『壹』 為什麼要學習動物生物學
生物學(Biology),簡稱生物,是自然科學六大基礎學科之一。研究生物的結構、功能、發生和發展的規律。以及生物與周圍環境的關系等的科學。生物學源自博物學,經歷實驗生物學、分子生物學而進入了系統生物學時期。生物分類學是研究生物分類的方法和原理的生物學
分支。分類就是遵循分類學原理和方法,對生物的各種類群進行命名和等級劃分。瑞典生物學家林奈將生物命名後,而後的生物學家才用域(Domain)、界(Kingdom)、門( Phylum)、綱(Class)、目(Order)、科(Family)、屬(Genus)、種(Species)加以分類。最上層的界,由懷塔克所提出的五界,比較多人接受;分別為原核生物界、原生生物界、菌物界、植物界以及動物界。 從最上層的「界」開始到「種」,愈往下層則被歸屬的生物之間特徵愈相近。共有七大類,分別是:界門綱目科屬種。主要是對自然的觀察和描述,是關於博物學和形態分類的研究。所以生物學最早是按類群劃分學科的,如植物學、動物學、微生物學等。由於生物種類的多樣性,也由於人們對生物學的了解越來越多,學科的劃分也就越來越細,一門學科往往要再劃分為若干學科,例如植物學可劃分為藻類學、苔蘚植物學、蕨類植物學等;動物學劃分為原生動物學、昆蟲學、魚類學、鳥類學等;微生物不是一個自然的生物類群,只是一個人為的劃分,一切微小的生物如細菌以及單細胞真菌、藻類、原生動物都可稱為微生物,不具細胞形態的病毒也可列入微生物之中。因而微生物學進一步分為細菌學、真菌學、病毒學等。
按生物類群劃分學科,有利於從各個側面認識某一個自然類群的生物特點和規律性。但無論具體對象是什麼,研究課題都不外分類、形態、生理、生化、生態、遺傳、進化等方面。為了強調按類型劃分的學科已經不僅包括形態、分類等比較經典的內容,而且包括其他各個過程和各種層次的內容,人們傾向於把植物學稱為植物生物學,把動物學稱為動物生物學。
生物在地球歷史中有著40億年左右的發展進化歷程。大約有1500萬種生物已經絕滅,它們的一些遺骸保存在地層中形成化石。古生物學專門通過化石研究地質歷史中的生物,早期古生物學多偏重於對化石的分類和描述,來生物學領域的各個分支學科被引入古生物學,相繼產生古生態學、古生物地理學支學科。有人建議,以廣義的古生物生物學代替原來限於對化石進行分類描述的古生物學。
生物的類群是如此的繁多,需要一個專門的學科來研究類群的劃分,這個學科就是分類學。林奈時期的分類以物種不變論為指導思想,只是根據某幾個鑒別特徵來劃分門類,習稱人為分類。現代的分類是以進化論為指導思想,根據物種在進化上的親疏遠近進行分類,通稱自然分類。現代分類學不僅進行形態結構的比較,而且吸收生物化學及分子生物學的成就,進行分子層次的比較,從而更深刻揭示生物在進化中的相互關系。現代分類學可定義為研究生物的系統分類和生物在進化上相互關系的科學。
生物學中有很多分支學科是按照生命運動所具有的屬性、特徵或者生命過程來劃分的。
形態學
形態學是生物學中研究動、植物形態結構的學科。在顯微鏡發明之前,形態學只限於對動、植物的宏觀的觀察,如大體解剖學、脊椎動物比較解剖學等。比較解剖學是用比較的和歷史的方法研究脊椎動物各門類在結構上的相似與差異,從而找出這些門類的親緣關系和歷史發展。顯微鏡發明之後,組織學和細胞學也就相應地建立起來,電子顯微鏡的使用,使形態學又深入到超微結構的領域。但是形態結構的研究不能完全脫離機能的研究,形態學早已跳出單純描述的圈子,而使用各種先進的實驗手段了。
生理學
