導航:首頁 > 生物信息 > 現代生物技術可以解決哪些問題

現代生物技術可以解決哪些問題

發布時間:2023-03-08 16:23:38

Ⅰ 21世紀的最高技術核心是生物技術,這到底給我們帶來了什麼

目前生物技術最活躍的應用領域是生物醫葯行業,生物制葯被投資者認為是成長性最高的產業之一。世界各大醫葯企業瞄準目標,紛紛投入巨額資金,開發生物葯品,展開了面向21世紀的空前激烈競爭。

生物技術的發展可以劃分為三個不同的階段:傳統生物技術、近代生物技術、現代生物技術。傳統生物技術的技術特徵是釀造技術,近代生物技術的技術特徵是微生物發酵技術,現代生物技術的技術特徵就是以基因工程為首要標志。本文所說的生物技術,是指現代生物技術,也可稱之為生物工程。現代生物技術在70年代開始異軍突起,近一、二十年來發展極為神速。它與微電子技術、新材料技術和新能源技術並列為影響未來國計民生的四大科學技術支柱,被認為是21世紀世界知識經濟的核心。

Ⅱ 現代生物技術現實生活中有哪些具體應用

1、越來越多的現代生物技術公司開發家畜醫療產品。美國的動物保健品市場每年約40億美元。美國農業部批準的動物生物製品約100種,主要是預防動物傳染病和常見疾病的疫苗和治療葯物。

2、現代生物技術還應應用於保護珍稀野生動物,通過DNA鑒定鑒定動物物種,跟蹤其活動區域等。
海洋生物技術的應用導致了過度捕撈對海洋生物生存的威脅。同時,為人類從豐富的海洋生物資源中發現新葯提供了途徑。例如,海螺中的毒素是一種有效的鎮痛劑,海綿可以用作抗感染劑。

3、現代生物技術在航天發展中的應用,可以為宇航員提供長期太空探索所必需的生命支持環境。

4、現代生物技術還被用於人類考古學和刑事調查,DNA分析可用於研究人類種群的進化史。DNA技術在刑事偵查中的應用可以幫助執法人員識別犯罪分子。


(2)現代生物技術可以解決哪些問題擴展閱讀:

現代生物技術是一個復雜的技術群體。基因工程只是現代生物技術的代表之一,其特點是在分子水平上創造或改變生物類型和生物功能。

此外,在染色體、細胞、組織、器官甚至個體有機體的層面上,創造或改變生物類型和功能的工程,如染色體工程、細胞工程、組織培養和器官培養、定量遺傳工程等,都可以因此,這屬於現代生物技術的范疇。

