實驗中重復出來。在此期間對蛋白質結構的認識也有較大的進步。1902年EmilFisher證明蛋白質結構是多肽;40年代末,Sanger創立二硝基氟苯(DNFB)法、Edman發展異硫氰酸苯酯法分析肽鏈N端氨基酸;1953年Sanger和Thompson完成了第一個
多肽分子--胰島素A鏈和B鏈的氨基全序列分析。由於結晶X-線衍射分析技術的發展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋結構模型。所以在這階段對蛋白質一級結構和空間結構都有了認識。
確定了生物遺傳的物質基礎是DNA
雖然1868年F.Miescher就發現了核素(nuclein),但是在此後的半個多世紀中並未引起重視。20世紀20-30年代已確認自然界有DNA和RNA兩類核酸,並闡明了核苷酸的組成。由於當時對核苷酸和礆基的定量分析不夠精確,得出DNA中A、G、C、T含量是大致相等的結果,因而曾長期認為DNA結構只是「四核苷酸」單位的重復,不具有多樣性,不能攜帶更多的信息,當時對攜帶遺傳信息的侯選分子更多的是考慮蛋白質。40年代以後實驗的事實使人們對核酸的功能和結構兩方面的認識都有了長足的進步。1944年O.T.Avery等證明了肺炎球菌轉化因子是DNA;1952年A.D.Hershey和M.Cha-se用DNA35S和32P分別標記T2噬菌體的蛋白質和核酸,感染大腸桿菌的實驗進一步證明了是遺傳物質。在對DNA結構的研究上,1949-52年S.Furbery等的X-線衍射分析闡明了核苷酸並非平面的空間構像,提出了DNA是螺旋結構;1948-1953年Chargaff等用新的層析和電泳技術分析組成DNA的礆基和核苷酸量,積累了大量的數據,提出了DNA礆基組成A=T、G=C的Chargaff規則,為礆基配對的DNA結構認識打下了基礎。
二、現代分子生物學的建立和發展階段
以1953年Watson和Crick提出的DNA雙螺旋結構模型作為現代分子生物學誕生的里程碑開創了分子遺傳學基本理論建立和發展的黃金時代。DNA雙螺旋發現的最深刻意義在於:確立了核酸作為信息分子的結構基礎;提出了礆基配對是核酸復制、遺傳信息傳遞的基本方式;從而最後確定了核酸是遺傳的物質基礎,為認識核酸與蛋白質的關系及其在生命中的作用打下了最重要的基礎。
遺傳信息傳遞中心法則的建立
三、初步認識生命本質並開始改造生命的深入發展階段
70年代後,以基因工程技術的出現作為新的里程碑,標志著人類深入認識生命本質並能動改造生命的新時期開始。其間的重大成就包括:
1.重組DNA技術的建立和發展
2.基因組研究的發展
3.單克隆抗體及基因工程抗體的建立和發展
4.基因表達調控機理

❸ 簡述現代分子生物學建立和發展的歷程

這一階段是從50年代初到70年代初,以1953年Watson和Crick提出的DNA雙螺旋結構模型作為現代分子生物學誕生的里程碑開創了分子遺傳學基本理論建立和發展的黃金。DNA雙螺旋發現的最深刻意義在於:確立了核酸作為信息分子的結構基礎;提出鹼基配對是核酸復制、遺傳信息傳遞的基本方式;從而最後確定了核酸是遺傳的物質基礎,為認識核酸與蛋白質的關系及其生命中的作用打下了最重要的基礎。在些期間的主要進展包括:

遺傳信息傳遞中心法則的建立。

在發現DNA雙螺旋結構同時,Watson和Crick就提出DNA復制的可能模型。其後在1956年A.Kornbery首先發現DNA聚合酶;1958年Meselson及Stahl同位素標記和超速離心分離實驗為DNA半保留模型提出了證明;1968年Okazaki(岡畸)提出DNA不連續復制模型;1972年證實了DNA復制開始需要RNA作為引物;70年代初獲得DNA拓撲異構酶,並對真核DNA聚合酶特性做了分析研究;這些都逐漸完善了對DNA復制機理的認識。

在研究DNA復制將遺傳信息傳給子代的同時,提出了RNA在遺傳信息傳到蛋白質過程中起著中介作用的假說。1958年Weiss及Hurwitz等發現依賴於DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA雜增色證明mRNA與DNA序列互補;逐步闡明了RNA轉錄合成的機理。

❹ 為什麼說免疫學,分子生物學和細胞生物學是推動現代生命科學前進的三架馬車

從現在生命科學的發展進程中可以看出來這三駕馬車的作用。以下是現代生物學的發展過程:

