Ⅰ 求高中生物選修3知識點整理。。
生物選修3知識點
專題1 基因工程
基因工程的概念
基因工程是指按照人們的願望,進行嚴格的設計,通過體外DNA重組和轉基因技術,賦予生物以新的遺傳特性,創造出更符合人們需要的新的生物類型和生物產品。基因工程是在DNA分子水平上進行設計和施工的,又叫做DNA重組技術。
(一)基因工程的基本工具
1.「分子手術刀」——限制性核酸內切酶(限制酶)
(1)來源:主要是從原核生物中分離純化出來的。
(2)功能:能夠識別雙鏈DNA分子的某種特定的核苷酸序列,並且使每一條鏈中特定部位的兩個核苷酸之間的磷酸二酯鍵斷開,因此具有專一性。
(3)結果:經限制酶切割產生的DNA片段末端通常有兩種形式:黏性末端和平末端。
2.「分子縫合針」——DNA連接酶
(1)兩種DNA連接酶(E·coliDNA連接酶和T4-DNA連接酶)的比較:
①相同點:都縫合磷酸二酯鍵。
②區別:E·coliDNA連接酶來源於T4噬菌體,只能將雙鏈DNA片段互補的黏性末端之間的磷酸二酯鍵連接起來;而T4DNA連接酶能縫合兩種末端,但連接平末端的之間的效率較低。
(2)與DNA聚合酶作用的異同:DNA聚合酶只能將單個核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯鍵。DNA連接酶是連接兩個DNA片段的末端,形成磷酸二酯鍵。
3.「分子運輸車」——載體
(1)載體具備的條件:①能在受體細胞中復制並穩定保存。
②具有一至多個限制酶切點,供外源DNA片段插入。
③具有標記基因,供重組DNA的鑒定和選擇。
(2)最常用的載體是質粒,它是一種裸露的、結構簡單的、獨立於細菌染色體之外,並具有自我復制能力的雙鏈環狀DNA分子。
(3)其它載體: 噬菌體的衍生物、動植物病毒
(二)基因工程的基本操作程序
第一步:目的基因的獲取
1.目的基因是指: 編碼蛋白質的結構基因 。
2.原核基因採取直接分離獲得,真核基因是人工合成。人工合成目的基因的常用方法有反轉錄法_和化學合成法_。
3.PCR技術擴增目的基因
(1)原理:DNA雙鏈復制
(2)過程:第一步:加熱至90~95℃DNA解鏈;第二步:冷卻到55~60℃,引物結合到互補DNA鏈;第三步:加熱至70~75℃,熱穩定DNA聚合酶從引物起始互補鏈的合成。
第二步:基因表達載體的構建
1.目的:使目的基因在受體細胞中穩定存在,並且可以遺傳至下一代,使目的基因能夠表達和發揮作用。
2.組成:目的基因+啟動子+終止子+標記基因
(1)啟動子:是一段有特殊結構的DNA片段,位於基因的首端,是RNA聚合酶識別和結合的部位,能驅動基因轉錄出mRNA,最終獲得所需的蛋白質。
(2)終止子:也是一段有特殊結構的DNA片段 ,位於基因的尾端。
(3)標記基因的作用:是為了鑒定受體細胞中是否含有目的基因,從而將含有目的基因的細胞篩選出來。常用的標記基因是抗生素基因。
第三步:將目的基因導入受體細胞_
1.轉化的概念:是目的基因進入受體細胞內,並且在受體細胞內維持穩定和表達的過程。
2.常用的轉化方法:
將目的基因導入植物細胞:採用最多的方法是 農桿菌轉化法,其次還有 基因槍法和 花粉管通道法等。
將目的基因導入動物細胞:最常用的方法是 顯微注射技術。此方法的受體細胞多是 受精卵。
將目的基因導入微生物細胞:原核生物作為受體細胞的原因是 繁殖快、多為單細胞、遺傳物質相對較少 ,最常用的原核細胞是 大腸桿菌 ,其轉化方法是:先用 Ca2+ 處理細胞,使其成為 感受態細胞 ,再將 重組表達載體DNA分子 溶於緩沖液中與感受態細胞混合,在一定的溫度下促進感受態細胞吸收DNA分子,完成轉化過程。
3.重組細胞導入受體細胞後,篩選含有基因表達載體受體細胞的依據是標記基因是否表達。
第四步:目的基因的檢測和表達
1.首先要檢測 轉基因生物的染色體DNA上是否插入了目的基因,方法是採用 DNA分子雜交技術。
2.其次還要檢測 目的基因是否轉錄出了mRNA,方法是採用 用標記的目的基因作探針與mRNA雜交。
3.最後檢測 目的基因是否翻譯成蛋白質,方法是從轉基因生物中提取 蛋白質,用相應的 抗體進行抗原-抗體雜交。
