① 廢水生物處理機理是什麼
廢水生物處理法
biological treatment of wastewater
利用微生物的代謝作用除去廢水中有機污染物的一種方法,亦稱廢水生物化學處理法,簡稱廢水生化法,分需氧生物處理法和厭氧生物處理法兩種。 需氧生物處理法 利用需氧微生物在有氧條件下將廢水中復雜的有機物分解的方法。 生活污水中的典型有機物是碳水化合物、合成洗滌劑、脂肪、蛋白質及其分解產物如尿素、甘氨酸、脂肪酸等。這些有機物可按生物體系中所含元素量的多寡順序表示為 COHNS。在廢水需氧生物處理中全部反應可用以下兩式表示:
微生物細胞+COHNS+O2—→ 較多的細胞+CO2+H2O+NH3
生物體系中這些反應有賴於生物體系中的酶來加速。酶按其催化反應分為:氧化還原酶:在細胞內催化有機物的氧化還原反應,促進電子轉移,使其與氧化合或脫氫。可分為氧化酶和還原酶。氧化酶可活化分子氧,作為受氫體而形成水或過氧化氫。還原酶包括各種脫氫酶,可活化基質上的氫,並由輔酶將氫傳給被還原的物質,使基質氧化,受氫體還原。水解酶:對有機物的加水分解反應起催化作用。水解反應是在細胞外產生的最基本的反應,能將復雜的高分子有機物分解為小分子,使之易於透過細胞壁。如將蛋白質分解為氨基酸,將脂肪分解為脂肪酸和甘油,將復雜的多糖分解為單糖等。此外還有脫氨基、脫羧基、磷酸化和脫磷酸等酶。 許多酶只有在一些稱為輔酶和活化劑的特殊物質存在時才能進行催化反應,鉀、鈣、鎂、鋅、鈷、錳、氯化物、磷酸鹽離子在許多種酶的催化反應中是不可缺少的輔酶或活化劑。 在需氧生物處理過程中,污水中的有機物在微生物酶的催化作用下被氧化降解,分三個階段:第一階段,大的有機物分子降解為構成單元——單糖、氨基酸或甘油和脂肪酸。在第二階段中,第一階段的產物部分地被氧化為下列物質中的一種或幾種:二氧化碳、水、乙醯基輔酶A、α-酮戊二酸(或稱 α-氧化戊二酸)或草醋酸(又稱草醯乙酸)。第三階段(即三羧酸循環,是有機物氧化的最終階段)是乙醯基輔酶A、α-酮戊二酸和草醋酸被氧化為二氧化碳和水。有機物在氧化降解的各個階段,都釋放出一定的能量。 在有機物降解的同時,還發生微生物原生質的合成反應。在第一階段中由被作用物分解成的構成單元可以合成碳水化合物、蛋白質和脂肪,再進一步合成細胞原生質。合成能量是微生物在有機物的氧化過程中獲得的。 厭氧生物處理法 主要用於處理污水中的沉澱污泥,因而又稱〖HTK〗污泥消化〖HT〗,也用於處理高濃度的有機廢水。這種方法是在厭氧細菌或兼性細菌的作用下將污泥中的有機物分解,最後產生甲烷和二氧化碳等氣體,這些氣體是有經濟價值的能源。中國大量建設的沼氣池就是具體應用這種方法的典型實例。消化後的污泥比原生污泥容易脫水,所含致病菌大大減少,臭味顯著減弱,肥分變成速效的,體積縮小,易於處置。 城市污水沉澱污泥和高濃度有機廢水的完全厭氧消化過程可分為三個階段(見圖)。在第一階段,污泥中的固態有機化合物藉助於從厭氧菌分泌出的細胞外水解酶得到溶解,並通過細胞壁進入細胞中進行代謝的生化反應。在水解酶的催化下,將復雜的多糖類水解為單糖類,將蛋白質水解為縮氨酸和氨基酸,並將脂肪水解為甘油和脂肪酸。第二階段是在產酸菌的作用下將第一階段的產物進一步降解為比較簡單的揮發性有機酸等,如乙酸、丙酸、丁酸等揮發性有機酸,以及醇類、醛類等;同時生成二氧化碳和新的微生物細胞。
第一、二階段又稱為液化過程。第三階段是在甲烷菌的作用下將第二階段產生的揮發酸轉化成甲烷和二氧化碳,因此又稱為氣化過程,其反應可用下式表示:
一些有機酸或醇的氣化過程舉例如下: 乙酸:
CH3COOH—→CO2+CH4
丙酸:
4CH3CH2COOH+2H2O—→5CO2+7CH4
甲醇:
4CH3OH—→CO2+3CH4+2H2O
乙醇:
2CH3CH2OH+CO2—→2CH3COOH+CH4
為了使厭氧消化過程正常進行,必須將溫度、pH值、氧化還原電勢等保持在一定的范圍內,以維持甲烷菌的正常活動,保證及時地和完全地將第二階段產生的揮發酸轉化成甲烷。
生物化學反應的速度直接受溫度的影響。進行厭氧消化的微生物有兩類:中溫消化菌和高溫消化菌。前者的適應溫度范圍為17~43℃,最佳溫度為32~35℃;後者則在50~55℃具有最佳反應速度。
近年來,厭氧消化處理法發展到應用於處理高濃度有機廢水,如屠宰場廢水、肉類加工廢水、製糖工業廢水、酒精工業廢水、罐頭工業廢水、亞硫酸鹽制漿廢水等,比採用需氧生物處理法節省費用。
利用生物法處理廢水的具體方法有〖HTK〗活性污泥法〖HT〗、〖HTK〗生物膜法〖HT〗、〖HTK〗氧化塘法〖HT〗、〖HTK〗土地處理系統〖HT〗和污泥消化等。〖HT〗
② 微生物處理污水的方法
微生物在有氧條件下,吸附環境中的有機物,並將其氧化分解成無機物,使污水得到凈化,同時合成細胞物質。微生物在污水凈化過程,以活性污泥和生物膜的主要成分等形式存在。
(1)活性污泥法
又稱曝氣法,是利用含有好氧微生物的活性污泥,在通氣條件下,使污水凈化的生物學方法。此法是現今處理有機廢水的最主要的方法。
所謂活性污泥是指由菌膠團形成菌、原生動物、有機和無機膠體及懸浮物組成的絮狀體。在污水處理過程中,它具有很強的吸附、氧化分解有機物或毒物的能力。在靜止狀態時,又具有良好沉降性能。活性污泥中的微生物主要是細菌,占微生物總數的90%~95%。,並多以菌膠團的形式存在,具有很強的去除有機物的能力,原生動物起間接凈化作用。
活性污泥法根據曝氣方式不同,分多種方法,目前最常用的是完全混合曝氣法。污水進入曝氣池後,活性污泥中的細菌等微生物大量繁殖,形成菌膠團絮狀體,構成活性污泥骨架,原生動物附著其上,絲狀細菌和真菌交織在一起,形成一個個顆粒狀的活躍的微生物群體。曝氣池內不斷充氣、攪拌,形成泥水混合液,當廢水與活性污泥接觸時,污水中的有機物在很短時間內被吸附到活性污泥上,可溶性物質直接進入細胞內。大分子有機物通過細胞產生的胞外酶將其降解成為小分子物質後再滲入細胞內。進入細胞內的營養物質在細胞內酶的作用下,經一系列生化反應,使有機物轉化為C02、H2O等簡單無機物,同時產生能量。微生物利用呼吸放出的能量和氧化過程中產生的中間產物合成細胞物質,使菌體大量繁殖。微生物不斷進行生物氧化,污水中有機物不斷減少,使污水得到凈化。當營養缺乏時,微生物氧化細胞內貯藏物質,並產生能量,這種現象叫自身氧化或內源呼吸。
曝氣池中混合物以低BOD值流入沉澱池。活性污泥通過靜止、凝集、沉澱和分離,上清液是處理好的水,排放到系統外。沉澱的活性污泥一部分迴流曝氣池與未處理的廢水混合,重復上述過程,迴流污泥可增加曝氣池內微生物含量,加速生化反應過程。剩餘污泥排放出去或進行其他處理後繼續應用。
(2)生物膜法
該法是以生物膜為凈化主體的生物處理法。生物膜是附著在載體表面,以菌膠團為主體所形成的粘膜狀物。生物膜的功能和活性污泥法中的活性污泥相同,其微生物的組成也類似。凈化污水的主要原理是附著在載體表面的生物膜對污水中有機物的吸附與氧化分解作用。生物膜法根據介質與水接觸方式不同,有生物轉盤法、塔式生物濾池法等。
2.厭氧處理系統