發展過程
目前,普遍認為現代生命科學系統的建立開始於16世紀。他的基本特徵是人們對生命現象的研究牢固地植根於觀察和實驗的基礎上,以生命為對象的生物分支學科相繼建立,逐漸形成一個龐大的生命科學體系。現代生命科學可以說是從形態學創立開始的。1543年比利時醫生維薩里(Andreas Vesalius 1514~1564)的名著《人體的結構》發表不僅標志著解剖學的建立,並直接推動了以血液循環研究為先導的生理分支學科的形成,其標志是1628年,英國醫生哈維(William Harvey 1578~1657)發表了他的名著《心血循環論》。解剖學和生理學的建立為人們對生命現象的全面研究奠定了基礎。
18世紀以後,隨著自然科學全面蓬勃地發展,生命科學業進入它的輝煌發展階段。生命科學重要得分支相繼建立,其中以細胞學、進化論和遺傳學為主要代表,構成了現代生命科學的基石。
1665年,胡克(Robert Hooke,1636~1702)在他的《顯微圖譜》中第一次使用「細胞」一詞(cell)。
現在一般認為細胞學創立於19世紀30年代,是由施萊登(Matthias Jacob Schleiden, 1804~1881)、施旺(Theodor Schwann,1810~1882)以及稍後的數位生物學家共同完成的。他們奠定了細胞是獨立的生命單位、新細胞只能通過老細胞分裂繁殖產生,一切生物都是有細胞組成和由細胞發育而來的細胞學說的基本內容。
林耐因他對現代生物分類系統建立的卓越貢獻成為有史以來最偉大的生物分類學家千姿百態的生物物種被科學的歸納在界、門、綱、目、科、屬、種的秩序里。林耐生物分類系統建立的更重要的意思還在於他直接的誘發了生物進化理論。在林耐當初建立生物分類體系時,企圖表達的是精確地顯現上帝造物的構思和成就。但是事與願違,林耐生物分類系統中體現的各生物物種的相關性和物種由簡單到復雜的「秩序」排列強烈的安是了生物的進化現象。在馬耶(Benoit 的 Mailler,1656~1738)、布豐(Comte de Lamarck 1744~1829)拉馬克(Chavalier de Lamarck 1744~1829)等人工作的基礎上,1859年,達爾文(Charless Darwin,1809~1882)的《物種起源》發表。
19世紀前後,生命科學的重大成就還包括其他一些重要的發現和分支學科的建立。解剖學和細胞學促使人們對生物發育現象的研究獲得了長足的進步,並由此建立了實驗胚胎學。胚胎學實現了對各種代表生物的形態發育過程的組織學和細胞學的研究,繪制了有史以來最精美的生物學圖譜。魏斯曼(August Weismann,1839~1914)關於生物發育的種質學說推動了遺傳學的建立。
1856年,現代遺傳學創始人孟德爾(Gregor Mendel,1822~1884)在「布隆自然歷史學會」上宣讀了自己的豌豆雜交實驗結果,遺憾的是其工作的價值被滿摸了30多年。直到20世紀初,當孟德爾發現的生物遺傳規律被幾個人幾乎同時再次試驗證實時,才引起了人們的注意。為遺傳學作出重大貢獻的另一位偉大的遺傳學家是摩爾根(Thomas Hunt Morgen,1866~1945)。202世紀10~20年代他用果蠅為實驗材料確立了以孟德爾和摩爾根的名字共同命名的景點遺傳學的分離、連鎖和交換三大定律,並因此而榮獲了1933年的諾貝爾獎。遺傳學科學的解釋了生物的遺傳現象,將細胞學發現的染色體結構和進化論解釋的生物進化現象聯系起來,指出了遺傳物質定位在染色體上而推動了DNA雙螺旋結構合中心法則的發現,為分子生物學的建立奠定了基礎。
在19世紀中,法國科學家巴斯德(Louis Paster,1822~1895)創立了微生物學。微生物學直接導致了醫學疫苗的發明和免疫學的建立,推動了生物化學的進展,並為分子生物學的出現准備了條件。生物化學的輝煌發展出現在20世紀的前葉到中葉,圍繞能量和生物大分子物質代謝的研究,發現了生物以三磷酸循環衛樞紐的有著復雜超循環結構的代謝途徑,和以電子傳遞和氧化磷酸化為中心的生物能量獲取、利用的基本方式。
分子生物學的建立是生命科學進入20世紀最偉大的成就。遺傳學的研究預示了生物遺傳載體分子的存在,而DNA雙螺旋結構的發現(J.D.Watson,F.Crick,1953)直接導致了對生物DNA-RNA-蛋白質中心法則(central dogma)的揭示。人們因此探索到了生命運作的基礎框架和生物世代更替的聯系方式。從此,以基因組成、基因表達和遺傳控制為核心的分子生物學的思想和研究方法迅速的深入到生命科學的各個領域,極大地推動了生命科學的發展。

(自己摘抄點 歸納下 就可以出答案了)

❺ 生物學發展經歷的三個階段及其主要標志事件是什麼

生命科學的發展經歷了三個重要階段:一、描述生物學:20世紀以前主要是對自然的觀察和描述,是關於博物學和形態分類的研究。二、實驗生物學:1900年孟德爾遺傳規律的重新發現。三、分子生物學:1953年DNA分子雙螺旋結構模型的建立。隨著生物學理論與方法的不斷發展,它的應用領域不斷擴大。生物學的影響已突破上述傳統的領域,而擴展到食品、化工、環境保護、能源和冶金工業等等方面。

❻ 分子生物學階段是什麼時候

分子生物學 的誕生和發展按其重大的突破和進展可大致地劃分為三個階段。 第一階段:在上上世紀的後期, 巴斯德 由於發現了細菌而在自然科學史上留下豐功偉績,但是他的「活力論」觀點,即認為細菌的代謝活動必須依賴完整細胞的看法,卻阻礙了生物化學的進一步發展。直至1890~1900年問suchner兄弟證明酵母提出液可使糖發酵之後,科學家們才認識到細胞的活動原來可以再拆分為更細的成分加以研究。此後相繼結晶了許多酶,如腺酶(Sumner,1926)、 胰蛋白酶 (Northrop,1930)及 胃蛋白酶 (Northrop及Kunitz,1932)等,並且證實了這些物質都是蛋白質。這些成果開辟了近代生物化學的新紀元。事實上,分子生物學正是在科學家們打破了細胞界限之日誕生的。在這以後的幾十年間,科學界普遍認為,蛋白質是生命的主要物質基礎,也是遺傳的物質基礎。與此同時,被湮沒達 35年之久的 孟德爾遺傳定律 (1865),又被重新發現,摩根等在這個定律基礎上建立了 染色體 學說,使遺傳學的研究引起了科學界的重視。這個時期,尤其是在 第一次世界大戰 之後,正是 物理學 空前發達的年代, 量子理論 和 原子物理學 的研究表明,盡管自然界的物質變化萬千,但是組成物質的 基本粒子 相同,它們的運動都遵循共同的規律。那麼,是否可以 應用物理學 的基本定律來探討和解釋 生命現象 呢?不少科學家抱著這個信念投身到生命科學的研究中,從而開始了由物理學家、生化學家、遺傳學家和 微生物學 家等 協同作戰 的新時期,在這個時期里,科學家們各自沿著兩條 並行不悖 的路線進行研究。一派是以英國的Astbury等為代表的所謂結構學派(structurists),他們主要用 x射線 衍射 技術研究蛋白質和核酸的空間結構,認為只有搞清 生物大分子 的三維結構,才能闡明生命活動的本質,分子生物學一詞正是Astbury在1950年根據他的這一思想首先提出來的。另一學派稱為信息學派,他們著眼於遺傳信息的研究。它的創始始人之一,德國的Delbruck,本來是原子物理學家,由於 矢志 於遺傳學的研究, 由德國 來到美國 摩根的遺傳學實驗室。當他無法用數學表達果蠅的遺傳規律時,轉而以 噬菌體 為研究對象,把噬菌體看成為最小的遺傳單位,研究其遺傳信息的表達和調控。所以這一派也稱為噬菌體學派。 在這個時期,分子生物學研究的最重要成果是證明了遺傳的物質基礎是DNA而不是蛋臼質,Avery等(1944)證明了使 肺炎雙球菌 由粗糙型轉成為光滑型的轉化因子是DNA。隨後,噬菌體學派的Hershey和chase進一步提出了更加令人信服的證據,他們用蛋白質 上標 記了 放射性 硫的噬菌體感染細菌,發現只有噬菌體的DNA被「注射」到細菌體內去並在其中繁殖,而蛋白質則留在細胞之外。但在當時,由於科學界對DNA的結構尚少研究,所以還無從知道何以DNA能成為遺傳的物質基礎。 分子生物學發展的第二階段是以DNA雙螺旋的發現為標記的,這個劃時代的發現正是結構學派和信息學派匯合所結出的 碩果 ,從此以後,關於生物大分子結構和信息的研究才緊密地結合起來,Watson 和Crick的DNA雙螺旋學說 破天荒 地用分子結構的特徵解釋生命現象的最基本問題之一--基因復制的機理,從而使生物學真正進入分子生物學的新時代。在這以後的年代裡,DNA的研究始終占據著分子生物學的中心地位。在短短的20年裡,mRNA的發現和遺傳密碼的破譯,以及DNA聚合酶、RNA聚合酶、 限制性核酸內切酶 、連接酶, 質粒 等一系列重大發現,終於導致70年代初重組DNA技術的問世。這標志著分子生物學發展到了更高階段,即第三階段。這項技術使分子生物學家能夠在體外按照主觀願望切割和拼接DNA分子,藉助細菌製造大量所需的DNA片段,極大地促進了DNA本身結構和功能的研究。更有甚者,這項 技術標 志著分子生物學家從認識和利用生物的時代進入了改造和創建物種的新時期。