4.有時還需進行 個體生物學水平的鑒定。如 轉基因抗蟲植物是否出現抗蟲性狀。
(三)基因工程的應用
1.植物基因工程:抗蟲、抗病、抗逆轉基因植物,利用轉基因改良植物的品質。
2.動物基因工程:提高動物生長速度、改善畜產品品質、用轉基因動物生產葯物。
3.基因治療:把正常的外源基因導入病人體內,使該基因表達產物發揮作用。
(四)蛋白質工程的概念
蛋白質工程是指以蛋白質分子的結構規律及其生物功能的關系作為基礎,通過基因修飾或基因合成,對現有蛋白質進行改造,或製造一種新的蛋白質,以滿足人類的生產和生活的需求。(基因工程在原則上只能生產自然界已存在的蛋白質)
轉錄 翻譯
專題2 細胞工程
(一)植物細胞工程
1.理論基礎(原理):細胞全能性
全能性表達的難易程度:受精卵>生殖細胞>幹細胞>體細胞;植物細胞>動物細胞
2.植物組織培養技術
(1)過程:離體的植物器官、組織或細胞 ―→愈傷組織 ―→試管苗 ―→植物體
(2)用途:微型繁殖、作物脫毒、製造人工種子、單倍體育種、細胞產物的工廠化生產。
(3)地位:是培育轉基因植物、植物體細胞雜交培育植物新品種的最後一道工序。
3.植物體細胞雜交技術
(1)過程:
(2)誘導融合的方法:物理法包括離心、振動、電刺激等。化學法一般是用聚乙二醇(PEG)作為誘導劑。
(3)意義:克服了遠緣雜交不親和的障礙。
(二)動物細胞工程
1. 動物細胞培養
(1)概念:動物細胞培養就是從動物機體中取出相關的組織,將它分散成單個細胞,然後放在適宜的培養基中,讓這些細胞生長和繁殖。
(2)動物細胞培養的流程:取動物組織塊(動物胚胎或幼齡動物的器官或組織)→剪碎→用胰蛋白酶或膠原蛋白酶處理分散成單個細胞→製成細胞懸液→轉入培養瓶中進行原代培養→貼滿瓶壁的細胞重新用胰蛋白酶或膠原蛋白酶處理分散成單個細胞繼續傳代培養。
(3)細胞貼壁和接觸抑制:懸液中分散的細胞很快就貼附在瓶壁上,稱為細胞貼壁。細胞數目不斷增多,當貼壁細胞分裂生長到表面相互抑制時,細胞就會停止分裂增殖,這種現象稱為細胞的接觸抑制。
(4)動物細胞培養需要滿足以下條件
①無菌、無毒的環境:培養液應進行無菌處理。通常還要在培養液中添加一定量的抗生素,以防培養過程中的污染。此外,應定期更換培養液,防止代謝產物積累對細胞自身造成危害。
②營養:合成培養基成分:糖、氨基酸、促生長因子、無機鹽、微量元素等。通常需加入血清、血漿等天然成分。
③溫度:適宜溫度:哺乳動物多是36.5℃+0.5℃;pH:7.2~7.4。
④氣體環境:95%空氣+5%CO2。O2是細胞代謝所必需的,CO2的主要作用是維持培養液的pH。
(5)動物細胞培養技術的應用:制備病毒疫苗、制備單克隆抗體、檢測有毒物質、培養醫學研究的各種細胞。
2.動物體細胞核移植技術和克隆動物
(1)哺乳動物核移植可以分為胚胎細胞核移植(比較容易)和體細胞核移植(比較難)。
(2)選用去核卵(母)細胞的原因:卵(母)細胞比較大,容易操作;卵(母)細胞細胞質多,營養豐富。
(3)體細胞核移植的大致過程是:(右圖)
核移植
胚胎移植
(4)體細胞核移植技術的應用:
①加速家畜遺傳改良進程,促進良畜群繁育; ②保護瀕危物種,增大存活數量;
③生產珍貴的醫用蛋白; ④作為異種移植的供體;
⑤用於組織器官的移植等。
(5)體細胞核移植技術存在的問題:
克隆動物存在著健康問題、表現出遺傳和生理缺陷等。
3.動物細胞融合
(1)動物細胞融合也稱細胞雜交,是指兩個或多個動物細胞結合形成一個細胞的過程。融合後形成的具有原來兩個或多個細胞遺傳信息的單核細胞,稱為雜交細胞。
(2)動物細胞融合與植物原生質體融合的原理基本相同,誘導動物細胞融合的方法與植物原生質體融合的方法類似,常用的誘導因素有聚乙二醇、滅活的病毒、電刺激等。
(3)動物細胞融合的意義:克服了遠緣雜交的不親和性,成為研究細胞遺傳、細胞免疫、腫瘤和生物生物新品種培育的重要手段。
(4)動物細胞融合與植物體細胞雜交的比較:
比較項目 細胞融合的原理 細胞融合的方法 誘導手段 用法
植物體細胞雜交 細胞膜的流動性 去除細胞壁後誘導原生質體融合 離心、電刺激、振動,聚乙二醇等試劑誘導 克服了遠緣雜交的不親和性,獲得雜種植株