生理學是研究生物機能的學科,生理學的研究方法是以實驗為主。按研究對象又分為植物生理學、動物生理學和細菌生理學。植物生理學是在農業生產發展過程中建立起來的。生理學也可按生物的結構層次分為細胞生理學、器官生理學、個體生理學等。在早期,植物生理學多以種子植物為研究對象;動物生理學也大多聯系醫學而以人、狗、兔、蛙等為研究對象;以後才逐漸擴展到低等生物的生理學研究,這樣就發展了比較生理學。
遺傳學
是研究生物性狀的遺傳和變異,闡明其規律的學科。遺傳學是在育種實踐的推動下發展起來的。1900年孟德爾的遺傳定律被重新發現,遺傳學開始建立起來。以後,由於T.H.摩爾根等人的工作,建成了完整的細胞遺傳學體系。瑞士生物學家米舍爾首次發現在細胞核中有一種含磷量極高的物質。20年以後,這種化學成分才被定名為核酸。後來,經過許多科學家的努力,才發現核酸有兩種,一種是脫氧核糖核酸,也就是DNA,具有儲存和遺產信息的作用,另一種是核糖核酸,簡稱RNA,在遺傳信息表達的過程中起著重要的作用。1953年,遺傳物質DNA分子的結構被揭示,遺傳學深入到分子水平。基因組計劃的進展,從基因組、蛋白質組到代謝組的遺傳信息傳遞,以及細胞信號傳導、基因表達調控網路的研究,1995年系統遺傳學的概念、詞彙與原理於中科院提出與發表。遺傳信息的傳遞、基因的調控機制已逐漸被了解,遺傳學理論和技術在農業、工業和臨床醫學實踐中都在發揮作用,同時在生物學的各分支學科中佔有重要的位置。生物學的許多問題,如生物的個體發育和生物進化的機制,物種的形成以及種群概念等都必須應用遺傳學的成就來求得更深入的理解。
胚胎學
是研究生物個體發育的學科,原屬形態學范圍。1859年達爾文進化論的發表大大推動了胚胎學的研究。19世紀下半葉,胚胎發育以及受精過程的形態學都有了詳細精確的描述。此後,動物胚胎學從觀察描述發展到用實驗方法研究發育的機制,從而建立了實驗胚胎學。個體發育的研究採用生物化學方法,吸收分子生物學成就,進一步從分子水平分析發育和性狀分化的機制,並把關於發育的研究從胚胎擴展到生物的整個生活史,形成發育生物學。
生態學
是研究生物與生物之間以及生物與環境之間的關系的學科。研究范圍包括個體、種群、群落、生態系統以及生物圈等層次。揭示生態系統中食物鏈、生產力、能量流動和物質循環的有關規律,不但具有重要的理論意義,而且同人類生活密切相關。生物圈是人類的家園。人類的生產活動不斷地消耗天然資源,破壞自然環境。特別是進入20世紀以後,由於人口急劇增長,工業飛速發展,自然環境遭到空前未有的破壞性沖擊。保護資源、保持生態平衡是人類當前刻不容緩的任務。生態學是環境科學的一個重要組成成分,所以也可稱環境生物學。人類生態學涉及人類社會,它已超越了生物學范圍,而同社會科學相關聯。
生物物理學
生物物理學是用物理學的概念和方法研究生物的結構和功能、研究生命活動的物理和物理化學過程的學科。早期生物物理學的研究是從生物發光、生物電等問題開始的,此後隨著生物學的發展,物理學新概念,如量子物理、資訊理論等的介入和新技術如 X衍射、光譜、波譜等的使用,生物物理的研究范圍和水平不斷加寬加深。一些重要的生命現象如光合作用的原初瞬間捕捉光能的反應,生物膜的結構及作用機制等都是生物物理學的研究課題。生物大分子晶體結構、量子生物學以及生物控制論等也都屬於生物物理學的范圍。
『貳』 通過學習微生物學,學到了什麼