❼ 簡述分子生物學形成與發展的經歷。

一、分子生物學的孕育 分子生物學是生物學與化學及物理學交叉的產物,新的物理學、化學研究手段和理論用於 生物大分子和生命過程研究,是分子生物學誕生的基礎。從生物學內部來說,遺傳學、微生 物學、細胞學和生物化學的交叉,是分子生物學孕育的溫床。 自20 世紀初重新發現孟德爾定律以後,遺傳學的發展非常迅速。到30 年代,基因論 已經得到學術界普遍承認,並且在醫學和農業育種實踐中得到應用。 1941 年,比德爾根據對紅色麵包霉:粗糙鏈孢菌)生化突變型的遺傳學研究,提出了 「一個基因一個酶」的學說。這個學說把基因的功能與蛋白質合成聯系起來,成為以後產生 遺傳密碼概念的思想基礎。 基因的化學實體是什麼?可能的答案有兩個——蛋白質或者DNA(脫氧核糖核酸),因 為它們是染色體的主要化學成分。

❽ 急求分子生物學是如何發展的~

分子生物學的發展大致可分為三個階段。

一、准備和醞釀階段
19世紀後期到20世紀50年代初,是現代分子生物學誕生的准備和醞釀階段。在這一階段產生了兩點對生命本質的認識上的重大突破:

確定了蛋白質是生命的主要基礎物質
19世紀末Buchner兄弟證明酵母無細胞提取液能使糖發酵產生酒精,第一次提出酶(enzyme)的名稱,酶是生物催化劑。20世紀20-40年代提純和結晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黃酶、細胞色素C、肌動蛋白等),證明酶的本質是蛋白質。隨後陸續發現生命的許多基本現象(物質代謝、能量代謝、消化、呼吸、運動等)都與酶和蛋白質相聯系,可以用提純的酶或蛋白質在體外實驗中重復出來。在此期間對蛋白質結構的認識也有較大的進步。1902年EmilFisher證明蛋白質結構是多肽;40年代末,Sanger創立二硝基氟苯(DNFB)法、Edman發展異硫氰酸苯酯法分析肽鏈N端氨基酸;1953年Sanger和Thompson完成了第一個多肽分子--胰島素A鏈和B鏈的氨基全序列分析。由於結晶X-線衍射分析技術的發展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋結構模型。所以在這階段對蛋白質一級結構和空間結構都有了認識。

確定了生物遺傳的物質基礎是DNA
雖然1868年F.Miescher就發現了核素(nuclein),但是在此後的半個多世紀中並未引起重視。20世紀20-30年代已確認自然界有DNA和RNA兩類核酸,並闡明了核苷酸的組成。由於當時對核苷酸和鹼基的定量分析不夠精確,得出DNA中A、G、C、T含量是大致相等的結果,因而曾長期認為DNA結構只是「四核苷酸」單位的重復,不具有多樣性,不能攜帶更多的信息,當時對攜帶遺傳信息的侯選分子更多的是考慮蛋白質。40年代以後實驗的事實使人們對核酸的功能和結構兩方面的認識都有了長足的進步。1944年O.T.Avery等證明了肺炎球菌轉化因子是DNA;1952年A.D.Hershey和M.Cha-se用DNA35S和32P分別標記T2噬菌體的蛋白質和核酸,感染大腸桿菌的實驗進一步證明了是遺傳物質。在對DNA結構的研究上,1949-52年S.Furbery等的X-線衍射分析闡明了核苷酸並非平面的空間構像,提出了DNA是螺旋結構;1948-1953年Chargaff等用新的層析和電泳技術分析組成DNA的鹼基和核苷酸量,積累了大量的數據,提出了DNA鹼基組成A=T、G=C的Chargaff規則,為鹼基配對的DNA結構認識打下了基礎。

二、現代分子生物學的建立和發展階段
這一階段是從50年代初到70年代初,以1953年Watson和Crick提出的DNA雙螺旋結構模型作為現代分子生物學誕生的里程碑開創了分子遺傳學基本理論建立和發展的黃金時代。DNA雙螺旋發現的最深刻意義在於:確立了核酸作為信息分子的結構基礎;提出了鹼基配對是核酸復制、遺傳信息傳遞的基本方式;從而最後確定了核酸是遺傳的物質基礎,為認識核酸與蛋白質的關系及其在生命中的作用打下了最重要的基礎。在此期間的主要進展包括:

遺傳信息傳遞中心法則的建立
在發現DNA雙螺旋結構同時,Watson和Crick就提出DNA復制的可能模型。其後在1956年A.Kornbery首先發現DNA聚合酶;1958年Meselson及Stahl用同位素標記和超速離心分離實驗為DNA半保留模型提出了證明;1968年Okazaki(岡畸)提出DNA不連續復制模型;1972年證實了DNA復制開始需要RNA作為引物;70年代初獲得DNA拓撲異構酶,並對真核DNA聚合酶特性做了分析研究;這些都逐漸完善了對DNA復制機理的認識。
在研究DNA復制將遺傳信息傳給子代的同時,提出了RNA在遺傳信息傳到蛋白質過程中起著中介作用的假說。1958年Weiss及Hurwitz等發現依賴於DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA雜交證明mRNA與DNA序列互補;逐步闡明了RNA轉錄合成的機理。
在此同時認識到蛋白質是接受RNA的遺傳信息而合成的。50年代初Zamecnik等在形態學和分離的亞細胞組分實驗中已發現微粒體(microsome)是細胞內蛋白質合成的部位;1957年Hoagland、Zamecnik及Stephenson等分離出tRNA並對它們在合成蛋白質中轉運氨基酸的功能提出了假設;1961年Brenner及Gross等觀察了在蛋白質合成過程中mRNA與核糖體的結合;1965年Holley首次測出了酵母丙氨酸tRNA的一級結構;特別是在60年代Nirenberg、Ochoa以及Khorana等幾組科學家的共同努力破譯了RNA上編碼合成蛋白質的遺傳密碼,隨後研究表明這套遺傳密碼在生物界具有通用性,從而認識了蛋白質翻譯合成的基本過程。
上述重要發現共同建立了以中心法則為基礎的分子遺傳學基本理論體系。1970年Temin和Baltimore又同時從雞肉瘤病毒顆粒中發現以RNA為模板合成DNA的反轉錄酶,又進一步補充和完善了遺傳信息傳遞的中心法則。

對蛋白質結構與功能的進一步認識
1956-58年Anfinsen和White根據對酶蛋白的變性和復性實驗,提出蛋白質的三維空間結構是由其氨基酸序列來確定的。1958年Ingram證明正常的血紅蛋白與鐮刀狀細胞溶血症病人的血紅蛋白之間,亞基的肽鏈上僅有一個氨基酸殘基的差別,使人們對蛋白質一級結構影響功能有了深刻的印象。與此同時,對蛋白質研究的手段也有改進,1969年Weber開始應用SDS-聚丙烯醯胺凝膠電泳測定蛋白質分子量;60年代先後分析得血紅蛋白、核糖核酸酶A等一批蛋白質的一級結構;1973年氨基酸序列自動測定儀問世。中國科學家在1965年人工合成了牛胰島素;在1973年用1.8AX-線衍射分析法測定了牛胰島素的空間結構,為認識蛋白質的結構做出了重要貢獻。

三、初步認識生命本質並開始改造生命的深入發展階段
70年代後,以基因工程技術的出現作為新的里程碑,標志著人類深入認識生命本質並能動改造生命的新時期開始。其間的重大成就包括:

1.重組DNA技術的建立和發展
分子生物學理論和技術發展的積累使得基因工程技術的出現成為必然。1967-1970年R.Yuan和H.O.Smith等發現的限制性核酸內切酶為基因工程提供了有力的工具; 1972年Berg等將SV-40病毒DNA與噬菌體P22DNA在體外重組成功,轉化大腸桿菌,使本來在真核細胞中合成的蛋白質能在細菌中合成,打破了種屬界限;1977年Boyer等首先將人工合成的生長激素釋放抑制因子14肽的基因重組入質粒,成功地在大腸桿菌中合成得到這14肽;1978年Itakura(板倉)等使人生長激素191肽在大腸桿菌中表達成功;1979年美國基因技術公司用人工合成的人胰島素基因重組轉入大腸桿菌中合成人胰島素。至今我國已有人干擾素、人白介素2、人集落刺激因子、重組人乙型肝炎疫苗、基因工程幼畜腹瀉疫苗等多種基因工程葯物和疫苗進入生產或臨床試用,世界上還有幾百種基因工程葯物及其它基因工程產品在研製中,成為當今農業和醫葯業發展的重要方向,將對醫學和工農業發展作出新貢獻。
轉基因動植物和基因剔除動植物的成功是基因工程技術發展的結果。1982年Palmiter等將克隆的生長激素基因導入小鼠受精卵細胞核內,培育得到比原小鼠個體大幾倍的「巨鼠」,激起了人們創造優良品系家畜的熱情。我國水生生物研究所將生長激素基因轉入魚受精卵,得到的轉基因魚的生長顯著加快、個體增大;轉基因豬也正在研製中。用轉基因動物還能獲取治療人類疾病的重要蛋白質,導入了凝血因子Ⅸ基因的轉基因綿羊分泌的乳汁中含有豐富的凝血因子Ⅸ,能有效地用於血友病的治療。在轉基因植物方面,1994年能比普通西紅柿保鮮時間更長的轉基因西紅柿投放市場,1996年轉基因玉米、轉基因大豆相繼投入商品生產,美國最早研製得到抗蟲棉花,我國科學家將自己發現的蛋白酶抑制劑基因轉入棉花獲得抗棉鈴蟲的棉花株。到1996年全世界已有250萬公頃土地種植轉基因植物。
基因診斷與基因治療是基因工程在醫學領域發展的一個重要方面。1991年美國向一患先天性免疫缺陷病(遺傳性腺苷脫氨酶ADA基因缺陷)的女孩體內導入重組的ADA基因,獲得成功。我國也在1994年用導入人凝血因子Ⅸ基因的方法成功治療了乙型血友病的患者。在我國用作基因診斷的試劑盒已有近百種之多。基因診斷和基因治療正在發展之中。
這時期基因工程的迅速進步得益於許多分子生物學新技術的不斷涌現。包括:核酸的化學合成從手工發展到全自動合成,1975-1977年Sanger、Maxam和Gilbert先後發明了三種DNA序列的快速測定法;90年代全自動核酸序列測定儀的問世;1985年Cetus公司Mullis等發明的聚合酶鏈式反應(PCR)的特定核酸序列擴增技術,更以其高靈敏度和特異性被廣泛應用,對分子生物學的發展起到了重大的推動作用。