動物細胞融合 細胞膜的流動性 使細胞分散後誘導細胞融合 除應用植物細胞雜交手段外,再加滅活的病毒誘導 制備單克隆抗體的技術之一
4.單克隆抗體
(1)抗體:一個B淋巴細胞只分泌一種特異性抗體。從血清中分離出的抗體產量低、純度低、特異性差。
(2)單克隆抗體的制備過程:
(3)雜交瘤細胞的特點:既能大量繁殖,又能產生專一的抗體。
(4)單克隆抗體的優點:特異性強,靈敏度高,並能大量制備。
(5)單克隆抗體的作用:
① 作為診斷試劑:准確識別各種抗原物質的細微差異,並跟一定抗原發生特異性結合,具有準確、高效、簡易、快速的優點。
② 用於治療疾病和運載葯物:主要用於治療癌症治療,可製成「生物導彈」,也有少量用於治療其它疾病。
專題3 胚胎工程
(一)動物胚胎發育的基本過程
1、胚胎工程是指對動物早期胚胎或配子所進行的多種顯微操作和處理技術,如胚胎移植、體外受精、胚胎分割、胚胎幹細胞培養等技術。經過處理後獲得的胚胎,還需移植到雌性動物體內生產後代,以滿足人類的各種需求。
2、動物胚胎發育的基本過程
(1)受精場所是母體的輸卵管上段。
(2)卵裂期:特點:細胞有絲分裂,細胞數量不斷增加,但胚胎的總體體積並不增加,或略有減小。
(3)桑椹胚:特點:胚胎細胞數目達到32個左右時,胚胎形成緻密的細胞團,形似桑椹。是全能細胞。
(4)囊 胚:特點:細胞開始出現分化(該時期細胞的全能性仍比較高)。聚集在胚胎一端個體較大的細胞稱為內細胞團,將來發育成胎兒的各種組織。中間的空腔稱為囊胚腔。
(5)原腸胚:特點:有了三胚層的分化,具有囊胚腔和原腸腔。
(二)胚胎幹細胞
1、哺乳動物的胚胎幹細胞簡稱ES或EK細胞,來源於早期胚胎或從原始性腺中分離出來。
2、具有胚胎細胞的特性,在形態上表現為體積小,細胞核大,核仁明顯;在功能上,具有發育的全能性,可分化為成年動物體內任何一種組織細胞。另外,在體外培養的條件下,可以增殖而不發生分化,可進行冷凍保存,也可進行遺傳改造。
3、胚胎幹細胞的主要用途是:
①可用於研究哺乳動物個體發生和發育規律;
②是在體外條件下研究細胞分化的理想材料,在培養液中加入分化誘導因子,如牛黃酸等化學物質時,就可以誘導ES細胞向不同類型的組織細胞分化,這為揭示細胞分化和細胞凋亡的機理提供了有效的手段;
③可以用於治療人類的某些頑疾,如帕金森綜合症、少年糖尿病等;
④利用可以被誘導分化形成新的組織細胞的特性,移植ES細胞可使壞死或退化的部位得以修復並恢復正常功能;
⑤隨著組織工程技術的發展,通過ES細胞體外誘導分化,定向培育出人造組織器官,用於器官移植,解決供體器官不足和器官移植後免疫排斥的問題。
(三)胚胎工程的應用
1.體外受精和胚胎的早期培養
(1)卵母細胞的採集和培養:
主要方法:用促性腺激素處理,使其排出更多的卵子,然後,從輸卵管中沖取卵子,直接與獲能的精子在體外受精。第二種方法:從剛屠宰母畜的卵巢中採集卵母細胞;第三種方法是藉助超聲波探測儀、腹腔鏡等直接從活體動物的卵巢中吸取卵母細胞。採集的卵母細胞,都要在體外經人工培養成熟後,才能與獲能的精子受精。
(2) 精子的採集和獲能:在體外受精前,要對精子進行獲能處理。
(3) 受精:獲能的精子和培養成熟的卵細胞在獲能溶液或專用的受精溶液中完成受精過程。
(4)胚胎的早期培養:精子與卵子在體外受精後,應將受精卵移入發育培養液中繼續培養,以檢查受精狀況和受精卵的發育能力。培養液成分較復雜,除一些無機鹽和有機鹽外,還需添加維生素、激素、氨基酸、核苷酸等營養成分,以及血清等物質。當胚胎發育到適宜的階段時,可將其取出向受體移植或冷凍保存。不同動物胚胎移植的時間不同。(牛、羊一般要培育到桑椹胚或囊胚階段才能進行移植,小鼠、家兔等實驗動物可在更早的階段移植,人的體外受精胚胎可在4個細胞階段移植。)
2.胚胎移植
(1)胚胎移植是指將雌性動物的早期胚胎,或者通過體外受精及其它方式得到的胚胎,移植到同種的、生理狀態相同的其它雌性動物的體內,使之繼續發育為新個體的技術。其中提供胚胎的個體稱為「供體」,接受胚胎的個體稱為「受體」。(供體為優良品種,作為受體的雌性動物應為常見或存量大的品種。)