微生物學(microbiology) 生物學的分支學科之一。它是一門在細胞、分子或群體水平上研究各類微生物(包括原核類的細菌、放線菌、立克次氏體、支原體、衣原體、藍細菌、古細菌,真核類的真菌、原生動物、顯微藻類(單細胞藻類),以及非細胞類的病毒和亞病毒)的形態構造、生理代謝、生物化學、遺傳變異、生態分布和進化分類等生命活動基本規律及其應用(工業發酵、醫葯衛生、生物工程和環境保護等實踐領域)的科學。 微生物學是高等院校生物類專業必開的一門重要基礎課或專業基礎課,也是現代高新生物技術的理論與技術基礎。 基因工程、細胞工程、酶工程及發酵工程就是在微生物學原理與技術基礎上形成和發展起來的;《微生物學》也是高 等農林院校生物類專業發展及農林業現代化的重要基石之一。隨著生物技術廣泛應用,微生物學對現代與未來人類的 生產活動及生活必將產生巨大影響。 歷史起源 經驗階段 自古以來,人類在日常生活和生產實踐中,已經覺察到微生物的生命活動及其所發生的作用。中國利用微生物進行釀酒的歷史,可以追溯到4 000多年前的龍山文化時期。殷商時代的甲骨文中刻有「酒」字。北魏賈思勰的《齊民要術》(533~544)中,列有穀物制曲、釀酒、制醬、造醋和腌菜等方法。 在古希臘留下來的石刻上,記有釀酒的操作過程。中國在春秋戰國時期,就已經利用微生物分解有機物質的作用,進行漚糞積肥。公元1世紀的《氾勝之書》提出要以熟糞肥田以及瓜與小豆間作的制度。2世紀的《神衣本草經》中,有白僵蠶治病的記載。6世紀的《左傳》中,有用麥曲治腹瀉病的記載。在10世紀的《醫宗金鑒》中,有關於種痘方法的記載。1796年,英國人E.琴納發明了牛痘苗,為免疫學的發展奠定了基石。 形態學階段 17世紀,荷蘭人列文虎克用自製的簡單顯微鏡(可放大160~260倍)觀察牙垢、雨水、井水和植物浸液後,發現其中有許多運動著的「微小動物」,並用文字和圖畫科學地記載了人類最早看見的「微小動物」——細菌的不同形態(球狀、桿狀和螺旋狀等)。過了不久,義大利植物學家P.A米凱利也用簡單的顯微鏡觀察了真菌的形態。1838年,德國動物學家C.G.埃倫貝格在《纖毛蟲是真正的有機體》一書中,把纖毛蟲綱分為22科,其中包括3個細菌的科(他將細菌看作動物),並且創用bacteria(細菌)一詞。1854年,德國植物學家F.J.科思發現桿狀細菌的芽孢,他將細菌歸屬於植物界,確定了此後百年間細菌的分類地位。 生理學階段 微生物學的研究從19世紀60年代開始進入生理學階段。法國科學家L.巴斯德對微生物生理學的研究為現代微生物學奠定了基礎。他論證酒和醋的釀造以及一些物質的腐敗都是由一定種類的微生物引起的發酵過程,並不是發酵或腐敗產生微生物;他認為發酵是微生物在沒有空氣的環境中的呼吸作用,而酒的變質則是有害微生物生長的結果;他進一步證明不同微生物種類各有獨特的代謝機能,各自需要不同的生活條件並引起不同的作用;他提出了防止酒變質的加熱滅菌法,後來被人稱為巴斯德滅菌法,使用這一方法可使新生產的葡萄酒和啤酒長期保存。科赫對新興的醫學微生物學作出了巨大貢獻。科赫首先論證炭疽桿菌是炭疽病的病原菌,接著又發現結核病和霍亂的病原細菌,並提倡採用消毒和殺菌方法防止這些疾病的傳播;他的學生們也陸續發現白喉、肺炎、破傷風、鼠疫等的病原細菌,導致了當時和以後數十年間人們對細菌給予高度的重視;他首創細菌的染色方法,採用了以瓊脂作凝固培養基培養細菌和分離單菌落而獲得純培養的操作過程;他規定了鑒定病原細菌的方法和步驟,提出著名的科赫法則。1860年,英國外科醫生J.利斯特應用葯物殺菌,並創立了無菌的外科手術操作方法。1901年,著名細菌學家和動物學家И.И.梅契尼科夫發現白細胞吞噬細菌的作用,對免疫學的發展作出了貢獻。 俄國出生的法國微生物學家C.H.維諾格拉茨基於1887年發現硫磺細菌,1890年發現硝化細菌,他論證了土壤中硫化作用和硝化作用的微生物學過程以及這些細菌的化能營養特性。