『壹』 知道工業廢水的BOD、COD、SS、pH等,如何判斷用何工藝處理該廢水。
首選應確定水量,根據不同的水量選擇不同的處理工藝。
根據B/C值確定是否適合生化工藝,一般B/C值大於0.3則適合採用生化工藝,另外決定生化工藝的還有水中TDS,含鹽量過高則不適合採用生化工藝,不過一般高含鹽廢水不會只給你這個幾個水指標。水質還要了解氨氮的值,涉及制葯類廢水還要了解水中是否含有抗生素等有害微生物的成分,從而對症下葯。BOD值決定是否採用厭氧+好氧等生化處理。
SS含量主要確定你的預處理採用何種形式,絮凝沉澱法,氣浮浮選,過濾等形式,也跟後續工藝有關。
PH值,根據水量,產生酸或鹼的成分,來確定最適合的經濟實惠的中和方式。
『貳』 影響厭氧生物處理的主要因素有哪些
(1)溫度。存在兩個不同的最佳溫度范圍(55·C左右,35·C左右)通常所稱高溫厭氧消化和低溫厭氧消化即對應這兩個最佳溫度范圍
(2)pH值。厭氧消化最佳pH值范圍為6.8~7.2。
(3)有機負荷。由於厭氧生物處理幾乎對污水中的所有有機物都有降解作用,因此討論厭氧生物處理時,一般都以CODcr來分析研究,而不象好氧生物處理那樣必須以BOD5為依據。厭氧處理的有機負荷通常以容積負荷和一定的CODcr去除率來表示
(4)營養物質。厭氧法中碳氮磷的比值控制在CODcr:N:P=(200~300):5:1即可。甲烷菌對硫化氫的最佳需要量為11.5mg/L。有時需補充某些必需的特殊營養元素,甲烷菌對硫化物和磷有專性需要,而鐵、鎳、鋅、鈷、鉬等對甲烷菌有激活作用
(5)氧化還原電位。氧化還原電位可以表示水中的含氧濃度,非甲烷厭氧微生物可以在氧化還原電位小於+100mV的環境下生存,而適合產甲烷菌活動的氧化還原電位要低於一150mV,在培養甲烷菌的初期,氧化還原電位要不高於一330mV
(6)鹼度。廢水的碳酸氫鹽所形成的鹼度對pH值的變化有緩沖作用,如果鹼度不足,就需要投加碳酸氫鈉和石灰等鹼劑來保證反應器內的鹼度適中
(7)有毒物質
(8)水力停留時間。水力停留時間對於厭氧工藝的影響主要是通過上流速度來表現出來的。一方面,較高的水流速度可以提高污水系統內進水區的擾動性,從而增加生物污泥與進水有機物之間的接觸,提高有機物的去除率。另一方面,為了維持系統中能擁有足夠多的污泥,上流速度又不能超過一定限值
『叄』 通常情況下認為BOD5/COD比之大於以下哪個數值時,適於採用生物處理
COD的比值稱為可生化性指標,比值越大,越容易被生物處理,一般認為該值大於0.3的污水才適於採用生物處理。
『肆』 厭氧生物處理化學工業污水的規范標準是什麼
SICOLAB整理厭氧生物處理化學工業污水
氧化溝容積宜採用污泥負荷法計算。主要設計參數宜根據試驗或類似污水的運行數據確定,當無數據時,延時曝氣氧化溝主要設計參數可按下列數據取值:
1 污泥負荷宜取0.05kg[BOD5]/(kg[MLSS]·d)~0.10kg[BOD5]/(kg[MLSS]·d);
2 混合液懸浮固體平均濃度宜取2.5[MLSS]/L~4.5g[MLSS]/L;
3 污泥齡不宜小於15d;
4 污泥迴流比宜取50%~150%;
5 污泥產率宜取0.3kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。
二、當氧化溝工藝用於脫氮除磷時,其設計計算宜符合脫氮除磷的有關規定。
三、氧化溝溝內平均水平流速不應小於0.25m/s,當流速不能滿足要求時,宜設潛水推進器。
四、氧化溝可採用曝氣轉碟、曝氣轉刷、表面曝氣葉輪或鼓風曝氣等充氧方式。
五、氧化溝有效水深應根據曝氣設備性能確定。採用轉刷曝氣機時,有效水深不宜大於3.5m;採用轉碟曝氣機時,有效水深不宜大於4.0m,採用豎軸表面曝氣機時,有效水深不宜大於5.0m;採用鼓風曝氣時,有效水深宜為4m~6m。反應池的超高應符合本規范第6條的規定。