地位:如轉基因、核移植,或體外受精等任何一項胚胎工程技術所生產的胚胎,都必須經過胚胎移植技術才能獲得後代,是胚胎工程的最後一道「工序」。
(2) 胚胎移植的意義:大大縮短了供體本身的繁殖周期,充分發揮雌性優良個體的繁殖能力。
(3) 生理學基礎:①動物發情排卵後,同種動物的供、受體生殖器官的生理變化是相同的。這就為供體的胚胎移入受體提供了相同的生理環境。
②早期胚胎在一定時間內處於游離狀態。這就為胚胎的收集提供了可能。
③受體對移入子宮的外來胚胎不發生免疫排斥反應。這為胚胎在受體的存活提供了可能。
④供體胚胎可與受體子宮建立正常的生理和組織聯系,但供體胚胎的遺傳特性在孕育過程中不受影響。
(4) 基本程序主要包括:
①對供、受體的選擇和處理。選擇遺傳特性和生產性能優秀的供體,有健康的體質和正常繁殖能力的受體,供體和受體是同一物種。並用激素進行同期發情處理,用促性腺激素對供體母牛做超數排卵處理。
②配種或人工授精。
③對胚胎的收集、檢查、培養或保存。配種或輸精後第7天,用特製的沖卵裝置,把供體母牛子宮內的胚胎沖洗出來(也叫沖卵)。對胚胎進行質量檢查,此時的胚胎應發育到桑椹或胚囊胚階段。直接向受體移植或放入-196℃的液氮中保存。
④對胚胎進行移植。
⑤移植後的檢查。對受體母牛進行是否妊娠的檢查。
3.胚胎分割
(1)概念:是指採用機械方法將早期胚胎切割2等份、4等份等,經移植獲得同卵雙胎或多胎的技術。
(2)意義:來自同一胚胎的後代具有相同的遺傳物質,屬於無性繁殖。
(3)材料:發育良好,形態正常的桑椹胚或囊胚。(桑椹胚至囊胚的發育過程中,細胞開始分化,但其全能性仍很高,也可用於胚胎分割。)
(4)操作過程:對囊胚階段的胚胎分割時,要將內細胞團均等分割,否則會影響分割後胚胎的恢復和進一步發育。
專題4 生物技術的安全性和倫理問題
(一)轉基因生物的安全性爭論 :
(1)基因生物與食物安全:
反方觀點:反對「實質性等同」、出現滯後效應、出現新的過敏原、營養成分改變
正方觀點:有安全性評價、科學家負責的態度、無實例無證據
(2)轉基因生物與生物安全:對生物多樣性的影響
反方觀點:擴散到種植區之外變成野生種類、成為入侵外來物種、重組出有害的病原體、成為超級雜草、有可能造成「基因污染」
正方觀點:生命力有限、存在生殖隔離、花粉傳播距離有限、花粉存活時間有限
(3)轉基因生物與環境安全:對生態系統穩定性的影響
反方觀點:打破物種界限、二次污染、重組出有害的病原微生物、毒蛋白等可能通過食物鏈進入人體
正方觀點:不改變生物原有的分類地位、減少農葯使用、保護農田土壤環境
(二)生物技術的倫理問題
(1)克隆人:兩種不同觀點,多數人持否定態度。
否定的理由:克隆人嚴重違反了人類倫理道德,是克隆技術的濫用;克隆人沖擊了現有的婚姻、家庭和兩性關系等傳統的倫理道德觀念;克隆人是在人為的製造在心理上和社會地位上都不健全的人。
肯定的理由:技術性問題可以通過胚胎分級、基因診斷和染色體檢查等方法解決。不成熟的技術也只有通過實踐才能使之成熟。
中國政府的態度:禁止生殖性克隆,不反對治療性克隆。四不原則:不贊成、不允許、不支持、不接受任何生殖性克隆人的實驗。
(2)試管嬰兒:兩種目的試管嬰兒的區別兩種。不同觀點,多數人持認可態度。
否定的理由:把試管嬰兒當作人體零配件工廠,是對生命的不尊重;早期生命也有活下去的權利,拋棄或殺死多餘胚胎,無異於「謀殺」。
肯定的理由:解決了不育問題,提供骨髓中造血幹細胞救治患者最好、最快捷的方法,提供骨髓造血幹細胞並不會對試管嬰兒造成損傷。
(3)基因身份證:
否定的理由:個人基因資訊的泄漏造成基因歧視,勢必造成遺傳學失業大軍、造成個人婚姻困難、人際關系疏遠等嚴重後果。
肯定的理由:通過基因檢測可以及早採取預防措施,適時進行治療,達到挽救患者生命的目的。
(三)生物武器
(1)種類:致病菌、病毒、生化毒劑,以及經過基因重組的致病菌。
(2)散布方式:吸入、誤食、接觸帶菌物品、被帶菌昆蟲叮咬等。
(3)特點:致病力強、多數具傳染性、傳染途徑多、污染面廣、有潛伏期、不易被發現、危害時間長等。
(4)禁止生物武器公約及中國政府的態度
Ⅱ 膀胱發生器
(1)顯微注射法是將目的基因導入動物受體細胞最有效的方法.