他最先發現嫌氣性的自生固氮細菌,並運用無機培養基、選擇性培養基以及富集培養等原理和方法,研究土壤細菌各個生理類群的生命活動,揭示土壤微生物參與土壤物質轉化的各種作用,為土壤微生物學的發展奠定了基?? 1892年,俄國植物生理學家Д.И.伊萬諾夫斯基發現煙草花葉病原體是比細菌還小的、能通過細菌過濾器的、光學顯微鏡不能窺測的生物,稱為過濾性病毒。1915~1917年,F.W.特沃特和F.H.de埃雷爾觀察細菌菌落上出現噬菌斑以及培養液中的溶菌現象,發現了細菌病毒——噬菌體。病毒的發現使人們對生物的概念從細胞形態擴大到了非細胞形態。 在這一階段中,微生物操作技術和研究方法的創立是微生物學發展的特有標志。 生物化學階段 20世紀以來,生物化學和生物物理學向微生物學滲透,再加上電子顯微鏡的發明和同位素示蹤原子的應用,推動了微生物學向生物化學階段的發展。1897年德國學者E.畢希納發現酵母菌的無細胞提取液能與酵母一樣具有發酵糖液產生乙醇的作用,從而認識了酵母菌酒精發酵的酶促過程,將微生物生命活動與酶化學結合起來。G.諾伊貝格等人對酵母菌生理的研究和對酒精發酵中間產物的分析,A.J.克勒伊沃對微生物代謝的研究以及他所開拓的比較生物化學的研究方向,其他許多人以大腸桿菌為材料所進行的一系列基本生理和代謝途徑的研究,都闡明了生物體的代謝規律和控制其代謝的基本原理,並且在控制微生物代謝的基礎上擴大利用微生物,發展酶學,推動了生物化學的發展。從20世紀30年代起,人們利用微生物進行乙醇、丙酮、丁醇、甘油、各種有機酸、氨基酸、蛋白質、油脂等的工業化生產。 1929年,A.弗萊明發現點青黴菌能抑制葡萄球菌的生長,揭示了微生物間的拮抗關系並發現了青黴素。1949年,S. A瓦克斯曼在他多年研究土壤微生物所積累資料的基礎上,發現了鏈黴素。此後陸續發現的新抗生素越來越多。這些抗生素除醫用外,也應用於防治動植物的病害和食品保藏。 分子生物學階段 1941年,G.W.比德爾和E.L.塔特姆用X射線和紫外線照射鏈孢霉,使其產生變異,獲得營養缺陷型。他們對營養缺陷型的研究不僅可以進一步了解基因的作用和本質,而且為分子遺傳學打下了基??944年,O.T.埃弗里第一次證實了引起肺炎球菌形成莢膜遺傳性狀轉化的物質是脫氧核糖核酸(DNA)。1953年,J.D.沃森和F.H.C.克里克提出了DNA分子的雙螺旋結構模型和核酸半保留復制學說。H.富蘭克爾-康拉特等通過煙草花葉病毒重組試驗,證明核糖核酸(RNA)是遺傳信息的載體,為奠定分子生物學基礎起了重要作用。其後,又相繼發現轉運核糖核酸(tRNA)的作用機制、基因三聯密碼的論說、病毒的細微結構和感染增殖過程、生物固氮機制等微生物學中的重要理論,展示了微生物學廣闊的應用前景。1957年,A.科恩伯格等成功地進行了DNA的體外組合和操縱。近年來,原核微生物基因重組的研究不斷獲得進展,胰島素已用基因轉移的大腸桿菌發酵生產,干擾素也已開始用細菌生產。現代微生物學的研究將繼續向分子水平深入,向生產的深度和廣度發展。 [編輯本段]學科分支 微生物學經歷了一個多世紀的發展,已分化出大量的分支學科,據不完全統計(1990年),已達181門之多。根據其性質可以簡單歸納為下面6類: ⑴按研究微生物的基本生命活動規律為目的來分 總學科稱 普通微生物學(General Microbiology) ,分科如微生物分類學,微生物生理學,微生物遺傳學,微生物生態學和分子微生物學等。 ⑵按研究的微生物對象分 如細菌學,真菌學(菌物學),病毒學,原核生物學,自養菌生物學和厭氧菌生物學等。 ⑶按微生物所處的生態環境分 如土壤微生物學,微生態學,海洋微生物學,環境微生物學,水微生物學和宇宙微生物學。 ⑷按微生物應用領域來分 總學科稱 應用微生物學(Applied Microbiology) ,分科如工業微生物學,農業微生物學,醫學微生物學,葯用微生物學,診斷微生物學,抗生素學,食品微生物學等。 ⑸按學科間的交叉、融合分 如化學微生物學,分析微生物學,微生物生物工程學,微生物化學分類學,微生物數值分類學,微生物地球化學和微生物信息學等。 ⑹按實驗方法、技術分 如實驗微生物學,微生物研究方法等。
『叄』 微生物的好處和壞處是什麼
微生物與人類的生產、生活和生存息息相關。有很多食品(如醬油、醋、味精、酒、酸奶、乳酪、蘑菇)、工業品(如皮革、紡織、石化)、葯品(如抗生素、疫苗、維生素、生態農葯)是依賴於微生物製造的;微生物在礦產探測與開采、廢物處理(如水凈化、沼氣發酵)等各種領域中也發揮重要作用。微生物是自然界唯一認知的固氮者(如大豆根瘤菌)與動植物殘體降解者(如纖維素的降解),同時位於常見生物鏈的首末兩端,從而完成碳、氮、硫、磷等生物質在大循環中的銜接。若沒有微生物,眾多生物就失去必需的營養來源、植物的纖維質殘體就無法分解而無限堆積,就沒有自然界當前的繁榮與秩序或人類的產生與維續。
微生物與人類健康
微生物與人類健康密切相關。多數微生物對人體是無害的。實際上,人體的外表面(如皮膚)和內表面(如腸道)生活著很多正常、有益的菌群。它們占據這些表面並產生天然的抗生素,抑制有害菌的著落與生長;它們也協助吸收或親自製造一些人體必需的營養物質,如維生素和氨基酸。這些菌群的失調(如抗生素濫用)可以導致感染發生或營養缺失。然而另一方面,人類與動植物的疾病也有很多是由微生物引起,這些微生物叫做病原微生物(pathogenic microorganism)或病原(pathogen)。
『肆』 學習生物學的意義是什麼
學習生物學的意義在於:
1、生物與人類生活的許多方面都有著非常密切的關系。生物學作為一門基礎科學,傳統上一直是農學和醫學的基礎,涉及種植業、畜牧業、漁業、醫療、制葯、衛生等等方面。隨著生物學理論與方法的不斷發展,它的應用領域不斷擴大。生物學的影響已突破上述傳統的領域,而擴展到食品、化工、環境保護、能源和冶金工業等等方面。
2、和人口問題密切相關的是食物問題。食物匱乏是發展中國家長期以來未能解決的嚴重問題,當前世界上有幾億人口處於營養不良狀態。過去,在發展科學的農業和「綠色革命」方面,生物學已做出巨大的貢獻。今天,人類在一定限度內定向改造植物,用基因工程、細胞工程培育優質、高產、抗旱、抗寒、抗澇、抗鹽鹼、抗病蟲害的優良品種已經不是不切實際的遐想。
3、全世界的化工能源(石油、煤等)貯備總是有限的,總有一天會枯竭。因此,自然界中可再生的生物資源(生物量) 又重新被人所重視。自然界中的生物量大多是纖維素、半纖維素、木質素。將化學的、物理的和生物學的方法結合起來加工,就可以把纖維素轉化為酒精,用作能源。
(4)學了動物微生物有什麼想法擴展閱讀:
生物學專業人才的就業前景廣闊。學生物科學的學生出國深造的機會很大,職業隨個人興趣有很大選擇餘地。例如:
1、教師:一般在高等院校工作,待遇福利社會地位都很好。
2、科研人員:在高等院校、國家或大公司科研機構工作。
3、企業技術人員:在生物製品公司、企業、醫葯單位工作。
4、資本家:以技術入股組建自己的公司企業。
『伍』 微生物生態學對於利用微生物有何用處
通過微生物生態學的學習可以了解微生物與非生物、微生物與其他生物之間的關系及規律,以及微生物在地球生態物質循環中的作用。通過以上知識的學習和實踐從而可以更好地利用不同的微生物為不同的目的服務。
