A. 分子生物學是一個什麼樣的學科
分子生物學(molecular biology)
在分子水平上研究生命現象的科學.研究生物大分子(核酸、蛋白質)的結 構、功能和生物合成等方面來闡明各種生命現象的本質.研究內容包括各種生命過程如光合作用、發育的分子機制、神經活動的機理、癌的發生等.
從分子水平研究生物大分子的結構與功能從而闡明生命現象本質的科學.自20世紀50年代以來,分子生物學是生物學的前沿與生長點,其主要研究領域包括蛋白質體系、蛋白質-核酸體系 (中心是分子遺傳學)和蛋白質-脂質體系(即生物膜).
生物大分子,特別是蛋白質和核酸結構功能的研究,是分子生物學的基礎.現代化學和物理學理論、技術和方法的應用推動了生物大分子結構功能的研究,從而出現了近30年來分子生物學的蓬勃發展.分子生物學和生物化學及生物物理學關系十分密切,它們之間的主要區別在於:①生物化學和生物物理學是用化學的和物理學的方法研究在分子水平,細胞水平,整體水平乃至群體水平等不同層次上的生物學問題.而分子生物學則著重在分子(包括多分子體系)水平上研究生命活動的普遍規律;②在分子水平上,分子生物學著重研究的是大分子,主要是蛋白質,核酸,脂質體系以及部分多糖及其復合體系.而一些小分子物質在生物體內的轉化則屬生物化學的范圍;③分子生物學研究的主要目的是在分子水平上闡明整個生物界所共同具有的基本特徵,即生命現象的本質;而研究某一特定生物體或某一種生物體內的某一特定器官的物理、化學現象或變化,則屬於生物物理學或生物化學的范疇.
B. 現代分子生物學研究的主要內容有哪幾方面
現代分子生物學研究主要內容有:
DNA重組技術(基因工程)
基因表達的調控
生物大分子的結構和功能研究
基因組、功能基因組與生物信息學研究
C. 分子生物學的含義是什麼分子生物學的主要研究內容有哪些
分子生物學(molecular biology)從分子水平研究生物大分子的結構與功能從而闡明生命現象本質的科學.分子生物學是生物學的前沿與生長點,其主要研究領域包括蛋白質體系、蛋白質-核酸體系 (中心是分子遺傳學)和蛋白質-脂質體系(即生物膜)
D. 說出分子生物學的主要研究內容.
分子生物學
英文名稱:molecular biology
定義:從分子水平上研究生命現象物質基礎的學科.研究細胞成分的物理、化學的性質和變化以及這些性質和變化與生命現象的關系,如遺傳信息的傳遞,基因的結構、復制、轉錄、翻譯、表達調控和表達產物的生理功能,以及細胞信號的轉導等.
E. 分子生物學是指什麼
分子生物學是指在分子水平上研究生命現象的科學,從生物大分子(核酸、蛋白質)的結構、功能和生物合成等方面來闡明各種生命現象的本質。研究內容包括各種生命過程,如光合作用、發育的分子機制、神經活動的機理、癌的發生等。
生物大分子,特別是蛋白質和核酸結構功能的研究,是分子生物學的基礎。現代化學和物理學理論、技術和方法的應用推動了生物大分子結構功能的研究,分子生物學和生物化學及生物物理學關系十分密切,它們之間的主要區別在於:
(1)生物化學和生物物理學是用化學的和物理學的方法研究在分子水平,細胞水平,整體水平乃至群體水平等不同層次上的生物學問題。而分子生物學則著重在分子(包括多分子體系)水平上研究生命活動的普遍規律;
(2)在分子水平上,分子生物學著重研究的是大分子,主要是蛋白質,核酸,脂質體系以及部分多糖及其復合體系。而一些小分子物質在生物體內的轉化則屬生物化學的范圍;
(3)分子生物學研究的主要目的是在分子水平上闡明整個生物界所共同具有的基本特徵,即生命現象的本質;而研究某一特定生物體或某一種生物體內的某一特定器官的物理、化學現象或變化,則屬於生物物理學或生物化學的范疇。
F. 分子生物學是什麼
分子生物學的發展為人類認識生命現象帶來了前所未有的機會,也為人類利用和改造生物創造了極為廣闊的前景。 所謂在分子水平上研究生命的本質主要是指對遺傳、 生殖、生長和發育等生命基本特徵的分子機理的闡明,從而為利用和改造生物奠定理論基礎和提供新的手段。這里的分子水平指的是那些攜帶遺傳信息的核酸和在遺傳信息傳遞及細胞內、細胞間通訊過程中發揮著重要作用的蛋白質等生物大分子。這些生物大分子均具有較大的分子量,由簡單的小分子核苷酸或氨基酸排列組合以蘊藏各種信息,並且具有復雜的空間結構以形成精確的相互作用系統,由此構成生物的多樣化和生物個體精確的生長發育和代謝調節控制系統。