2.基因組研究的發展
目前分子生物學已經從研究單個基因發展到研究生物整個基因組的結構與功能。1977年Sanger測定了ΦX174-DNA全部5375個核苷酸的序列;1978年Fiers等測出SV-40DNA全部5224對鹼基序列;80年代λ噬菌體DNA全部48,502鹼基對的序列全部測出;一些小的病毒包括乙型肝炎病毒、艾滋病毒等基因組的全序列也陸續被測定;1996年底許多科學家共同努力測出了大腸桿菌基因組DNA的全序列長4x106鹼基對。測定一個生物基因組核酸的全序列無疑對理解這一生物的生命信息及其功能有極大的意義。1990年人類基因組計劃(HumanGenomeProject)開始實施,這是生命科學領域有史以來全球性最龐大的研究計劃,將在2005年時測定出人基因組全部DNA3x109鹼基對的序列、確定人類約5-10萬個基因的一級結構,這將使人類能夠更好掌握自己的命運。

3.單克隆抗體及基因工程抗體的建立和發展
1975年Kohler和Milstein首次用B淋巴細胞雜交瘤技術制備出單克隆抗體以來,人們利用這一細胞工程技術研製出多種單克隆抗體,為許多疾病的診斷和治療提供了有效的手段。80年代以後隨著基因工程抗體技術而相繼出現的單域抗體、單鏈抗體、嵌合抗體、重構抗體、雙功能抗體等為廣泛和有效的應用單克隆抗體提供了廣闊的前景。

4.基因表達調控機理
分子遺傳學基本理論建立者Jacob和Monod最早提出的操縱元學說打開了人類認識基因表達調控的窗口,在分子遺傳學基本理論建立的60年代,人們主要認識了原核生物基因表達調控的一些規律,70年代以後才逐漸認識了真核基因組結構和調控的復雜性。1977年最先發現猴SV40病毒和腺病毒中編碼蛋白質的基因序列是不連續的,這種基因內部的間隔區(內含子)在真核基因組中是普遍存在的,揭開了認識真核基因組結構和調控的序幕。1981年Cech等發現四膜蟲rRNA的自我剪接,從而發現核酶(ribozyme)。80-90年代,使人們逐步認識到真核基因的順式調控元件與反式轉錄因子、核酸與蛋白質間的分子識別與相互作用是基因表達調控根本所在。

5.細胞信號轉導機理研究成為新的前沿領域
細胞信號轉導機理的研究可以追述至50年代。Sutherland1957年發現cAMP、1965年提出第二信使學說,是人們認識受體介導的細胞信號轉導的第一個里程碑。1977年Ross等用重組實驗證實G蛋白的存在和功能,將G蛋白與腺苷環化酶的作用相聯系起來,深化了對G蛋白偶聯信號轉導途徑的認識。70年代中期以後,癌基因和抑癌基因的發現、蛋白酪氨酸激酶的發現及其結構與功能的深入研究、各種受體蛋白基因的克隆和結構功能的探索等,使近10年來細胞信號轉導的研究更有了長足的進步。目前,對於某些細胞中的一些信號轉導途徑已經有了初步的認識,尤其是在免疫活性細胞對抗原的識別及其活化信號的傳遞途徑方面和細胞增殖控制方面等都形成了一些基本的概念,當然要達到最終目標還需相當長時間的努力。

以上簡要介紹了分子生物學的發展過程,可以看到在近半個世紀中它是生命科學范圍發展最為迅速的一個前沿領域,推動著整個生命科學的發展。至今分子生物學仍在迅速發展中,新成果、新技術不斷涌現,這也從另一方面說明分子生物學發展還處在初級階段。分子生物學已建立的基本規律給人們認識生命的本質指出了光明的前景,但分子生物學的歷史還短,積累的資料還不夠,例如:在地球上千姿萬態的生物攜帶龐大的生命信息,迄今人類所了解的只是極少的一部分,還未認識核酸、蛋白質組成生命的許多基本規律;又如即使到2005年我們已經獲得人類基因組DNA3x109bp的全序列,確定了人的5-10萬個基因的一級結構,但是要徹底搞清楚這些基因產物的功能、調控、基因間的相互關系和協調,要理解80%以上不為蛋白質編碼的序列的作用等等,都還要經歷漫長的研究道路。可以說分子生物學的發展前景光輝燦爛,道路還會艱難曲折。

❾ 分機生物學發展經歷了__遺傳學和__遺傳學階段

分子生物學發展簡史

分子生物學的發展大致可分為三個階段。

(一)准備和醞釀階段

19世紀後期到20世紀50年代初,是現代分子生物學誕生的准備和醞釀階段。在這一階段產生了兩點對生命本質的認識上的重大突破。

確定了蛋白質是生命的主要物質基礎。

19世紀末Buchner兄弟證明酵母無細胞提取液能使糖發酵產生酒精,第一次提出酶(enzyme)的名稱,酶是生物催化劑。20世紀20-40年代提純和結晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、共同酶、細胞色素C、肌動蛋白等),證明酶的本質是蛋白質。隨後陸續發現生命的許多基本現象(物質代謝、能量代謝、消化、呼吸、運動等)都與酶和蛋白質相聯系,可以用提純的酶或蛋白質在體外實驗中重復出來。在此期間對蛋白質結構的認識也有較大的進步。1902年EmilFisher證明蛋白質結構是多肽;40年代末,Sanger創立二硝基氟苯(DNFB)法、Edman發展異硫氰酸苯酯法分析肽鏈N端氨基酸;1953年Sanger和Thompson完成了第一個多肽分子——胰島素A鏈和B鏈的氨基酸全序列分析。由於結晶X-線衍射分析技術的發展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋結構模型。所以在這階段對蛋白質一級結構和空間結構都有了認識。