1、微生物與人和動物的關系。抵制致病微生物,利用有益微生物可以改善人和動物健康狀況,提高免疫水平。
2、利用污泥中的微生物處理環境污染;
3、利用微生物發酵或處理食品及原料,提高食品的安全性、營養價值;
4、利用微生物生產可降解塑料、生產油脂。
等等。
都與微生物生態學相關。
『陸』 學習畜牧微生物的意義
我學過這科,總體上包括了三方面,就是微生物基本知識、致病性微生物、試驗微生物基本知識包括了微生物的形態結構、微生物的生理、微生物分類、微生物生態、環境因素對微生物的影響、微生物的遺傳與變異、致病性微生物方麵包括細菌的致病性與傳染、免疫學基礎、重要的病原菌、常見的致動物疾病性病毒、其他病原微生物、與動物性食品衛生有關的微生物試驗就是做一些接種、培養、免疫、檢驗等基本技術
『柒』 從微生物學中學到了什麼,對你今後的生活工作有什麼幫助為什麼
微生物包括:細菌、真菌以及一些小型的原生生物、顯微藻類等在內的一大類生物群體以及病毒,它個體微小,與人類關系密切。涵蓋了有益跟有害的眾多種類,廣泛涉及食品、醫葯、工農業、環保等諸多領域。隨著基因組學、結構生物學、生物信息學、PCR技術、高分率熒光顯
微鏡及其它物理化學理論和技術等的應用, 為微生物學的發展帶來了新的武器、新的契機。另一方面,微生物是極其多樣性的, 其研究也是多方面的, 包括基因水平、基因組水平、細胞水平、群體水平, 其內容涉及生長、代謝、遺傳、生理、分類、生態等。同時微生物學又是一門應用性很強的學科, 涉及的面十分廣泛。因此, 作為一門學科的發展, 如何將微生物的基礎研究和應用研究、分子水平和細胞水平乃至群體水平(或宏觀水平)的研究有序地結合起來, 已是現代微生物發展的趨勢, 因此, 已有學者提出「整合微生物學(Integrativemicrobiology)」的概念 , 認為微生物學已成為一個統一體(unified), 微生物生理學、微生物遺傳學、微生物生態學以及微生物病源學已不再是擁有自已的工具和「方言」的獨立王國。如今, 海洋微生物學家很容易與研究人類病原體的微生物學家對話;食品微生物學家可與研究微生物進化的微生物學家進行輕松的交談
『捌』 對微生物學這門課有什麼建議
學習微生物學,最重要的就是把微小的擴大化,用現實中的實物來模擬微生物運作,這樣最容易學透,還有就是少量背誦加練習
『玖』 學習微生物與人類健康有什麼好處
微生物對人類最重要的影響之一是導致傳染病的流行。在人類疾病中有50%是由病毒引起。世界衛生組織公布資料顯示:傳染病的發病率和病死率在所有疾病中占據第一位。微生物導致人類疾病的歷史,也就是人類與之不斷斗爭的歷史。在疾病的預防和治療方面,人類取得了長足的進展,但是新現和再現的微生物感染還是不斷發生,像大量的病毒性疾病一直缺乏有效的治療葯物。一些疾病的致病機制並不清楚。大量的廣譜抗生素的濫用造成了強大的選擇壓力,使許多菌株發生變異,導致耐葯性的產生,人類健康受到新的威脅。一些分節段的病毒之間可以通過重組或重配發生變異,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都與前次導致感染的株型發生了變異,這種快速的變異給疫苗的設計和治療造成了很大的障礙。而耐葯性結核桿菌的出現使原本已近控制住的結核感染又在世界范圍內猖獗起來。