闡明這些復雜的結構及結構與功能的關系是分子生物學的主要任務。 分子生物學主要包含以下三部分研究內容: 1.核酸的分子生物學 核酸的分子生物學研究核酸的結構及其功能。由於核酸的主要作用是攜帶和傳遞遺傳信息,因此分子遺傳學(moleculargenetics)是其主要組成部分。由於50年代以來的迅速發展,該領域已形成了比較完整的理論體系和研究技術,是目前分子生物學內容最豐富的一個領域。研究內容包括核酸/基因組的結構、遺傳信息的復制、轉錄與翻譯,核酸存儲的信息修復與突變,基因表達調控和基因工程技術的發展和應用等。遺傳信息傳遞的中心法則(centraldogma)是其理論體系的核心。 2.蛋白質的分子生物學 蛋白質的分子生物學研究執行各種生命功能的主要大分子──蛋白質的結構與功能。盡管人類對蛋白質的研究比對核酸研究的歷史要長得多,但由於其研究難度較大,與核酸分子生物學相比發展較慢。近年來雖然在認識蛋白質的結構及其與功能關系方面取得了一些進展,但是對其基本規律的認識尚缺乏突破性的進展。 3.細胞信號轉導的分子生物學 細胞信號轉導的分子生物學研究細胞內、細胞間信息傳遞的分子基礎。構成生物體的每一個細胞的分裂與分化及其它各種功能的完成均依賴於外界環境所賦予的各種指示信號。在這些外源信號的刺激下,細胞可以將這些信號轉變為一系列的生物化學變化,例如蛋白質構象的轉變、蛋白質分子的磷酸化以及蛋白與蛋白相互作用的變化等,從而使其增殖、分化及分泌狀態等發生改變以適應內外環境的需要。信號轉導研究的目標是闡明這些變化的分子機理,明確每一種信號轉導與傳遞的途徑及參與該途徑的所有分子的作用和調節方式以及認識各種途徑間的網路控制系統。信號轉導機理的研究在理論和技術方面與上述核酸及蛋白質分子有著緊密的聯系,是當前分子生物學發展最迅速的領域之一。 分子生物學的發展大致可分為三個階段。 一、准備和醞釀階段 19世紀後期到20世紀50年代初,是現代分子生物學誕生的准備和醞釀階段。在這一階段產生了兩點對生命本質的認識上的重大突破: 確定了蛋白質是生命的主要基礎物質 19世紀末Buchner兄弟證明酵母無細胞提取液能使糖發酵產生酒精,第一次提出酶(enzyme)的名稱,酶是生物催化劑。20世紀20-40年代提純和結晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黃酶、細胞色素C、肌動蛋白等),證明酶的本質是蛋白質。隨後陸續發現生命的許多基本現象(物質代謝、能量代謝、消化、呼吸、運動等)都與酶和蛋白質相聯系,可以用提純的酶或蛋白質在體外實驗中重復出來。在此期間對蛋白質結構的認識也有較大的進步。1902年EmilFisher證明蛋白質結構是多肽;40年代末,Sanger創立二硝基氟苯(DNFB)法、Edman發展異硫氰酸苯酯法分析肽鏈N端氨基酸;1953年Sanger和Thompson完成了第一個 多肽分子--胰島素A鏈和B鏈的氨基全序列分析。由於結晶X-線衍射分析技術的發展,1950年Pauling和Corey提出了α-角蛋白的α-螺旋結構模型。所以在這階段對蛋白質一級結構和空間結構都有了認識。 確定了生物遺傳的物質基礎是DNA 雖然1868年F.Miescher就發現了核素(nuclein),但是在此後的半個多世紀中並未引起重視。20世紀20-30年代已確認自然界有DNA和RNA兩類核酸,並闡明了核苷酸的組成。由於當時對核苷酸和礆基的定量分析不夠精確,得出DNA中A、G、C、T含量是大致相等的結果,因而曾長期認為DNA結構只是「四核苷酸」單位的重復,不具有多樣性,不能攜帶更多的信息,當時對攜帶遺傳信息的候選分子更多的是考慮蛋白質。40年代以後實驗的事實使人們對核酸的功能和結構兩方面的認識都有了長足的進步。1944年O.T.Avery等證明了肺炎球菌轉化因子是DNA;1952年A.D.Hershey和M.Cha-se用DNA35S和32P分別標記T2噬菌體的蛋白質和核酸,感染大腸桿菌的實驗進一步證明了是遺傳物質。在對DNA結構的研究上,1949-52年S.Furbery等的X-線衍射分析闡明了核苷酸並非平面的空間構像,提出了DNA是螺旋結構;1948-1953年Chargaff等用新的層析和電泳技術分析組成DNA的礆基和核苷酸量,積累了大量的數據,提出了DNA礆基組成A=T、G=C的Chargaff規則,為礆基配對的DNA結構認識打下了基礎。