為這些項目服務的一些新技術系統,如現代發酵工程、酶工程、生物反應器工程,也被納入現代生物技術系統。

Ⅲ 說說現代生物科學技術在人類生活中的應用

生物技術在醫葯衛生領域的應用主要有以下三個方面: 1、是解決了過去用常規方法不能生產或者生產成本特別昂貴的葯品的生產技術問題,開發出了一大批新的特效葯物,如胰島素、干擾素(IFN)、白細胞介素-2(IL-2)、組織血纖維蛋白溶酶原激活因子(TPA)、腫瘤壞死因子(TNF)、集落刺激因子(CSF)、人生長激素(HGH)、表皮生長因子(EGF)等等,這些葯品可以分別用以防治諸如腫瘤、心腦肺血管、遺傳性、免疫性、內分泌等嚴重威脅人類健康的疑難病症,而且在避免毒副作用方面明顯優於傳統葯品。 2、是研製出了一些靈敏度高、性能專一、實用性強的臨床診斷新設備,如體外診斷試劑、免疫診斷試劑盒等,並找到了某些疑難病症的發病原理和醫治的嶄新方法。我國的單克隆抗體診斷試劑市場前景良好。 3、是基因工程疫苗、菌苗的研製成功直至大規模生產為人類抵制傳染病的侵襲,確保整個群體的優生優育展示了美好的前景。我國開發重點是乙肝基因疫苗。 現代生物技術以再生的生物資源為原料生產生物葯品,從而可獲得過去難以得到的足夠數量用於臨床的研究與治療。如1克胰島素(h-Insulin)要從7.5公斤新鮮豬或牛胰臟組織中提取得到,而目前世界上糖尿病患者有6000萬人,每人每年約需1克胰島素,這樣總計需從45億公斤新鮮胰臟中提取,這實際上辦不到的,而生物技術則很容易解決這一難題,利用基因工程的"工程菌"生產1克胰島素,只需20升發酵液,它的價值是不能用金錢來計算的。
20世紀70年代以來,生物科學的新進展,新成就層出不窮。從總體上看,當代生物科學主要朝著微觀和宏觀兩個方面發展:在微觀方面,生物學已經從細胞水平進入到分子水平去探索生命的本質;在宏觀方面,生態學的發展正在為解決全球性的資源和環境等問題發揮著重要作用。 生物工程方面生物工程(也叫生物技術)是生物科學與工程技術有機結合而興起的一門綜合性的科學技術。也就是說,它是以生物科學為基礎,運用先進的科學原理和工程技術手段來加工或改造生物材料,如DNA、蛋白質、染色體、細胞等,從而生產出人類所需要的生物或生物製品。生物工程在近些年來迅猛發展,碩果累累。 生物工程在醫葯方面有著廣泛的應用。例如,長期以來,預防乙型肝炎的疫苗是從乙肝病毒攜帶者的血液中提取和研製的,這樣的疫苗生產周期長,產量低,價格昂貴。現在,採用生物工程的方法,將乙肝病毒中的有關基因分離出來,引人細菌的細胞中,再採用發酵的方法,或者引人哺乳動物的細胞中,再採用細胞培養的方法,就能讓細菌或哺乳動物的細胞生產出大量的疫苗。中國研製的生物工程乙肝疫苗已經在1992年投放市場,在預防乙型肝炎中發揮了重要作用。除乙肝疫苗以外,還有抑制病毒在細胞內增殖的干擾素等多種生物工程葯物已經問世。知道,人類的許多疾病都與基因有關。在基因水平上對人類的疾病進行診斷和治療,是科學家們正在探求的另一個重大課題。為了弄清人類約10萬個基因的結構和功能,美國從1988年開始實施「人類基因組計劃」,目前這項研究已經成為國際間合作的一項重大科研課題。 生物工程在農業生產上的應用前景更為誘人,1988年,中國科學家人工合成了抗黃瓜花葉病毒的基因,並且將這種基因導人煙草等作物的細胞中,得到了抵抗病毒能力很強的作物新系,1989年,中國科學家成功地將人的生長激素基因導人鯉魚的受精卵中,培育成轉基因鯉魚。與非轉基因鯉魚相比,轉基因鯉魚的生長速度明顯加快,1993年,中國研製的兩系法雜交水稻開始大面積試種,與原來普遍種植的三系法雜交水稻相比,平均每公頃增產15%,1995年,中國科學家將某種細菌的抗蟲基因導人棉花,培育出了抗棉鈴蟲效果明顯的棉花新品種。 生物工程在開發能源和環境保護等方面同樣有著廣泛的應用。知道,煤炭、石油等能源終將枯竭,目前全世界已經面臨著能源危機。使用煤炭、石油等能源,還造成嚴重的環境污染。因此,科學家們正在努力探索開發新的能源,其中很重要的一個方面就是用生物工程開發生物能源。美國科學家在1978年成功地培育出能直接生產能源物質的植物新品種——「石油草」,這種植物的莖稈被割開後,就會流出白色乳狀的液體,經提煉就得到石油。在利用細菌治理石油污染方面,由於石油中的不同組成成分往往需要用不同的細菌來分解,科學家就將不同細菌的基因分離出來,集中到一種細菌內,從而得到了「超級菌」。這種「超級菌」分解石油的速度比普通細菌快得多,凈化石油污染的能力得到明顯的提高。 生態學方面生態學是研究生物與其生存環境之間相互關系的科學。20世紀60年代以來,人類社會面臨的人口爆炸、環境污染、資源匱乏、能源短缺和糧食危機等問題日益突出。要解決這些問題,都離不開生態學。因此,生態學的研究受到高度重視,並且取得了顯著的進展。生態系統的能量流動和物質循環的基本原理,已經成為人類謀求與大自然和諧共處、實現社會和經濟可持續發展的理論基礎;運用生態學原理,中國推行生態農業的建設,已經取得了令人矚目的成就,涌現了一批生態村、生態農場和生態林場,為實現農業的可持續發展積累了經驗。例如,安徽省穎上縣小張庄,生態環境惡劣,旱澇災害頻繁,農業結構單一,糧食產量很低。70年代中期,小張庄開始進行生態農業的建設,整治土地,興修水利,大力營造防護林,使當地生態環境得到了明顯改善。小張庄在大力發展種植業和林業的同時,還利用當地的飼草資源和魚塘,大力發展養殖業。養殖業為農田提供了大量的有機肥,從而改良了土壤。這個村還利用人畜糞便生產沼氣,發展沼氣能源。沼氣池的渣液用來喂養魚,塘泥肥田,從而建立起了良性循環的農業生態系統。 生物科學除了在生物工程和生態學領域以外,在其他許多領域也取得了令人鼓舞的進展,向人們展示出美好的前景。例如,腦科學的研究已經深入到分子水平,這不僅對腦病的防治和智力的開發有重要意義,而且將為研究生物計算機提供理論基礎。光合作用和生物固氮的研究,細胞生物學的研究,等等,也都獲得一系列的成就,在21世紀將會有更大的發展。由於生物科學的迅猛發展和它對人類社會所產生的巨大影響,許多科學家都認為,生物科學將是21世紀領先的學科之一。