六、氧化溝內宜設導流設施,出水應設可調節出水堰板。
『伍』 厭氧生物處理適用於什麼場合
廢水的厭氧生物處理法
厭氧生物處理是在無氧的情況下,利用兼性菌和厭氧菌的代謝作用,分解有機物的一種生物處理法。是一種低成本的廢水處理技術,它能在處理廢水過程中回收能源。厭氧生化法不僅可用於處理有機污泥和高濃度有機廢水,也用於處理中、低濃度有機廢水,包括城市污水。
厭氧生化法與好氧生化法相比具有下列優點。
(1)應用范圍廣 好氧法因供氧限制一般只適用於中、低濃度有機廢水的處理,而厭氧法既適用於高濃度有機廢水,又適用於中、低濃度有機廢水。有些有機物對好氧生物處理法來說是難降解的,但對厭氧生物處理是可降解的、如固體有機物、著色劑蒽釀和某些偶氮染料等。
(2)能耗低 好氧法需要消耗大量能量供氧,曝氣費用隨著有機物濃度的增加而增大,而厭氧法不需要允氧,而且產生的沼氣可作為能源。廢水有機物達一定濃度後,沼氣能量可以抵償消耗能量。當原水BOD5達到1500mg/L時,採用厭氧處理即有能量剩餘。有機物濃度愈高,剩餘能量愈多。—般厭氧法的動力消耗約為活性污泥法的1/10。
(3)負荷高 通常好氧法的有機容積負荷為2~4kgBOD/m3.d,而厭氧法為2~10kg COD/m3.d,高的可達50kgCOD/m3.d。
(4)剩餘污泥量少,且其濃縮性、脫水性良好 好氧法每去除1kg COD將產生0.4~0.6 kg生物量,而厭氧法去除1kg COD只產生0.02~0.1kg 生物量,其剩餘污泥量只有好氧法的5%~20%。同時,消化污泥在衛生學上和化學上都是穩定的。因此,剩餘污泥處理和處置簡單、運行費用低,甚至可作為肥料、飼料或餌料利用。
(5)氮、磷營養需要量較少 好氧法一般要求BOD:N:P為100:5:1,而厭氧法的BOD:N:P為100:2.5:0.5,對氮、磷缺乏的工業廢水所需投加的營養鹽量較少。
(6)厭氧處理過程有一定的殺菌作用,可以殺死廢水和污泥中的寄生蟲卵、病毒等。
(7)厭氧活性污泥可以長期貯存,厭氧反應器可以季節性或間歇性運轉。與好氧反應器相比,在停止運行一段時間後,能較迅速啟動。
但是,厭氧生物處理法也存在下列缺點:
(1)厭氧微生物增殖緩慢,因而厭氧設備啟動和處理時間比好氧設備長。
(2)處理後的出水水質差,往往需進一步處理才能達標排放。
1. 厭氧消化原理
復雜有機物的厭氧消化過程要經歷數個階段,由不同的細菌群接替完成。根據復雜有機物在此過程中的物態及物性變化,可分為以下三個階段。
第一階段為水解階段。廢水中的不溶性大分子有機物(如蛋白質、多糖類、脂類等)經發酵細菌水解後,分別轉化為氨基酸、葡萄糖和甘油等水溶性的小分子有機物。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。
由於簡單碳水化合物的分解產酸作用,要比含氮有機物的分解產氨作用迅速,故蛋白質的分解在碳水化合物分解後產生。
含氮有機物分解產生的NH3除了提供合成細胞物質的氮源外,在水中部分電離,形成NH4HCO3,具有緩沖消化液pH值的作用,故有時也把繼碳水化合物分解後的蛋白質分解產氨過程稱為酸性減退期,反應為:
第二階段為產氫產乙酸階段。在產氫產乙酸細菌的作用下,第一階段產生的各種有機酸被分解轉化成乙酸和H2,在降解奇數碳素有機酸時還形成CO2,如:
第三階段為產甲烷階段。產甲烷細菌將乙酸、乙酸鹽、CO2和H2等轉化為甲烷。此過程由兩組生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲院,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3,反應為:
上述三個階段的反應速度依廢水性質而異,在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中,水解易成為速度限制步驟;簡單的糖類、澱粉、氨基酸和一般的蛋白質均能被微生物迅速分解,對含這類有機物為主的廢水,產甲烷易成為限速階段。
雖然厭氧消化過程可分為以上三個階段,但是在厭氧反應器中,三個階段是同時進行的,並保持某種程度的動態平衡,這種動態平衡一旦被pH值、溫度、有機負荷等外加因素所破壞,則首先將使產甲烷階段受到抑制,其結果會導致低級脂肪酸的積存和厭氧進程的異常變化,其至會導致整個厭氧消化過程停滯。
2. 影響厭氧處理的因素
(1)溫度 溫度是影響微生物生命活動最重要的因素之一,其對厭氧微生物及厭氧消化的影響尤為顯著。各種微生物都在一定的溫度范圍內生長,根據微生物生長的溫度范圍,習慣上將微生物分為三類:(a)嗜冷微生物,生長溫度為5~20 ℃;(b)嗜溫微生物,生長溫度20~42℃;(c)嗜熱微生物,生長溫度42~75℃。相應地厭氧廢水處理也分為低溫、中溫和高溫三類。這三類微生物在相應的適應溫度范圍內還存在最佳溫度范圍,當溫度高於或低於最佳溫度范圍時其厭氧消化速率將明顯降低。在工程運用中,中溫工藝中以30~40 ℃最為常見,其最佳處理溫度在35~40℃;高溫工藝以50~60 ℃最為常見,最佳溫度為55℃。
在上述范圍里,溫度的微小波動(例如1~3℃)對厭氧工藝不會有明顯的影響,但如果溫度下降幅度過大,則由於微生物活力下降,反應器的負荷也將降低。
(2)pH值 產甲烷菌對pH值變化適應性很差,其最佳范圍為6.8~7.2,超出該范圍厭氧消化細菌會受到抑制。
(3)氧化還原電位 絕對的厭氧環境是產甲烷菌進行正常活動的基本條件,產甲烷菌的最適氧化還原電位為-150~-400mV,培養甲烷菌的初期,氧化還原電位不能高於-330mV。
(4)營養 厭氧微生物對碳、氮等營養物質的要求略低於好氧微生物,需要補充專門的營養物質有鉀、鈉、鈣等金屬鹽類,它們是形成細胞或非細胞的金屬絡合物所需要的物質,同時也應加入鎳、鋁、鈷、鉬等微量金屬,以提高若干酶的活性。
(5)有機負荷 在厭氧法中,有機負荷通常指容積有機負荷,簡稱容積負荷,即消化器單位有效容積每天接受的有機物量(kg COD/m3.d)。對懸浮生長工藝,也有用污泥負荷表達的,即kg COD/(Kg 污泥.d);在污泥消化中,有促負荷習慣上以投配率或進料率表達,即每天所投加的濕污泥體積占消化器有效容積的百分數。由於各種濕污泥的含水率、揮發組分不盡一致,投配率不能反映實際的有機負荷,為此,又引入反應器單位有效容積每天接受的揮發性固體重量這一參數,即kg MLVSS/(m3.d)。
有機負荷是影響厭氧消化效率的一個重要因素,直接影響產氣量和處理效率。在一定范圍內,隨著有機負荷的提高,產氣率即單位重量物料的產氣量趨向下降,而消化器的容積產氣量則增多,反之亦然。對於具體應用場合,進料的有機物濃度是一定的,有機負荷或投配率的提高意味著停留時間縮短,則有機物分解率將下降,勢必使單位重量物料的產氣量減少。但因反應器相對的處理量增多了,單位容積的產氣量將提高。
有機負荷值因工藝類型、運行條件以及廢水廢物的種類及其濃度而異。在通常的情況下,採用常規厭氧消化工藝,中溫處理高濃度工業廢水的有機負荷為2~3kg COD/(m3.d),在高溫下為4~6kg COD/(m3.d)。上流式厭氧污泥床反應器、厭氧濾池、厭氧流化床等新型厭氧工藝的有機負荷在中溫下為5~15 kg COD/(m3.d),可高達30 kg COD/(m3.d)。
(6)有毒物質 有毒物質會對厭氧微生物產生不同程度的抑制,使厭氧消化過程受到影響甚至破壞,常見抑制性物質為硫化物、氨氮、重金屬、氰化物及某些人工合成的有機物。
『陸』 為什麼污水可生化降解性的指標BOD5/COD,在 0.35 以上就不必水解酸化
B/C在0.35以上未必不用水解酸化.