G. 現代分子生物學研究主要內容有哪幾方面
現代分子生物學研究主要內容有:
DNA重組技術(基因工程)
基因表達的調控
生物大分子的結構和功能研究
基因組、功能基因組與生物信息學研究
H. 分子生物學的基本內容
蛋白質的特殊性質和生理功能與其分子的特定結構有著密切的關系,這是形形色色的蛋白質所以能表現出豐富多彩的生命活動的分子基礎。研究蛋白質的結構與功能的關系是分子生物學研究的一個重要內容。
隨著結構分析技術的發展,1962年已有幾千個蛋白質的化學結構和幾百個蛋白質的立體結構得到了闡明。70年代末以來,採用測定互補DNA順序反推蛋白質化學結構的方法,不僅提高了分析效率,而且使一些氨基酸序列分析條件不易得到滿足的蛋白質化學結構分析得以實現。
發現和鑒定具有新功能的蛋白質,仍是蛋白質研究的內容。例如與基因調控和高級神經活動有關的蛋白質的研究很受重視。 生物體的遺傳特徵主要由核酸決定。絕大多數生物的基因都由 DNA構成。簡單的病毒,如λ噬菌體的基因組是由 46000個核苷酸按一定順序組成的一條雙股DNA(由於是雙股DNA,通常以鹼基對計算其長度)。細菌,如大腸桿菌的基因組,含4×10^6鹼基對。人體細胞染色體上所含DNA為3×10^9鹼基對。
遺傳信息要在子代的生命活動中表現出來,需要通過復制、轉錄和轉譯。復制是以親代 DNA為模板合成子代DNA分子。轉錄是根據DNA的核苷酸序列決定一類RNA分子中的核苷酸序列;後者又進一步決定蛋白質分子中氨基酸的序列,就是轉譯。因為這一類RNA起著信息傳遞作用,故稱信使核糖核酸(mRNA)。由於構成RNA的核苷酸是4種,而蛋白質中卻有20種氨基酸,它們的對應關系是由mRNA分子中以一定順序相連的 3個核苷酸來決定一種氨基酸,這就是三聯體遺傳密碼。
基因在表達其性狀的過程中貫串著核酸與核酸、核酸與蛋白質的相互作用。DNA復制時,雙股螺旋在解旋酶的作用下被拆開,然後DNA聚合酶以親代DNA鏈為模板,復制出子代 DNA鏈。轉錄是在RNA聚合酶的催化下完成的。轉譯的場所核糖核蛋白體是核酸和蛋白質的復合體,根據mRNA的編碼,在酶的催化下,把氨基酸連接成完整的肽鏈。基因表達的調節控制也是通過生物大分子的相互作用而實現的。如大腸桿菌乳糖操縱子上的操縱基因通過與阻遏蛋白的相互作用控制基因的開關。真核細胞染色質所含的非組蛋白在轉錄的調控中具有特殊作用。正常情況下,真核細胞中僅2~15%基因被表達。這種選擇性的轉錄與轉譯是細胞分化的基礎。 生物體內普遍存在的膜結構,統稱為生物膜。它包括細胞外周膜和細胞內具有各種特定功能的細胞器膜。從化學組成看,生物膜是由脂質和蛋白質通過非共價鍵構成的體系。很多膜還含少量糖類,以糖蛋白或糖脂形式存在。
1972年提出的流動鑲嵌模型概括了生物膜的基本特徵:其基本骨架是脂雙層結構。膜蛋白分為表在蛋白質和嵌入蛋白質。膜脂和膜蛋白均處於不停的運動狀態。
生物膜在結構與功能上都具有兩側不對稱性。以物質傳送為例,某些物質能以很高速度通過膜,另一些則不能。象海帶能從海水中把碘濃縮 3萬倍。生物膜的選擇性通透使細胞內pH和離子組成相對穩定,保持了產生神經、肌肉興奮所必需的離子梯度,保證了細胞濃縮營養物和排除廢物的功能。
生物體的能量轉換主要在膜上進行。生物體取得能量的方式,或是像植物那樣利用太陽能在葉綠體膜上進行光合磷酸化反應;或是像動物那樣利用食物在線粒體膜上進行氧化磷酸化反應。這二者能量來源雖不同,但基本過程非常相似,最後都合成腺苷三磷酸。對於這兩種能量轉換的機制,P.米切爾提出的化學滲透學說得到了越來越多的證據。生物體利用食物氧化所釋放能量的效率可達70%左右,而從煤或石油的燃燒獲取能量的效率通常為20~40%,所以生物力能學的研究很受重視。對生物膜能量轉換的深入了解和模擬將會對人類更有效地利用能量作出貢獻。
生物膜的另一重要功能是細胞間或細胞膜內外的信息傳遞。在細胞表面,廣泛地存在著一類稱為受體的蛋白質。激素和葯物的作用都需通過與受體分子的特異性結合而實現。癌變細胞表面受體物質的分布有明顯變化。細胞膜的表面性質還對細胞分裂繁殖有重要的調節作用。
對細胞表面性質的研究帶動了糖類的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子結構與功能的研究越來越受到重視。從發展趨勢看,寡糖與蛋白質或脂質形成的體系將成為分子生物學研究的一個新的重要的領域。