確定了生物遺傳的物質是DNA。

雖然1868年F.Miescher就發現了核素(nuclein),但是在此後的半個多世紀中並未引起重視。20世紀20-30年代已確認了自然界有DNA和RNA兩類核酸,並闡明了核苷酸的組成。由於當時對核苷酸和鹼基的定量分析不夠精確,得出DNA中A、G、C、T含量是大致相等的結果,因而間長期認為DNA結構只有「四核苷酸」單位的重復,不具有多樣性,不能攜帶更多的信息,當時對攜帶遺傳信息的侯選分子更多的是考慮蛋白質。40年代以後的實驗事實使人們對核酸的功能和結構兩方面的認識都有了長足的進步。1944年O.T.Avery等證明了肺炎球菌轉化因子是DNA;1952年S.Furbery等的X-線衍射分析闡明了核苷酸並非平面的空間構像,提出了DNA是螺旋結構;1948-1953年Chargaff等用新的層析和電泳技術分析組成DNA的鹼基和核苷酸量,積累了大量的數據,提出了DNA鹼基組成A=T、G=C的Chargaff規則,為鹼基酸對的DNA結構認識打下了基礎。

(二)現代分子生物學的建立和發展階段

這一階段是從50年代初到70年代初,以1953年Watson和Crick提出的DNA雙螺旋結構模型作為現代分子生物學誕生的里程碑開創了分子遺傳學基本理論建立和發展的黃金。DNA雙螺旋發現的最深刻意義在於:確立了核酸作為信息分子的結構基礎;提出鹼基配對是核酸復制、遺傳信息傳遞的基本方式;從而最後確定了核酸是遺傳的物質基礎,為認識核酸與蛋白質的關系及其生命中的作用打下了最重要的基礎。在些期間的主要進展包括:

遺傳信息傳遞中心法則的建立。

在發現DNA雙螺旋結構同時,Watson和Crick就提出DNA復制的可能模型。其後在1956年A.Kornbery首先發現DNA聚合酶;1958年Meselson及Stahl同位素標記和超速離心分離實驗為DNA半保留模型提出了證明;1968年Okazaki(岡畸)提出DNA不連續復制模型;1972年證實了DNA復制開始需要RNA作為引物;70年代初獲得DNA拓撲異構酶,並對真核DNA聚合酶特性做了分析研究;這些都逐漸完善了對DNA復制機理的認識。

在研究DNA復制將遺傳信息傳給子代的同時,提出了RNA在遺傳信息傳到蛋白質過程中起著中介作用的假說。1958年Weiss及Hurwitz等發現依賴於DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA雜增色證明mRNA與DNA序列互補;逐步闡明了RNA轉錄合成的機理。

在此同時認識到蛋白質是接受RNA的遺傳信息而合成的。50年代初Zamecnik等在形態學和分離的亞細胞組分實驗中已發現微粒體(microsome)是細胞內蛋白質合成的部位;1957年Hoagland、Zamecnik及Stephenson等分離出tRNA並對它們在合成蛋白質中轉運氨基酸的功能提出了假設;1961年Brenner及Gross等觀察了在蛋白質合成過程中mRNA與核糖體的結合;1965年Holley首次測出了酵母丙氨酸tRNA的一級結構;特別是在60年代Nirenberg、Ochoa以及Khorana等幾組科學家的共同努力破譯了RNA上編碼合成蛋白質的遺傳密碼,隨後研究表明這套遺傳密碼在生物界具有通用性,從而認識了蛋白質翻譯合成的基本過程。