微生物千姿百態,有些是腐敗性的,即引起食品氣味和組織結構發生不良變化。當然有些微生物是有益的,它們可用來生產如乳酪,麵包,泡菜,啤酒和葡萄酒。微生物非常小,必須通過顯微鏡放大約1000 倍才能看到。比如中等大小的細菌,1000個疊加在一起只有句號那麼大。想像一下一滴牛奶,每毫升腐敗的牛奶中約有5千萬個細菌,或者講每誇脫牛奶中細菌總數約為50億。也就是一滴牛奶中可有含有50 億個細菌。
微生物能夠致病,能夠造成食品、布匹、皮革等發霉腐爛,但微生物也有有益的一面。最早是弗萊明從青黴菌抑制其它細菌的生長中發現了青黴素,這對醫葯界來講是一個劃時代的發現。後來大量的抗生素從放線菌等的代謝產物中篩選出來。抗生素的使用在第二次世界大戰中挽救了無數人的生命。一些微生物被廣泛應用於工業發酵,生產乙醇、食品及各種酶制劑等;一部分微生物能夠降解塑料、處理廢水廢氣等等,並且可再生資源的潛力極大,稱為環保微生物;還有一些能在極端環境中生存的微生物,例如:高溫、低溫、高鹽、高鹼以及高輻射等普通生命體不能生存的環境,依然存在著一部分微生物等等。看上去,我們發現的微生物已經很多,但實際上由於培養方式等技術手段的限制,人類現今發現的微生物還只佔自然界中存在的微生物的很少一部分。
微生物間的相互作用機制也相當奧秘。例如健康人腸道中即有大量細菌存在,稱正常菌群,其中包含的細菌種類高達上百種。在腸道環境中這些細菌相互依存,互惠共生。食物、有毒物質甚至葯物的分解與吸收,菌群在這些過程中發揮的作用,以及細菌之間的相互作用機制還不明了。一旦菌群失調,就會引起腹瀉。
隨著醫學研究進入分子水平,人們對基因、遺傳物質等專業術語也日漸熟悉。人們認識到,是遺傳信息決定了生物體具有的生命特徵,包括外部形態以及從事的生命活動等等,而生物體的基因組正是這些遺傳信息的攜帶者。因此闡明生物體基因組攜帶的遺傳信息,將大大有助於揭示生命的起源和奧秘。在分子水平上研究微生物病原體的變異規律、毒力和致病性,對於傳統微生物學來說是一場革命。
以人類基因組計劃為代表的生物體基因組研究成為整個生命科學研究的前沿,而微生物基因組研究又是其中的重要分支。世界權威性雜志《科學》曾將微生物基因組研究評為世界重大科學進展之一。通過基因組研究揭示微生物的遺傳機制,發現重要的功能基因並在此基礎上發展疫苗,開發新型抗病毒、抗細菌、真菌葯物,將對有效地控制新老傳染病的流行,促進醫療健康事業的迅速發展和壯大!
從分子水平上對微生物進行基因組研究為探索微生物個體以及群體間作用的奧秘提供了新的線索和思路。為了充分開發微生物(特別是細菌)資源,1994年美國發起了微生物基因組研究計劃(MGP)。通過研究完整的基因組信息開發和利用微生物重要的功能基因,不僅能夠加深對微生物的致病機制、重要代謝和調控機制的認識,更能在此基礎上發展一系列與我們的生活密切相關的基因工程產品,包括:接種用的疫苗、治療用的新葯、診斷試劑和應用於工農業生產的各種酶制劑等等。通過基因工程方法的改造,促進新型菌株的構建和傳統菌株的改造,全面促進微生物工業時代的來臨。
工業微生物涉及食品、制葯、冶金、采礦、石油、皮革、輕化工等多種行業。通過微生物發酵途徑生產抗生素、丁醇、維生素C以及一些風味食品的制備等;某些特殊微生物酶參與皮革脫毛、冶金、採油采礦等生產過程,甚至直接作為洗衣粉等的添加劑;另外還有一些微生物的代謝產物可以作為天然的微生物殺蟲劑廣泛應用於農業生產。通過對枯草芽孢桿菌的基因組研究,發現了一系列與抗生素及重要工業用酶的產生相關的基因。乳酸桿菌作為一種重要的微生態調節劑參與食品發酵過程,對其進行的基因組學研究將有利於找到關鍵的功能基因,然後對菌株加以改造,使其更適於工業化的生產過程。國內維生素C兩步發酵法生產過程中的關鍵菌株氧化葡萄糖酸桿菌的基因組研究,將在基因組測序完成的前提下找到與維生素C生產相關的重要代謝功能基因,經基因工程改造,實現新的工程菌株的構建,簡化生產步驟,降低生產成本,繼而實現經濟效益的大幅度提升。對工業微生物開展的基因組研究,不斷發現新的特殊酶基因及重要代謝過程和代謝產物生成相關的功能基因,並將其應用於生產以及傳統工業、工藝的改造,同時推動現代生物技術的迅速發展。