在缺氧條件下,利用厭氧菌(包括兼性厭氧菌)分解污水中有機污染物的方法,又稱厭氧消化或厭氧發酵法。因為發酵產物產生甲烷,又稱甲烷發酵。此法既能消除環境污染,又能開發生物能源,所以倍受人們重視。污水厭氧發酵是一個極為復雜的生態系統,它涉及多種交替作用的菌群,各要求不同的基質和條件,形成復雜的生態體系。甲烷發酵包括3個階段:液化階段、產氫產乙酸階段和產甲烷階段。
此法主要用於處理農業和生活廢棄物或污水廠的剩餘污泥,也可用於處理麵粉廠、食品廠、造紙廠、製革廠、酒精廠、糖廠、油脂廠、農葯廠或石油化工等工廠廢水。
③ 微生物法處理污水的基本原理
微生物污水處理基本原理是通過微生物的作用使電鍍污水中含有的多種有毒 有害物得到全面去除 確保電鍍污水中的六價鉻、氰化物(有氰電鍍)各種重金屬COD 氨氮……被處理達到相關的排放標准 具體闡述如下
微生物污水處理:氰化物(CN一)
通過革蘭氏菌等菌群將其分解為氮氣和CO2排入大氣 反應式如下
2CN-+8OH- 破氰菌N2+2CO2+4H2O……1 隨著游離氰根的去除 氰絡合離子產生如下反應
Ag(CN)2Ag++2CN-……2
Cu(CN)42-Cu2++4CN-……3
④ 利用微生物處理污水的原理,簡單一些,有好評!
甲烷菌屬於厭氧微生物,除了厭氧微生物還有好氧微生物,在污水處理工藝中,它們生活在好氧段,主要有化能自養細菌、醋酸菌、枯草桿菌(枯草芽孢桿菌)、結核菌、固氮菌等。
微生物處理污水的的原理主要是微生物在生長繁殖過程中需要利用水中的有機污染物(碳源等)作為它們的食物,經微生物吸收、分解後,污水中的有機污染物被大量去除,從而達到水質凈化的目的。
⑤ 污水厭氧處理的微生物學原理是什麼污泥厭氧消化和污水厭氧處理有何異同
污水厭氧處理原理:通過厭氧微生物的新陳代謝,將有機物進行生物轉化,生成沼氣和二氧化碳,從而達到凈化水質的目的。
污泥厭氧消化和污水厭氧處理比較:都是利用厭氧微生物進行的生物轉化過程,只不過處理的對象不同而已。污泥厭氧消化對象是剩餘活性污泥(細菌),而污水厭氧處理的對象是污水中的不溶性和溶解性有機物。
⑥ 污水好氧生物處理的基本原理
污水好氧生物處理的原理是,生物反應器中的微生物以懸浮狀態存在,在好氧條件下氧化、分解有機物和氨氮。常見的有好氧活性污泥法,該方法不僅能有效去除污水中的有機物,還能有效的進行生物脫氮除磷。
⑦ 污水好氧微生物處理的原理
應用 好氧生物處理原理是一種在提供游離氧的前提下 以好氧微生物為主 使有機物降解 穩定的無害化處理方法 微生物以活性污泥和生物膜的形式存在 活性污泥 由細菌 原生動物等微生物與懸浮物質 膠體物質混雜在一起的絮狀體顆粒 生物膜 附著在填料上呈薄膜狀的活性污泥 活性污泥的主要特徵具有較強的吸附能力 10~30min 內吸附作用可以去除達85~90%的BOD 鐵 銅 鉛等金屬離子 約有30~90%能吸附去除 具有很強的分解 氧化有機物的能力 吸附的大分子有機物質在胞外酶的作用下 變成小分子可溶性物質 微生物的異化作用 微生物的同化作用 具有良好的沉降性能 具有絮狀結構 泥水分開 曝氣池 曝氣池出水堰 廢水好氧生物處理的優越性 效率高 物質遷移轉化效率高
⑧ 為什麼微生物能凈化污水
世界的人口在不斷的增多,資源的消耗也越來越多,尤其是水之源越來越緊缺了。隨著科技的進步,人們的消費水品的提高,人們每天產生的污水排入江河,漸漸的污染了河流。可是為什麼微生物能凈化污水呢?相信許多朋友們都不太了解,下面就由我來給大家解答一下疑惑吧。
隨著全球人口的膨脹,水資源越來越緊缺。無論是工業生產還是我們日常生活,每天都在產生大量的污水。如果直接將這些污水排入江河湖海,那麼僅僅依靠自然界的自凈能力是不行的,因此需要將這些污水進行無害化處理。傳統的污水處理方法有物理法、化學法和生物法等,其中最為神奇的無疑是生物法,也就是利用微生物進行污水的凈化。