上述重要發現共同建立了以中心法則為基礎的分子遺傳學基本理

❿ 分子生物學是如何產生和發展的,可分為哪幾個重要的階段主要人物和功績是什麼

在分子水平上研究生命現象的科學。通過研究生物大分子(核酸、蛋白質)的結構、功能和生物合成等方面來闡明各種生命現象的本質。研究內容包括各種生命過程。比如光合作用、發育的分子機制、神經活動的機理、癌的發生等。 分子生物學從分子水平研究生物大分子的結構與功能從而闡明生命現象本質的科學。自20世紀50年代以來,分子生物學是生物學的前沿與生長點,其主要研究領域包括蛋白質體系、蛋白質-核酸體系 (中心是分子遺傳學)和蛋白質-脂質體系(即生物膜)。 生物大分子,特別是蛋白質和核酸結構功能的研究,是分子生物學的基礎。現代化學和物理學理論、技術和方法的應分子生物學用推動了生物大分子結構功能的研究,從而出現了近30年來分子生物學的蓬勃發展。分子生物學和生物化學及生物物理學關系十分密切,它們之間的主要區別在於:①生物化學和生物物理學是用化學的和物理學的方法研究在分子水平,細胞水平,整體水平乃至群體水平等不同層次上的生物學問題。而分子生物學則著重在分子(包括多分子體系)水平上研究生命活動的普遍規律;②在分子水平上,分子生物學著重研究的是大分子,主要是蛋白質,核酸,脂質體系以及部分多糖及其復合體系。而一些小分子物質在生物體內的轉化則屬生物化學的范圍;③分子生物學研究的主要目的是在分子水平上闡明整個生物界所共同具有的基本特徵,即生命現象的本質;而研究某一特定生物體或某一種生物體內的某一特定器官的物理、化學現象或變化,則屬於生物物理學或生物化學的范疇。
[編輯本段]發展簡史
結構分析和遺傳物質的研究在分子生物學的發展中作出了重要的貢獻。結構分析的中心內容是通過闡明生物分子的三維結構來解釋細胞的生理功能。1912年英國 W.H.布喇格和W.L.布喇格建立了X射線晶體學,成功地測定了一些相當復雜的分子以及蛋白質的結構。以後布喇格的學生W.T.阿斯特伯里和J.D.貝爾納又分別對毛發、肌肉等纖維蛋白以及胃蛋白酶、煙草花葉病毒等進行了初步的結構分析。他們的工作為後來生物大分子結晶學的形成和發展奠定了基礎。50年代是分子生物學作為一門獨立的分支學科脫穎而出並迅速發展的年代。首先是在蛋白質結構分析方面,1951年L.C.波林等提出了 α-螺旋結構,描述了蛋白質分子中肽鏈的一種構象。1955年F.桑格完成了胰島素的氨基酸序列的測定。接著 J.C.肯德魯和M.F.佩魯茨在X射線分析中應用重原子同晶置換技術和計算機技術分別於1957和1959年闡明了鯨肌紅蛋白和馬血紅蛋白的立體結構。1965年中國科學家合成了有生物活性的胰島素,首先實現了蛋白質的人工合成。 另一方面,M.德爾布呂克小組從1938年起選擇噬菌體為對象開始探索基因之謎。噬菌體感染寄主後半小時內就復制出幾百個同樣的子代噬菌體顆粒,因此是研究生物體自我復制的理想材料。1940年G.W.比德爾和E.L.塔特姆提出了「一個基因,一個酶」的假設,即基因的功能在於決定酶的結構,且一個基因僅決定一個酶的結構。但在當時基因的本質並不清楚。1944年O.T.埃弗里等研究細菌中的蛋白質工程轉化現象,證明了DNA是遺傳物質。1953年J.D.沃森和F.H.C.克里克提出了DNA的雙螺旋結構,開創了分子生物學的新紀元。在此基礎上提出的中心法則,描述了遺傳信息從基因到蛋白質結構的流動。遺傳密碼的闡明則揭示了生物體內遺傳信息的貯存方式。1961年F.雅各布和J.莫諾提出了操縱子的概念,解釋了原核基因表達的調控。到20世紀60年代中期,關於DNA自我復制和轉錄生成RNA的一般性質已基本清楚,基因的奧秘也隨之而開始解開了。 僅僅30年左右的時間,分子生物學經歷了從大膽的科學假說,到經過大量的實驗研究,從而建立了本學科的理論基礎。進入70年代,由於重組DNA研究的突破,基因工程已經在實際應用中開花結果,根據人的意願改造蛋白質結構的蛋白質工程也已經成為現實。
[編輯本段]基本內容
蛋白質體系 蛋白質的結構單位是α-氨基酸。常見的氨基酸共20種。它們以不同的順序排列可以為生命世界提供天文數字的各種各樣的蛋白質。 蛋白質分子結構的組織形式可分為 4個主要的層次。一級結構,也叫化學結構,是分子中氨基酸的排列順序。首尾相連的氨基酸通過氨基與羧基的縮合形成鏈狀結構,稱為肽鏈。肽鏈主鏈原子的局部空間排列為二級結構。二級結構在空間的各種盤繞和捲曲為三級結構。有些蛋白質分子是由相同的或不同的亞單位組裝成的,亞單位間的相互關系叫四級結構。 蛋白質的特殊性質和生理功能與其分子的特定結構有著密切的關系,這是形形色色的蛋白質所以能表現出豐富多彩的生命活動的分子基礎。研究蛋白質的結構與功能的關系是分子生物學研究的一個重要內容。 隨著結構分析技術的發展,現在已有幾千個蛋白質的化學結構和幾百個蛋白質的立體結構得到了闡明。70年代末以來,採用測定互補DNA順序反推蛋白質化學結構的方法,不僅提高了分析效率,而且使一些氨基酸序列分析條件不易得到滿足的蛋白質化學結構分析得以實現。 發現和鑒定具有新功能的蛋白質,仍是蛋白質研究的內容。例如與基因調控和高級神經活動有關的蛋白質的研究現在很受重視。 蛋白質-核酸體系 生物體的遺傳特徵主要由核酸決定。絕大多數生物的基因都由 DNA構成。簡單的病毒,如λ噬菌體的基因組是由 46000個核苷酸按一定順序組成的一條雙股DNA(由於是雙股DNA,通常以鹼基對計算其長度)。細菌,如大腸桿菌的基因組,含4×106鹼基對。人體細胞染色體上所含DNA為3×109鹼基對。 遺傳信息要在子代的生命活動中表現出來,需要通過復制、轉錄和轉譯。復制是以親代 DNA為模板合成子代 DNA分子。轉錄是根據DNA的核苷酸序列決定一類RNA分子中的核苷酸序列;後者又進一步決定蛋白質分子中氨基酸的序列,就是轉譯。因為這一類RNA起著信息傳遞作用,故稱信使核糖核酸(mRNA)。由於構成RNA的核苷酸是4種,而蛋白質中卻有20種氨基酸,它們的對應關系是由mRNA分子中以一定順序相連的 3個核苷酸來決定一種氨基酸,這就是三聯體遺傳密碼。 基因在表達其性狀的過程中貫串著核酸與核酸、核酸與蛋白質的相互作用。DNA復制時,雙股螺旋在解旋酶的作用下被拆開,然後DNA聚合酶以親代DNA鏈為模板,復制出子代 DNA鏈。轉錄是在 RNA聚合酶的催化下完成的。轉譯的場所核糖核蛋白體是核酸和蛋白質的復合體,根據mRNA的編碼,在酶的催化下,把氨基酸連接成完整的肽鏈。基因表達的調節控制也是通過生物大分子的相互作用而實現的。如大腸桿菌乳糖操縱子上的操縱基因通過與阻遏蛋白的相互作用控制基因的開關。真核細胞染色質所含的非組蛋白在轉錄的調控中具有特殊作用。正常情況下,真核細胞中僅2~15%基因被表達。這種選擇性的轉錄與轉譯是細胞分化的基礎。 蛋白質-脂質體系 生物體內普遍存在的膜結構,統稱為生物膜。