農業微生物基因組研究認清致病機制發展控制病害的新對策
據資料統計,全球每年因病害導致的農作物減產可高達20%,其中植物的細菌性病害最為嚴重。除了培植在遺傳上對病害有抗性的品種以及加強園藝管理外,似乎沒有更好的病害防治策略。因此積極開展某些植物致病微生物的基因組研究,認清其致病機制並由此發展控制病害的新對策顯得十分緊迫。
經濟作物柑橘的致病菌是國際上第一個發表了全序列的植物致病微生物。還有一些在分類學、生理學和經濟價值上非常重要的農業微生物,例如:胡蘿卜歐文氏菌、植物致病性假單胞菌以及我國正在開展的黃單胞菌的研究等正在進行之中。日前植物固氮根瘤菌的全序列也剛剛測定完成。借鑒已經較為成熟的從人類病原微生物的基因組學信息篩選治療性葯物的方案,可以嘗試性地應用到植物病原體上。特別像柑橘的致病菌這種需要昆蟲媒介才能完成生活周期的種類,除了殺蟲劑能阻斷其生活周期以外,只能通過遺傳學研究找到毒力相關因子,尋找抗性靶位以發展更有效的控制對策。固氮菌全部遺傳信息的解析對於開發利用其固氮關鍵基因提高農作物的產量和質量也具有重要的意義。
環境保護微生物基因組研究找到關鍵基因降解不同污染物
在全面推進經濟發展的同時,濫用資源、破壞環境的現象也日益嚴重。面對全球環境的一再惡化,提倡環保成為全世界人民的共同呼聲。而生物除污在環境污染治理中潛力巨大,微生物參與治理則是生物除污的主流。微生物可降解塑料、甲苯等有機物;還能處理工業廢水中的磷酸鹽、含硫廢氣以及土壤的改良等。微生物能夠分解纖維素等物質,並促進資源的再生利用。對這些微生物開展的基因組研究,在深入了解特殊代謝過程的遺傳背景的前提下,有選擇性的加以利用,例如找到不同污染物降解的關鍵基因,將其在某一菌株中組合,構建高效能的基因工程菌株,一菌多用,可同時降解不同的環境污染物質,極大發揮其改善環境、排除污染的潛力。美國基因組研究所結合生物晶元方法對微生物進行了特殊條件下的表達譜的研究,以期找到其降解有機物的關鍵基因,為開發及利用確定目標。
極端環境微生物基因組研究深入認識生命本質應用潛力極大
在極端環境下能夠生長的微生物稱為極端微生物,又稱嗜極菌。嗜極菌對極端環境具有很強的適應性,極端微生物基因組的研究有助於從分子水平研究極限條件下微生物的適應性,加深對生命本質的認識。
有一種嗜極菌,它能夠暴露於數千倍強度的輻射下仍能存活,而人類一個劑量強度就會死亡。該細菌的染色體在接受幾百萬拉德a射線後粉碎為數百個片段,但能在一天內將其恢復。研究其DNA修復機制對於發展在輻射污染區進行環境的生物治理非常有意義。開發利用嗜極菌的極限特性可以突破當前生物技術領域中的一些局限,建立新的技術手段,使環境、能源、農業、健康、輕化工等領域的生物技術能力發生革命。來自極端微生物的極端酶,可在極端環境下行使功能,將極大地拓展酶的應用空間,是建立高效率、低成本生物技術加工過程的基礎,例如PCR技術中的TagDNA聚合酶、洗滌劑中的鹼性酶等都具有代表意義。極端微生物的研究與應用將是取得現代生物技術優勢的重要途徑,其在新酶、新葯開發及環境整治方面應用潛力極大。
『拾』 學習動物微生物學的目的和意義
就是有些食物里有許多微生物啦,要我們注意,還有一些用來研製新葯物之類的,哎,我理解的真是很膚淺