Ⅳ 生物技術的好處和壞處是什麼

生物技術的好處:

1、利用生物技術改良品質,提高作物產量,選育優良品種。包括糧食作物、煙草、經濟作物、蔬菜瓜果、花卉、樹草的抗病基因、高蛋白含量基因、固氮基因。還有快速繁殖,縮短繁殖期,較快獲得較多產物。培育人工種子,可選育所需苗株,低成本,高收益。以及我們所了解的產生新物種。

2、在醫葯方面應用廣泛,特別是貴重葯物生產、疫苗生產、新的診病技術、新的治療方法有特殊意義。 利用基因工程和細胞工程生產葯物。如,生長激素、生長激素釋放抑制素、胰島素、干擾素等。 另一方面,隨著克隆技術的不斷發展,一旦技術成熟,將給醫療衛生界帶來翻天覆地的變革,大大提高人類健康水平。而且,試管嬰兒的出現,給人類帶來前所未有變化,給有相關需求的家庭帶來了福音。此外,對於瀕危物種,克隆技術在保護和恢復方面也有很大幫助。

3、發展潔凈新能源是未來能源業建設的發展方向,現代生物技術的生產力發揮的更充分。發展新型燃料電池。燃料電池使用氣體燃料,其效率高、污染低,是一種很有前途的能源利用方式。充分利用有機垃圾或有機廢水為原料生產氫能源。據稱,日本研究人員為製取氫氣的生活垃圾可循環利用,還研製新型「發酵設備」更有利於提高生活垃圾制氫效力。我國哈爾濱建築大學研究人員已建立以厭氣活性污泥為原料的有機廢水經微生物發酵法生產氫的技術。

4、環境保護方面的應用分為兩大類,一是污染監測,二是污染治理。現代生物技術建立了一類新的快速准確監測與評價環境的有效方法,主要包括利用新的指示生物、利用核酸探針和生物感測器。另外,還有生物酶技術、金標免疫速測技術、FCR技術、生物發光檢測技術、生物晶元技術和生物感測器。其中生物晶元技術和生物感測器應用最為廣泛。在環境保護上,基因晶元也有廣泛的用途,現代生物技術除了應用於環境監測以外,還應用於環境污染治理。現代生物治理採用純培養的微生物菌株來降解污染物。