(2)由於受精卵(或早期胚胎細胞)具有全能性,可使外源基因在相應組織細胞表達,因此進行基因轉移時,通常要將外源基因轉入受精卵(或早期胚胎)中.
(3)檢測外源基因是否插入了小鼠的基因組通常採用DNA分子雜交技術.
(4)在研製膀胱生物反應器時,應在目的基因前加入膀胱組織特異性表達的啟動子,使外源基因在小鼠的膀胱上皮細胞中特異表達.基因表達載體的組成包括目的基因、標記基因、啟動子和終止子等.
故答案為:
(1)顯微注射
(2)受精卵(早期胚胎) 受精卵(或早期胚胎)具有全能性,可使外源基因在相應組織細胞中表達
(3)DNA分子雜交
(4)膀胱上皮 生長激素合成基因(目的基因) 終止子 標記基因
Ⅲ 回答下列有關生物技術問題:(1)繼哺乳動物乳腺生物反應器研發成功後,膀胱生物反應器的研究也取得了一
(1) ①由於受精卵的全能性最高,所以進行基因轉移時通常將外源基因轉入受精卵中. ②當外源基因的插入使受精卵內生命活動必需的某些基因不能正常表達時就會導致受精卵死亡. ③檢測外源基因是否插入了小鼠基因組通常採用DNA分子雜交技術. ④製作膀胱生物反應器時,需要在目的基因前加入膀胱細胞中特異性表達的啟動子,使外源基因在小鼠膀胱細胞中特異表達.(2)在微生物培養操作過程中,為防止雜菌污染,需對培養基和培養皿進行滅菌;操作者的雙手需要進行清洗和 消毒;由於紫外線能使蛋白質變性,還能損傷DNA的結構,因此靜止空氣中的細菌可用紫外線殺滅.(3)檢測培養基是否被污染的方法是:將未接種的培養基在適宜的溫度下放置適宜的時間,觀察培養基上是否有菌落產生.故答案為:(1) ①受精卵全能性最高;; ②外源基因的插入使受精卵內生命活動必需的某些基因不能正常表達;; ③DNA分子雜交;;;; ④膀胱(2)滅菌;;消毒;;損傷DNA的結構(3)將未接種的培養基在適宜的溫度下放置適宜的時間,觀察培養基上是否有菌落產生
Ⅳ 關於生物反應器的一些問題
你要問什麼?
生物反應器是利用酶或生物體(如微生物)所具有的生物功能,在體外進行生化反應的裝置系統,它是一種生物功能模擬機,如發酵罐、固定化酶或固定化細胞反應器等。在酒類、醫葯生產、有機污染物降解方面有重要應用。
Ⅳ 生物反應器的例子
這有個籠統的介紹看看對你有幫助沒?
生物反應器聽起來有些陌生,基本原理卻相當簡單。胃就是人體內部加工食物的一個復雜生物反應器。食物在胃裡經過各種酶的消化,變成我們能吸收的營養成分。生物工程上的生物反應器是在體外模擬生物體的功能,設計出來用於生產或檢測各種化學品的反應裝置。或者說,生物反應器是利用酶或生物體(如微生物)所具有的生物功能,在體外進行生化反應的裝置系統,是一種生物功能模擬機,如發酵罐、固定化酶或固定化細胞反應器等。
在固定化酶廣泛應用的基礎上,人們發現天然細胞本身就具有多功能的系列化反應系統採用物理或化學方法將細胞固定化,是利用酶或酶系的一條捷徑。一個固定化細胞反應器猶如一台「生命活動功能推動機」。固定化細胞技術開始於70年代,其實際應用程度已超過固定化酶。如美國、歐洲、日本均採用固定化菌體柱床工藝大規模生產高果糖漿。
輸卵管生物反應器
1993年英國羅斯林研究所Sang博士研究禽類蛋黃表達系統,在雞蛋的蛋黃里表達了外源蛋白質,由於蛋黃蛋白質是在肝臟細胞表達的蛋白質,而且含量不高;因此,1994年中國科學院微生物研究所、中國轉基因動物學會(籌)副秘書長曾(傑)邦哲提出了禽類轉基因輸卵管生物反應器,在國際上最早開展採用蛋清蛋白質基因側翼序列表達外源葯用蛋白質的研究,1994年11月(Glodegg Plan)和1995年3月及1996年轉基因動物通訊、1995年7月上海首屆國際生物技術與葯物學術研討暨展覽會、1996年11月北京第1屆國際暨第3屆全國轉基因動物學術研討會(秘書長曾邦哲)、1997年生物技術通報發表,以及1999年在德國創建的系統生物科學與工程網站闡述了輸卵管生物反應器(ovict bioreactor)概念、方法與技術研究。1996年創辦第1屆國際轉基因學術研討會期間,曾邦哲與加拿大、美國、英國、日本有關轉基因禽類實驗室聯系,但國際上當時沒有人開展這項課題,隨後與美國Avigenics公司和Georgia大學R.Ivarie教授探討了輸卵管生物反應器的合作研究。