樓主提出這樣的疑問是因為一般而言生活污水的B/C比在0.35左右,可生化性較強,不需要水解酸化,直接生物降解即可,但是要考慮到實際水樣中,大分子物質對水質COD的貢獻率來參照,比如苯等大分子鏈物質,不經過水解酸化,微生物是無法吸收的,如果佔一定比例,超過處理目標COD值則無法達標.比如原水COD2000,B/C比0.4,苯環給COD的貢獻是100,沒有水解酸化,微生物即使全部處理掉其他物質,如果按60的排放標准,還是沒有辦法完成的.不過也有種可能,就是可以通過鐵碳床、芬頓等工藝取代水解酸化過程.
『柒』 污水處理中BOD5和CODcr代表什麼,如何
BOD5是一種用微生物代謝作用所消耗的溶解氧量來間接表示水體被有機物污染程度的一個重要指標。。其定義是:第5天好氧微生物氧化分解單位體積水中有機物所消耗的游離氧的數量,表示單位為氧的毫克/升(O2,mg/l)。主要用於監測水體中有機物的污染狀況。一般有機物都可以被微生物所分解,但微生物分解水中的有機化合物時需要消耗氧,如果水中的溶解氧不足以供給微生物的需要,水體就處於污染狀態。
測定:稀釋與接種法,:將水樣注滿培養瓶,塞好後應不透氣,將瓶置於恆溫條件下培養5天。培養前後分別測定溶解氧濃度,由兩者的差值可算出每升水消耗掉氧的質量,即BOD5值。
CODcr是指用重鉻酸鉀為氧化劑測出的需氧量,是用重鉻酸鉀法測出COD的值,會有部分因素影響COD的值,導致CODcr≠COD,理論上COD>CODcr,實際應用中CODcr表示COD。
重鉻酸鹽指數即重鉻酸鹽值,又稱重鉻酸鹽氧化性(dichromate oxidizability)或重鉻酸鹽需氧量,記為CODCr。用標准步驟,以重鉻酸鉀為氧化劑測定的水的化學需氧量。
測定:水樣中加入過量的重鉻酸鉀溶液和硫酸,加熱並用硫酸銀作催化劑促使氧化反應完善,過剩的重鉻酸鉀以亞鐵靈為指示劑,用硫酸亞鐵標准液回滴然後將重鉻酸鉀消耗量折算為以每升水耗氧的毫克數表示。此法氧化程度高,可用於分析污染嚴重的工業廢水,用以說明廢水受有機物污染的情況。
更多污水處理知識歡迎網路武漢格林環保詳細了解。
『捌』 廢水好氧,厭氧活性污泥生物處理時BOD5:N:P分別為多少
廢水好氧活性污泥生物處理時BOD5:N:P為100:5:1
厭氧活性污泥生物處理時BOD5:N:P為200:5:1
因為厭氧微生物對有機物的利用率比好氧微生物要低,所以對微生物的需求量就相應的要多.答案參考自環保通。
『玖』 簡述好氧和厭氧生物處理有機污水的原理和適用條件。
好氧生物處理:在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。
這些高能位的有機物質經過一系列的生化反應,逐級釋放能量,最終以低能位的無機物質穩定下來,達到無害化的要求,以便返回自然環境或進一步處置。適用於中、低濃度的有機廢水,或者說BOD5濃度小於500mgL的有機廢水。
厭氧生物處理:在沒有游離氧存在的條件下,兼性細菌與厭氧細菌降解和穩定有機物的生物處理方法。在厭氧生物處理過程中,復雜的有機化合物被降解、轉化為簡單的化合物,同時釋放能量。適用於有機污泥和高濃度有機廢水(一般BOD5≥2000mg/L)
(9)BOD5大於多少用厭氧生物處理擴展閱讀:
在生活污水、食品加工和造紙等工業廢水中,含有碳水化合物、蛋白質、油脂、木質素等有機物質。
這些物質以懸浮或溶解狀態存在於污水中,可通過微生物的生物化學作用而分解。在其分解過程中需要消耗氧氣,因而被稱為耗氧污染物。這種污染物可造成水中溶解氧減少,影響魚類和其他水生生物的生長。
水中溶解氧耗盡後,有機物進行厭氧分解,產生硫化氫、氨和硫醇等難聞氣味使水質惡化。水體中有機物成分非常復雜,耗氧有機物濃度常用單位體積水中耗氧物質生化分解過程中所消耗的氧量表示。
『拾』 採用生化處理污水,BOD5/COD其值應大於多少
一般認為,污水的BOD5/CODcr大於0.3就可以利用生物降解法處理