微生物生長快,數量多,再加上幾十億年來進化所取得的豐富「經驗」和「積累」,使得微生物具備了極其豐富的多樣性。這種多樣性不僅表現在形態、種類上,更表現在它們獲取營養和進行代謝的能力上。微生物幾乎能將所有類型的有機物作為能量來源「吃」下去,不少微生物還能以無機物和光作為能量來源。正是微生物這種強大的營養代謝能力,決定了它在污水處理中幾乎「無所不能」。
微生物可以分為好氧性和厭氧性兩種,它們處理污水的辦法截然不同。在好氧處理過程中,人們需要不斷將氧氣鼓入污水池中,這稱為「曝氣」。充足的氧氣使污水中本來存在的各種微生物能夠大量生長起來,這些臭烘烘的污泥對微生物來說是可口的「美食」,它們在「大吃大喝」的.過程中將污水內的各種物質轉化為自己身體的組成部分,將代謝產生的二氧化碳等無害氣體排出體外,使水體中溶解的營養成分逐漸減少。「吃飽了」的菌體們會聚集在一起,緩慢下沉到池底,成為「活性污泥」。處理過的水經沉澱分離「活性污泥」後,可以除去90%左右的有機物,水也就變清了。
自然界中還有許多微生物是躲在沒有氧氣的環境中生長的,它們同樣具有分解各種物質的能力,許多有機物就是在海底、河床的淤泥層中被逐漸分解的,厭氧生物處理就是人工模擬這個過程。與好氧處理不同,厭氧處理需要在密閉的容器中進行,也不用鼓風加氧。污水流入時會帶入一些氧氣,但這些氧氣會很快就被入水口附近的好氧微生物消耗殆盡,然後水體就進入無氧狀態,各種厭氧微生物便大展拳腳,逐漸分解各種有機物,使污水澄清。與好氧處理法相比,厭氧處理過程中會產生甲烷等氣體,可以作為能源。用厭氧法可以處理的污染濃度范圍也更廣,但缺點在於處理周期較長。
由於不同來源的污水含有的污染成分和濃度不同,常常把好氧處理和厭氧處理結合起來。有時候,對一些含有特殊的有毒物質或難以降解的物質的污水,還需要採取特別的工藝流程,分離培育特殊的菌種和專門的活性污泥,以達到理想的污水處理目的。
⑨ 污水好氧微生物處理的基本原理
污水好氧微生物處理即硝化細菌降解氨氮的基本原理。
微生物氧化氨過程的化學表達
1)在好氧條件下:
①(NH4+)+2O2 → (NO2-)+2H2O
② 2(NO2-)+O2 → 2NO3-
2)在厭氧條件下:
③(NH4+)+(NO2-) → N2+2H2O
④ 5(NH4+)+3(NO3-)→ 4N2+9H2O+2H+
其中①②是由亞硝化細菌和硝化細菌分別完成,限制其反應的步驟是亞硝化細菌進行氨的氧化,其反應速率決定了整個總過程的速度。
⑩ 微生物處理污水原理
生化處理是利用微生物處理廢水中的有機物和污染物的一種工藝,因而也稱為污水的生物處理。
微生物是一類體形微小、結構簡單的生物,主要包括細菌、放線菌、藻類、真菌、立克次氏菌、枝原體以及原生動物和後生動物等類群,其中與廢水處理密切相關的是細菌、放線菌、原生動物和後生動物中的某些種類。
1、細菌:是單細胞生物,有球形,桿狀和螺旋形三種。在廢水處理過程中起主要作用的是由多種細菌所組成的菌膠團。細菌在適宜的環境中,每20~30min可裂殖一次,生成2個細菌。
2、絲狀菌:是一大類菌體細胞相連而形成絲狀的微生物的總稱,也稱為絲狀微生物。包括絲狀細菌、絲狀真菌和絲狀藻類等微生物群。絲狀菌在廢水生化處理過程中是活性污泥絮體的主要骨架材料。如絲狀菌數量不足,則無法形成活性污泥絮體,不能進行高效的泥水分離。從而無法獲得清澈的上清液,使出水渾濁。但當絲狀菌過多時,會導致活性污泥膨脹。
3、原生動物:在廢水活性污泥處理法中,原生動物主要有三類:肉足類、鞭毛類和纖毛類。分別有代表生物變形蟲、鞭毛蟲和纖毛蟲。