生物技術的壞處:
1、生物技術也可能引起生產方式和人類健康的退變。這種情況可能會隨著需要特定處理的轉基因作物的出現而產生,特別是抗除草劑的轉基因作物出現。農民必須從同一公司購買種子和除草劑,否則除草劑起不了作用。同樣的問題也可能在需人造肥料的轉基因作物上出現,這些轉基因作物會取代傳統的依靠有機肥的作物,後者在發展中國家是很普遍的,並且也有利於環境保護。生物技術在食品上的應用對發展中國家的農民也會造成許多困難。生物技術也會對人類的健康製造麻煩。為了預防起見,轉基因作物產品必須經免疫測定篩選後才能利用。
2、 生物技術也可能引發環境問題。人們利用生物技術生產出抗旱、耐鹽、抗病蟲害作物同時,也導致生物多樣性遭受嚴重破壞,甚至導致一些物種滅絕。這一結果是由於生物技術促進農作物向它原本不適應的地域擴張而造成的。生物技術同樣加速土壤侵蝕和沙漠化。農業,尤其是耕作農業的擴張會增加除草劑、殺蟲劑、人造肥料的使用,農業中不斷投入的能源促進全球變暖。

Ⅳ 在我們的生活中,生物技術主要有哪些方面的應用試舉例說明。

醫療領域:在目前這方面的研究受到極大的注目。像是幹細胞應用於再生醫學領域,如人工臟器、神經修復等。或是以蛋白質結構解析數據,對於功能性區域(domain)來開發相對應的抑制劑(如:酵素抑制劑)。利用微陣列核酸晶片,或是蛋白質晶片,尋找致病基因。或是利用抗體技術,將毒素送入具有特殊標記的癌細胞。或利用基因轉殖技術,進行基因治療等。基因治療(gene therapy)利用分子生物學方法將目的基因導入患者體內,使之表達目的基因產物,從而使疾病得到治療,為現代醫學和分子生物學相結合而誕生的新技術。基因治療作為新疾病治療的新手段,給一些難治疾病的根治帶來了光明。
農學食糧:人口快速膨脹,食糧問題正是生物技術應用的切入點。在基因轉殖農作物的開發下,除了轉殖進入抗蟲害基因、抗凍基因外,例如含有維生素A的稻米也問世。在有限耕地下,轉殖農作物解決了品質上的問題。除此之外,觀賞用的花卉等,也靠著組織培養的技術,將高品質的花卉復制生產,提高花卉價值。著名的像是台灣的蝴蝶蘭。另外,經過遺傳工程技術,能產生凝血因子的乳牛也提供醫療用途。生物肥料(biofertilizer)主要利用微生物技術製作的肥料種類。生物肥料不僅給作物提供養料、改善品質、增強抗寒抗蟲害能力、還改善土壤通透性、保水性、酸鹼度等理性化特性,可為作物根系創造良好生長環境,從而保證作物的增產。生物農葯(biopesticide)利用微生物、抗生素和基因工程等產生有殺滅蟲病效果的毒素物質,生產出廣譜毒力強的微生物菌株製作而成的農葯。它的特點有:1.不像化學農葯般見效快,但效果持久。2.與化學農葯比,害蟲難以產生抗葯性。3.對環境影響小。4.對人體和作物的危害性小。5.使用范圍和方法有限制;等等。
軍事科技:基因工程武器(genetic engineering weapon)簡稱基因武器,例子有:插入眼鏡蛇毒液基因的流感病毒和含有炭疽病毒的大腸桿菌。基因武器的特點是:1.生產成本低、殺傷力大、作用時間長。2.對方使用難發現、難預防、難治療。3.使用方肌丹冠柑攉紡圭屍氦建法簡單,施放手段多。4.只傷害人,不破壞武器裝備、設施。5.一旦使用會產生強烈的心理威懾作用。
工業應用:在工業上,利用工業菌種的特殊代謝路徑,來替代一些化學反應。除了專一性提高,也在常溫常壓下,節約能源。也由於專一性高,產生的廢棄物量低,也因此被稱為綠色工業。
環境保護:當環境受到破壞,可以利用生物技術的處理方式,讓環境免於第二次受害。生物具有高度專一性,能針對特殊的污染源進行排除。例如運輸原油的郵輪,因事故,將重油污染海域,而利用分解重油的特殊微生物菌株,對於重油進行分解,代謝成環境可以接受的短練脂肪酸等,排解污染。此外,土壤遭受重金屬污染,亦可利用特定植物吸收污染源。

Ⅵ 生物技術有何應用

生物技術,是20世紀70年代初開始興起的一門新興的綜合性應用學科,盡管起步晚,但是發展迅速,是解開生命之謎、創造新物種的鑰匙。比爾蓋茨在1996年說過:「生物科技將像電腦軟體一樣改變這個世界。」科學家預言,生物將取代物理。未來的時代不再是礦物時代而是生物時代,誰掌握了先進的生物技術,誰就將主宰未來。