1998年,美國Avigenics公司獨立開展了規模化投資與研究開發輸卵管生物反應器,因中國科學家曾邦哲已經去了以色列。2002年後,國際國內掀起了輸卵管生物反應器的研究開發熱潮,2003年Science發表了Gloden Egg的評述文章。目前,國際上已有十多家前景看好的公司以輸卵管生物反應器作為拳頭開發產品,約2003年英國羅斯林研究所也創建了公司,並由Sang博士主持研究課題,從禽類蛋黃表達系統轉向了輸卵管生物反應器。輸卵管生物反應器將稱為繼哺乳動物乳腺生物反應器後最具發展前景的動物生物反應器。
轉基因動物生物反應器的基因構建與表達
《國外醫學》預防、診斷、治療用生物製品分冊1999年第22卷第5期
關鍵詞: 轉基因動物生物反應器 葯物 基因構建 表達
摘要 近年來,生物學和分子生物學研究領域的成就促進了轉基因動物生物反應器的蓬勃發展。用轉基因動物生物反應器生產葯用蛋白是生物技術領域里的又一次革命,它以一個全新生產珍貴葯用蛋白的模式區別於傳統葯物的生產。本文著重介紹轉基因動物生物反應器的基因構建以及轉基因動物組織特異性表達的最新進展。
以合理的費用獲取大量在人體內原本稀少的血漿蛋白在不久前還只是幻想。然而,近年來生物學和分子生物學取得的顯著進展終於使這種幻想成為現實。其中,將外源DVA用顯微技術注入生殖細胞的原核,將重組DVA轉入小鼠胚胎細胞和將DVA整合入宿主染色體和種系傳遞等重要發現,使用轉基因(Tg)動物生產葯用蛋白成為可能。此外,生物學技術的發展,如對卵細胞的獲得、操作以及再植入和重組DNA等技術進步都為轉基因動物生物反應器的成功提供了保證。
轉基因動物生物反應器生產葯用蛋白一般有兩種技術路線。第一種是將目的基因在同源組織中表達蛋白質;第二種是將目的基因構建成雜合基因,轉入動物胚胎,通過轉基因動物的分泌器官收集並提純葯用蛋白。轉基因動物分泌的蛋白經過後加工酷如人體天然蛋白的結構,也有完全相似的生物活性。
同源組織中表達蛋白質
目前,在同源組織中表達蛋白質最典型的例子是在動物的紅細胞中表達人的血紅蛋白。在人的血紅蛋白基因編碼序列里啟動子有2個CACCC盒,而對應的豬的啟動子里只有一個,另一個靠近它的是CGCCC盒。Sharma等[1]將豬的β-啟動子與人的β編碼基因融合,並將人的β-基因座調控區(β-LCR)和α、ε基因與融合基因的β基因連接在一起構成載體,轉入豬胚胎細胞,從轉基因豬分泌乳汁中得到的重組人血紅蛋白含量高達32g/L。
在轉基因動物的分泌器官中生產蛋白
轉基因動物表達重組蛋白多以乳腺、唾液腺和膀胱為靶位。在這些表達器官中,通過構建合適的載體,選擇適當的啟動子和調控序列可產生比正常水平高得多的重組蛋白。不過,生產系統應盡可能與循環系統隔離,以減少表達產物對宿主動物的影響。
乳腺生物反應器
將所需目的基因構建入載體,加上適當的調控序列,轉入動物胚胎細胞,使轉基因動物分泌的乳汁中含有所需要葯用蛋白。從融合基因轉入胚胎細胞到收集蛋白質有一個過程,包括胚胎植入、分娩和轉基因動物的生長。轉基因動物從出生到第一次泌乳,豬、羊、牛各需12、14、16個月;並且只有雌性動物泌乳且不連續,一般可持續2、6、10個月。牛、羊等大型家畜能對葯用蛋白進行正確的後加工,使之具有較高的生物活性,同時產奶量大,易於大規模生產,因而成為乳腺生物反應器理想的動物類型。
抗凝血酶Ⅲ 第一個進入臨床試驗的轉基因蛋白產物是抗凝血酶Ⅲ,將半乳糖β-酪蛋白的啟動子和含抗凝血酶Ⅲ基因序列相連,轉入綿羊胚胎細胞,在轉基因綿羊的乳液中得到有生物活性的蛋白產量可達7g/L[2]。目前該蛋白正用於冠狀動脈旁路手術患者的二期臨床驗證。
β-乳球蛋白 在實驗過程中人們發現牛的β-乳球蛋白(BLG)基因非常穩定,並能在乳腺中特異性表達。Hyttinen等[3]將含有5』端2.8kb和3』端1.9kb的牛BLG基因片段構建成載體,轉入小鼠胚胎細胞,可在轉基因小鼠的乳腺中特異表達高水平的BLG,此外,還發現CpG位點的甲基化程度與BLG的表達量有關,甲基化少的轉基因小鼠乳液中BLG分泌量較大,可達1~2mg/ml,而其他轉基因小鼠分泌量小於0.1mg/ml。
