㈠ 某城市污水處理廠設計 急急急
只有15分啊,沒有很大意思,做出來大概需要一天時間。
㈡ 污水處理控制排泥量各種計算公式
排泥量=(實測MLSS-維持MLSS)×好氧池體積/迴流污泥濃度
排泥量=(MLSS×好氧池容積-BOD5×流量/(F/M)}/迴流污泥濃度
排泥量=MLSS/RSS×曝氣池體積/SRT
㈢ 微生物最大能氧化分解百分之多少的原油
異養微生物的內源呼吸速率(自身氧化率),b =O.08 d。
大概可產生4722366500萬億個(2的72次方),這是非常巨大的數字。但事實上,由於各種條件的限制,如營養缺失、競爭加劇、生存環境惡化等原因,微生物無法完全達到這種指數級增長。 已知大多數微生物生長的最佳pH范圍為7.0 (6.6~7.5)附近,部分則低於4.0。
體小面大一個體積恆定的物體,被切割的越小,其相對表面積越大。微生物體積很小,如一個典型的球菌,其體積約1mm,可是其表面積卻很大。這個特徵也是賦予微生物其他如代謝快等特性的基礎。
吸多轉快微生物通常具有極其高效的生物化學轉化能力。據研究,乳糖菌在1個小時之內能夠分解其自身重量1000-10000倍的乳糖,產朊假絲酵母菌的蛋白合成能力是大豆蛋白合成能力的100倍。
生長繁殖快相比於大型動物,微生物具有極高的生長繁殖速度。大腸桿菌能夠在12.5-20分鍾內繁殖1次。不妨計算一下,1個大腸桿菌假設20分鍾分裂1次,1小時3次,1晝夜24小時分裂24×3=72次。
㈣ 污泥處置技術有哪些
污泥處置技術:
⒈污泥處理利用的一般技術
⑴污泥的堆肥化處理技術
⑵污泥的建材化技術
⑶污泥的燃料化技術
⑷污泥的厭氧消化(制沼氣)技術
⒉太陽能污泥干化技術
⒊污泥的電離輻射處理技術
⒋ 微波技術在污泥處理中的應用
⑴微波輻照污泥處理技術
⑵微波化學分析技術
⒌ 超聲波處理污泥技術
⒍ 重金屬的生物有效性及植物脫除技術
⒎ 污泥的微生物處理技術
⑴ 微生物淋濾技術
⑵ 微生物吸附處理法
⑶ 微生物脫臭技術
⒏新興污泥熱化學處理技術
⑴ 濕式氧化技術
⑵ 活性污泥作黏結劑
⑶ 剩餘污泥制可降解塑料
⑷ 污泥制活性炭
⑸ O3/H2O2氧化技術
⑹ UV/O3氧化技術
⑺ UV/H2O2氧化工藝
⑻ 其他熱化學處理技術
㈤ 污水處理中MLSS如何計算
污泥齡=1/aF-b,其中a、b可以取值,分別為污泥的增值系數和自生氧化率,F為污泥負荷。
MLSS,混合液污泥濃度,它表示的是在曝氣池單位容積混合液內所含有的活性污泥固體物的總重量(mg/L)。由於測定方法比較簡便易行,此項指標應用較為普遍混合液懸浮固體濃度MLSS是活性污泥處理系統重要的設計運行參數。
MLSS太高則說明生化池中的活性污泥過剩,超出生化處理的需求,在反應池後面的沉澱池中進行固液分離時過剩的污泥會影響出水水質,所以MLSS不能太高。
MLSS太低,說明生化池中的污泥負荷不夠,對於污水中的污染物的處理強度就會差了些,出水水質中的各項標准也會不達標,所以MLSS不能太低。而一般設計時不用純MLSS的值去衡量,而是MLVSS/MLSS的值。
(5)微生物自身氧化率怎麼算擴展閱讀:
混合液懸浮固體中的有機物量稱為混合液體揮發性懸浮固體以MLVSS(mg/l)表示,對一定的廢水而言,MLVSS與MLSS有一定的比值,例如生活污水的比值為0.7左右。