一、生物工程技術的基礎

生物技術包含一系列的技術,它可利用生物體或細胞生產我們所需要的生物,這些新技術包括基因重組、細胞融合和一些生物製造程序等等。其實人類利用生物體或細胞生產我們所需要生物的歷史已經非常悠久,例如在1萬年前開始耕種和畜牧以提供穩定的糧食來源,6000年前利用發酵技術釀酒和做麵包,2000年前利用黴菌來治療傷口,1797年開始使用天花疫苗,1928年發現抗生素盤尼西林等。既然人類使用生物科技的歷史這么久,為什麼近年來生物技術又突然吸引大家的注意呢。這是因為20世紀中期,人類對構成生物體最小單位,即細胞及控制細胞遺傳特徵的基因有了更深入的了解,20世紀70年代又發展出基因重組和細胞融合技術。由於這兩項技術可以更有效、更快速地讓細胞或生物體生產出我們所需要的新物質,且適合工業或農業量產,因此從20世紀80年代開始,造就了一個新興的生物科技產業。

生物工程技術包括五大工程,即基因工程、細胞工程、發酵工程、酶工程和生物反應器工程。在這五大領域中,前兩者作用是將常規菌(或動植物細胞株)作為特定遺傳物質受體,使它們獲得外來基因,成為新物種。後三者的作用則為新物種創造良好的生長與繁殖條件,進行大規模的培養,以充分發揮其內在潛力,為人們提供巨大的經濟效益和社會效益。

1.基因工程

隨著DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,生物學家不再僅僅滿足於探索、揭示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性,這種分子水平的干預是這樣實現的:將一種生物的DNA中的某個遺傳密碼片斷,連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,設計出新的遺傳物質並創造出新的生物類型。這與過去培育生物繁殖後代的傳統做法完全不同,它很像技術科學的工程設計,即按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就被稱為「基因工程」,或者稱之為「遺傳工程」。

基因工程在20世紀取得了很大的進展,這至少有兩個成功典範。一是轉基因動植物,一是克隆技術。轉基因動植物由於植入了新的基因,使得動植物具有了原先沒有的全新的性狀,這引起了一場農業革命。如今,轉基因技術已經開始廣泛應用,如抗蟲西紅柿、生長迅速的鯽魚等。1997年世界十大科技突破之首是克隆羊的誕生。這只叫「多利」的母綿羊是第一隻通過無性繁殖產生的哺乳動物,它完全秉承了給予它細胞核的那隻母羊的遺傳基因。「克隆」一時間成為人們注目的焦點。

2.細胞工程

指應用現代細胞生物學、發育生物學、遺傳學和分子生物學的理論與方法,按照人們的需要和設計,在細胞水平上重組細胞的結構和內含物,以改變生物的結構和功能,快速繁殖和培養出人們所需要的新物種的生物工程技術。細胞工程的優勢在於避免了分離、提純、剪切、拼接等基因操作,只需將細胞遺傳物質直接轉移到受體細胞中就能夠形成雜交細胞,因而能夠提高基因的轉移效率。通俗地講,細胞工程是在細胞水平上動手術,也稱細胞操作技術,包括細胞融合技術、細胞器移植、染色體工程和組織培養技術。通過細胞融合技術,可以培育出新物種,打破了傳統的只有同種生物雜交的限制,實現物種間的雜交。這項技術不僅可以把不同種類或者不同來源的植物細胞或者動物細胞進行融合,還可以把動物細胞與植物細胞融合在一起。這對創造新的動植物和微生物品種具有前所未有的重大意義。