紅細胞生成素(EPO) 目前國內外均採用CHO細胞表達生產人EPO,成本比較昂貴,而用轉基因動物生產的EPO,可能是一條理想的途徑。將EPO dNA分別以HindⅢ和BamHI酶切,1%瓊脂糖凝膠電泳回收5.4kb的HinⅢ/BamHI片段,插入pGEM-7zf(+)載體,再將867bp的BLG啟動子插入EPO基因之前EcoR、ClaI位點,構建表達載體pGEM-3zf(+)β-LG-EPO。通過顯微注射方法得到轉基因小鼠乳汗中的EPO含量可達0.5μg/ml[4]。
α1-抗胰蛋白酶 這也是一個利用BLG基因構建的重組蛋白。將BLG5』末端4.0kb序列與人的α1-抗胰蛋白酶(α1AT)基因的6.5kb片段(去掉第一個內含子)融合,再連接羊的BLG啟動子,以pPOLYⅢ-Ⅰ為載體,轉入羊的胚胎細胞,可在轉基因羊分泌的乳液中得到含量高達60.0mg/ml的重組蛋白α1AT[5]。轉基因在兩年前進入了臨床驗證。
因子Ⅸ Schnieke等[6]將羊的BLG基因5』末端和人的因子Ⅸ cDNA 與含有BLG復制單元和3』末端的片段融合,將構建的雜合基因轉入羊的胚胎細胞,從分泌的乳汁中得到125μg/ml的重組蛋白。黃淑幀教授等[7]構建了一個含有小鼠MAR元件、牛β-酪蛋白基因調控序列和hFⅨ微基因的hFⅨ乳腺組織特異性表達載體pMCⅨm,其中hF Ⅸ微基因包括全長hF Ⅸ cDNA ,800bp經過改造的內含子1序列和hFⅨ蛋白的信號肽序列。將線形化的表達載體pMC Ⅸm導入羊的受精卵。轉基因羊分泌的乳汁中hFⅨ蛋白的含量約為95ng/ml。在另一實驗中,Yull等[8]將BLG5』末端序列,fⅨ編碼序列和缺失隱性3』端連接點的f Ⅸ3』末端不翻譯區域的一個小片段融合,構成雜合基因,去掉SphI和SmaI位點,克隆入移去了pBJ41的SphI/EcoRV。轉入小鼠胚胎細胞,得到的重組蛋白產量達0.06mg/ml。經過進一步研究,發現是轉基因動物乳腺中對DNA的錯誤剪切使分泌量降低,從而增高重組蛋白產率。在乳腺組織中表達有完全活性的因子Ⅸ是比較成功的,尤其是乳腺組織對因子Ⅸ N端附近的一段含12個葡萄糖殘基的序列進行γ-羧化以保持其活性,而在以前的天然蛋白中沒有發現γ-羧化作用。
因子Ⅷ 人FⅧcDNA長約7.2kb,是目前為止表達的最長cDNA。將它插入小鼠的乳清酸性蛋白(WAP)基因中啟動子(2.5kb)的下游,使之在乳腺中靶向分泌FⅧ重組蛋白。在WAP/FⅧcDNA構建的轉基因小鼠中rFⅧ表達最低,而在轉基因豬中可達1.0~2.7μg/ml[9]。
單克降抗體 Castilla等[10]將編碼了重組單克降抗體(rMab)6A.C3的免疫球蛋白基因cDNA插入小鼠WAP dNA基因組的第一個外顯子,使rMab 6A.C3的表達可以由WAP基因調控序列來控制,將構建的雜合基因注入小鼠胚胎細胞原核,使小鼠乳腺分泌有活性的單克降抗體,這種轉基因表達產物將廣泛應用於預防新生兒腸道感染。
C蛋白 同樣在WAP基因的第一個外顯子位點,Drews等[11]將人C蛋白cDNA插入,轉入小鼠胚胎細胞,可得到產量達1.6mg/ml的重組蛋白。而將上述雜合基因轉入豬的胚胎細胞,可使豬分泌出380μg/mlμg/ml·hr的外源蛋白,活性與人血漿中C蛋白的活性相同。由於C蛋白的抗凝活性依賴於輕鏈膜結合區域正確的γ-羧化,因此,轉基因豬能分泌有活性的C蛋白表明豬的乳腺細胞可對C蛋白前體高速率地進行γ-羧化,以使成熟C蛋白有完整的活性。
膀胱生物反應器
膀胱反應器有著和乳腺反應器一樣的優點:收集產物蛋白比較容易,不必對動物造成傷害。此外,該系統可從動物一出生就收集產物,不論動物的性別和是否正處於生殖期。膀胱生物反應器最顯著的優勢在於從尿中提取蛋白質比在乳汁中提取簡便、高效。
膀胱生物反應器多用Uroplakin啟動子啟動人生長激素(hGH)的表達,產生 hGH特異性的高豐度RNA,這些RNA與蛋白分泌量高度相關。Uroplakin基因在多種哺乳動物體內有很高的保守性,如鼠、兔、牛、羊和人等。