混合液懸浮固體濃度,也稱混合液污泥濃度,是計量曝氣池中活性污泥數量的指標。MLSS是具有活性的微生物(Ma)、微生物自身氧化的殘留物(Me)、吸附在污泥上不能被生物降解的有機物(Mi)和無機物(Mii)四者的總量。
MLSS:單位容積混合液內含活性污泥固體物質的總量(mg/L),MLVSS指混合液揮發性懸浮固體。生活污水一般MLVSS/MLSS=0.7。測MLSS需要定量濾紙(不能用定性的)、電子分析天平、烘箱、乾燥器等。
取100ml混合液用濾紙過濾,待烘箱中溫度升到103-105之間的設定值後,將濾干後的濾紙放入烘箱烘2小時,取出置於乾燥器中放置半小操作時。稱量後減去濾紙重量,並且測濾紙的重量也要採用上述同樣的步驟。該實驗必須嚴格按照上述操作,否則會入偏差。
㈥ SBR工藝中微生物自身氧化率為多少
異養微生物的內源呼吸速率(自身氧化
率),b =O.08 d。希望能夠幫助你!
㈦ 一般的污水處理排泥量怎麼計算的
1剩餘污泥量計算方法
在活性污泥工藝中,為維持生物系統的穩定,每天需不斷有剩餘污泥排出。它們主要由兩部分構成,一是由降解有機物BOD所產生的污泥增殖,二是進水中不可降解及惰性懸浮固體的沉積。因此,剩餘干污泥量可以用式(1)計算:
ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1)
式中ΔX———系統每日產生的剩餘污泥量,kgMLSS/d;
Y———污泥增殖率,即微生物每代謝1kgBOD所合成的MLVSSkg數;
Kd———污泥自身氧化率,d-1;
θc———污泥齡(生物固體平均停留時間),d;
Y1+Kdθc———污泥凈產率系數,又稱表觀產率(Yobs);
Q———污水流量,m3/d;
BODi,BODo———進、出水中有機物BOD濃度,kgBOD/m3;
fP———不可生物降解和惰性部分佔SSi的百分數;
SSi,SSo———進、出水中懸浮固體SS濃度,kgSS/m3。
德國排水技術協會(ATV)制訂的城市污水設計規范中給出了剩餘污泥量的計算表達式[1]。此式與式(1)本質相同,只是更加細致,考慮了活性污泥代謝過程中的惰性殘余物(約占污泥代謝量的10%左右)及溫度修正。綜合污泥產率系數YBOD(以BOD計,包含不可降解及惰性SS沉積項)寫作:
YBOD=0 6×(1+SSiBODi)-(1-fb)×0 6×0 08×θc×FT1+0 08×θc×FT(2)
FT=1 702(T-15)(3)
式中fb———微生物內源呼吸形成的不可降解部分,取值0 1;
FT———溫度修正系數。
比較(1),(2)兩式,可知在ATV標准中動力學參數Y,Kd分別取值0.6和0.08d-1,進水中不可降解及惰性懸浮固體(fP部分)占總進水SS的60%。由於剩餘污泥中揮發性部分所佔比例與曝氣池中MLVSS與MLSS的比值大體相當,因此剩餘干污泥量也可以表示成下式:
ΔX=YobsQ(BODi-BODo)f(4)
式中f=MLVSSMLSS;其他符號意義同前。
式(4)與式(1)是一致的,均需確定Yobs。
㈧ 自氧化率怎麼算
自氧化率單位微生物體酶單位時間內由於內源呼吸而消耗的微生物體量。微生物內源呼吸衰減系數又稱微生物自氧化率,是指單位微生物體酶單位時間內由於內源呼吸而消耗的微生物體量。