它包括細胞外周膜和細胞內具有各種特定功能的細胞器膜。從化學組成看,生物膜是由脂質和蛋白質通過非共價鍵構成的體系。很多膜還含少量糖類,以糖蛋白或糖脂形式存在。 1972年提出的流動鑲嵌模型概括了生物膜的基本特徵:其基本骨架是脂雙層結構。膜蛋白分為表在蛋白質和嵌入蛋白質。膜脂和膜蛋白均處於不停的運動狀態。 生物膜在結構與功能上都具有兩側不對稱性。以物質傳送為例,某些物質能以很高速度通過膜,另一些則不能。象海帶能從海水中把碘濃縮 3萬倍。生物膜的選擇生物膜的流動鑲嵌模型性通透使細胞內pH和離子組成相對穩定,保持了產生神經、肌肉興奮所必需的離子梯度,保證了細胞濃縮營養物和排除廢物的功能。 生物體的能量轉換主要在膜上進行。生物體取得能量的方式,或是像植物那樣利用太陽能在葉綠體膜上進行光合磷酸化反應;或是像動物那樣利用食物在線粒體膜上進行氧化磷酸化反應。這二者能量來源雖不同,但基本過程非常相似,最後都合成腺苷三磷酸。對於這兩種能量轉換的機制,P.米切爾提出的化學滲透學說得到了越來越多的證據。生物體利用食物氧化所釋放能量的效率可達70%左右,而從煤或石油的燃燒獲取能量的效率通常為20~40%,所以生物力能學的研究很受重視。對生物膜能量轉換的深入了解和模擬將會對人類更有效地利用能量作出貢獻。 生物膜的另一重要功能是細胞間或細胞膜內外的信息傳遞。在細胞表面,廣泛地存在著一類稱為受體的蛋白質。激素和葯物的作用都需通過與受體分子的特異性結合而實現。癌變細胞表面受體物質的分布有明顯變化。細胞膜的表面性質還對細胞分裂繁殖有重要的調節作用。 對細胞表面性質的研究帶動了糖類的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子結構與功能的研究越來越受到重視。從發展趨勢看,寡糖與蛋白質或脂質形成的體系將成為分子生物學研究的一個新的重要的領域。
[編輯本段]理論意義和應用
分子生物學的成就說明:生命活動的根本規律在形形色色的生物體中都是統一的。例如,不論在何種生物體中,都由同樣的氨基酸和核苷酸分別組成其蛋白質和核酸。遺傳物質,除某些病毒外,都是DNA,並且在所有的細胞中都以同樣的生化機制進行復制。分子遺傳學的中心法則和遺傳密碼,除個別例外,在絕大多數情況下也都是通用的。 物理學的成就證明,一切物質的原子都由為數不多的基本粒子根據相同的規律所組成,說明了物質世界結構上的高度一致,揭示了物質世界的本質,從而帶動了整個物理學科的發展。分子生物學則在分子水平上揭示了生命世界的基本結構和生命活動的根本規律的高度一致,揭示了生命現象的本質。和過去基本粒子的研究帶動物理學的發展一樣,分子生物學的概念和觀點也已經滲入到基礎和應用生物學的每一個分支領域,帶動了整個生物學的發展,使之提高到一個嶄新的水平。 過去生物進化的研究,主要依靠對不同種屬間形態和解剖方面的比較來決定親緣關系。隨著蛋白質和核酸結構測定方法的進展,比較不同種屬的蛋白質或核酸的化學結構,即可根據差異的程度,來斷定它們的親緣關系。由此得出的系統進化樹,與用經典方法得到的是基本符合的。採用分子生物學的方法研究分類與進化有特別的優越性。首先,構成生物體的基本生物大分子的結構反映了生命活動中更為本質的方面。其次,根據結構上的差異程度可以對親緣關系給出一個定量的,因而也是更准確的概念。第三,對於形態結構非常簡單的微生物的進化,則只有用這種方法才能得到可靠結果。 高等動物的高級神經活動是極其復雜的生命現象,過去多是在細胞乃至整體水平上研究,近年來深入到分子水平研究的結果充分說明高級神經活動也同樣是以生物大分子的活動為基礎的。例如,在高等動物學習與記憶的過程中,大腦中RNA和蛋白質的組成發生明顯的變化,並且一些影響生物體合成蛋白質的葯物也顯著地影響學習與記憶的能力。又如,「生物鍾」是一種熟知的生物現象。用雞進行的實驗發現,有一種重要的神經傳遞介質(5-羥色胺)和一種激素(褪黑激素)以及控制它們變化的一種酶,在雞腦中的含量呈24小時的周期性變化。正是這種變化構成了雞的「生物鍾」的物質基礎。 在應用方面,生物膜能量轉換原理的闡明,將有助於解決全球性的能源問題。了解酶的催化原理就能更有針對性地進行酶的人工模擬,設計出化學工業上廣泛使用的新催化劑,從而給化學工業帶來一場革命。基因工程分子生物學在生物工程技術中也起了巨大的作用,1973年重組DNA技術的成功,為基因工程的發展鋪平了道路。80年代以來,已經採用基因工程技術,把高等動物的一些基因引入單細胞生物,用發酵方法生產干擾素、多種多肽激素和疫苗等。基因工程的進一步發展將為定向培育動、植物和微生物良種以及有效地控制和治療一些人類遺傳性疾病提供根本性的解決途徑。 從基因調控的角度研究細胞癌變也已經取得不少進展。分子生物學將為人類最終征服癌症做出重要的貢獻。
[編輯本段]分子生物學的應用
1,親子鑒定 近幾年來,人類基因組研究的進展日新月異,而分子生物學技術也不斷完善,隨著基因組研究向各學科的不斷滲透,這些學科的進展達到了前所未有的高度。在法醫學上,STR位點和單核苷酸(SNP)位點檢測分別是第二代、第三代DNA分析技術的核心,是繼RFLPs(限制性片段長度多態性)VNTRs(可變數量串聯重復序列多態性)研究而發展起來的檢測技術。作為最前沿的刑megabace dna分析系統事生物技術,DNA分析為法醫物證檢驗提供了科學、可靠和快捷的手段,使物證鑒定從個體排除過渡到了可以作同一認定的水平,DNA檢驗能直接認定犯罪、為兇殺案、強奸殺人案、碎屍案、強奸致孕案等重大疑難案件的偵破提供准確可靠的依據。隨著DNA技術的發展和應用,DNA標志系統的檢測將成為破案的重要手段和途徑。此方法作為親子鑒定已經是非常成熟的,也是國際上公認的最好的一種方法。 2、分子生物學作為現代科學的一種綜合科學,其意義不止提現在純粹的科學價值上;更為重要的是它的發展關繫到人類自身的方方面面。分子生物學有可以細致的劃分為大分子生物與電子生物學兩種。上面提到的關於在刑偵方面的應用以及包括但不限於親自鑒定、及嬰兒男女鑒定方面的內容,大體為大分子分子內容的實際用途。而電子生物生物學則是從比大分子更細致的小分子及原子角度來解釋生命的基本要素和構成,有著更多未解的謎題和更為廣闊的科學前景。目前的克隆技術基本上只是此項課題的一個入門階段的應用。可以想像未來隨著研究的深入以及物理學的進一步發展。人類有可能成為創造另類生物的「上帝」。

閱讀全文

與如何理解現代分子生物學發展的三大轉折相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:974
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1651
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059