生長激素 Kerr等[12]將pUPII-LacI用質粒的Kpn i進行消化,用T4DNA多聚酶切去3』端,然後用BamHI消化,分離出3.6kb的5』端小鼠UPII基因片段,此片段含有膀胱反應器特異性表達所需的大部分序列。將此片段與位於無啟動子的pOGH質粒純化SaI和BamHI位點間的hGH結構基因的5』端連接,得到pUPII-hGH質粒,能表達該質粒的組織分布有限。將得到的pUPII- hGH質粒用HindIII和EcoRI消化,得出一段5.7kb的UPII-hGH融合基因可用於顯微注射,在膀胱上皮細胞中合成hGH,收集轉基因動物尿液,從中提取重組蛋白。但在這一途徑中轉基因動物會因hGH的作用逐漸肥胖,並導致雌性動物不育症。乳腺生物反應器也能表達hGH。用同源重組方法將hGH基因導入210kb的人α-乳球蛋白位置依賴性YAC載體,將重組的YAC dNA顯微注入大鼠胚胎,轉基因大鼠的乳汁中含有高水平的hGH,含量可達0.25~8.9mg/ml[13]。
翻譯與修飾
轉基因動物分泌的蛋白,特別是糖鏈成分的結構與人體蛋白有差異。因此研究分泌蛋白的修飾就顯得很重要。在乳腺生物反應器中,蛋白質翻譯前修飾的主要方式是在多個位點對乳腺中的蛋白前體進行信號肽剪切和對糖鏈進行修飾。例如,從山羊乳液中得到的長效組織型纖溶酶原激活劑與人體內和相比較,含有少量的異種(外源)低聚糖,同時,唾液酸、N-乙醯葡萄糖胺和半乳糖含量明顯減少,關且出現缺少蛋白質C127的N-乙醯半乳糖胺。此外,從豬乳液中得到的C蛋白中是沒有的;從羊乳液中得到的重組α1-抗胰蛋白酶多聚肽也反映了唾液酸酸化程度的差異;在山羊乳腺中觀察到了重組抗凝血酶Ⅲ上低聚甘露糖與特異天冬醯胺的位點特異性聚合等等。研究小鼠乳液中的重組γ-干擾素可對翻譯前修飾有更好的理解,γ-干擾素有大量的位點特異性變化,在N端連接位點進行復雜的唾液酸酸化和連接核心岩藻多聚糖,其次是低聚甘露糖。與從小鼠細胞中取得的蛋白質相比,分泌的重組蛋白沒有GalNAc、NeuGC和Gal∞l 、3Gal-βl、 4GlcNAc殘基。這些蛋白特異性的糖基化類型可與細胞上的受體結合並清除病人體內的重組蛋白,因此可能會影響療效,最終的結果尚有待驗證。
同源組織表達蛋白質的優點是可對表達產物進行調控並校正珠蛋白鏈的翻譯過程,避免無效的翻譯前修飾,使產物蛋白盡可能與人體天然蛋白相似,降低人體內的排斥反應,提高葯物蛋白療效。目前,蛋白分離技術飛速發展,大大提高了蛋白質分離的可行性和分離效率。第二種技術路線中目前以乳腺生物反應器較為多見,因為乳汁易得到,且乳汁中的特異蛋白含量較大,對蛋白水解酶的降解作用也比較穩定。乳汁是一種混合物,含3%~6%的總蛋白,3%~5%的脂類,對蛋白提純技術要求比較高。另一方面,葯用蛋白是在動物乳腺中產生。因此只有含轉基因型人雌性動物在泌乳期才能生產葯用蛋白,可用的動物數目有限,且生產期較短。膀胱生物反應器的優點在於含有轉基因型的兩性動物都可用,產後收集時間長,提取產物蛋白濃度雙乳液中的含量低得多,盡管收集的尿液多且時間長,生產單位數量的葯用蛋白在乳腺和膀胱生物反應器中的成本是差不多的
問題與展望
在轉基因動物生物反應器的應用中,有些問題尚待解決。比如,由於轉基因動物的基因是鑲嵌整合型的,因此它的下一代並不都轉基因型。但是在綿羊,豬和山羊中觀察到只要轉基因型從起始個體傳給了下一代,這種轉基因型就可以穩定地遺傳好幾代。而其他一些因素,如外源基因的整合率低,胚胎移植的受孕率低等都使有效的轉基因動物大大減少。同時,由於對調控表達水平的程序,指導進行精確的組織特異性和發育調控表達的程序,以及調控和編碼內含子序列間可能的相互作用的認識尚不充分[14],容易引起異位點表達;由於現在的技術還不能控制整合的位點,因此存在對內源基因進行插入誘變的可能性,轉基因型的表達會受整合的不同位點的影響。這些因素使得在家畜長成前,要用小鼠對新基因構型進行常規試驗。
轉基因動物生產的葯用蛋白可用於預防和治療疾病,其轉運系統及口服用葯引起的耐受性等問題都在作進一步研究。以轉基因家畜生產珍貴的葯用蛋白具有重大的經濟價值和社會效益,這項生物技術最終將會得到廣泛應用。
Ⅵ 構建膀胱生物反應器時將什麼 和什麼重組在一起
膀胱生物反應器 將葯用蛋白基因與特殊的啟動子等調控組件重組在一起。