3.酶工程

酶工程又稱生物轉化反應,是利用生物學方法以酶為催化劑,使一種物質迅速轉化為另一種物質的技術。它不需要傳統的化學轉化所必不可少的高溫、高壓、強酸、強鹼等條件,節省能源,效率極高。酶工程最突出的成就是微生物發電。最原始的酶工程要追溯到人類的游牧時代。那時候的牧民已經會把牛奶製成乳酪,以便於貯存。他們從長期的實踐中摸索出一套制乳酪的經驗,其中關鍵的一點是要使用少量小牛犢的胃液。用現代的眼光看那就是在使用凝乳酶。此後,在開發使用酶的早期,人們使用的酶也多半來自動物的臟器和植物的器官。例如,從豬的胰臟中取得胰蛋白酶來軟化皮革;從木瓜的汁液中取得木瓜蛋白酶來防止啤酒混濁;用大麥麥芽的多種酶來釀造啤酒;等等。然而,隨著酶的開發應用的擴展,這些從動植物中取得的酶已經遠遠不能滿足人們需要了。人們把眼光轉向了微生物。

微生物是發酵工程的主力軍。在發酵工程里(或者說在自然界也一樣),微生物之所以有那麼大的神通,能迅速地把一種物質轉化為另一種物質,正是因為它們體內擁有神奇的酶,正是那些酶在大顯神通。說到底,發酵作用也就是酶的作用。

微生物種類繁多,繁殖奇快。要發展酶工程,微生物自然應該是人們獲取酶、生產酶的巨大寶庫、巨大資源。事實上,目前酶工程中涉及的酶絕大部分來自於微生物。

酶工程,可以分為兩部分。一部分是如何生產酶,一部分是如何應用酶。用微生物來生產酶,是酶工程的半壁江山。

4.發酵工程

指採用現代工程技術手段,利用微生物的某些特定功能,為人類生產有用的產品,或直接把微生物應用於工業生產過程的一種技術。發酵工程的內容包括菌種選育、滅菌、接種和產品的分離提純(生物分離工程)等方面。

5.生物反應器工程

生物反應器是指為細胞增殖或生化反應提供適宜環境的設備,它是生物反應過程中的關鍵設備。生物反應器的結構、操作方式和操作條件的選定,對生物化工產品的質量、收率(轉化率)和能耗有直接影響。生物反應器的設計、放大是生化反應工程的中心內容,也是生物化學工程的重要組成部分。從生物反應過程說,發酵過程用的生物反應器稱為發酵罐;酶反應過程用的生物反應器則稱為酶反應器。另一些專為動植物細胞大量培養用的生物反應器,專稱為動植物細胞培養裝置。顧名思義,生物反應器工程就是研製各種生物反應器的工程。

基因工程、細胞工程、酶工程和發酵工程不是孤立存在的,而是彼此互相關聯、互相滲透。例如用基因重組技術和細胞融合技術可以創造出許多具有特殊功能和多功能的工程菌和超級菌,再通過微生物發酵來產生新的有用物質。再如酶工程和發酵工程相結合,可以改革發酵工藝,大大提高產量。

二、神秘的軍事生物技術

在引發21世紀武器裝備革命性變化的高新技術中,迅速興起的生物技術發展勢頭正猛。未來的武器裝備、後勤保障和軍用醫葯等各個方面,都將離不開生物技術的支撐。有識之士認為,現代化生物武器是一支重要的威懾力量,在未來戰場上,比原子彈更可怕。

以生命科學為基礎的綜合性技術——生物技術將成為軍事高技術的制高點。

1.人稱「種族武器」和「世界末日武器」的基因武器

基因武器就是在生物遺傳工程技術的基礎上,用人為的方法,按照軍事上的需要,利用基因重組技術,復制大量致病微生物的遺傳基因,並製成生物戰劑放入施放裝置內所構成的武器。它能改變非致病微生物的遺傳物質,使其產生具有顯著抗葯性的致病菌,利用人種生化特徵上的差異,使這種致病菌只對特定遺傳特徵的人們產生致病作用,從而有選擇地消滅敵方有生力量。因此,科學家們也稱這種「只對敵方具有殘酷殺傷力,而對己方毫無影響」的新型生物武器為「種族武器」。按照美國國家人類基因組研究中心的報告,由多國聯手開展的人類基因組計劃,預計於2003年完成,屆時將可排列出組成人類染色體的30億個鹼基對的DNA序列,揭開生命與疾病之謎。一旦不同種群的DNA被排列出來,就可以生產出針對不同人類種群的基因武器。

基因武器殺傷力極強,遠非普通的生物戰劑所能比擬。據估算,用5000萬美元建造一個基因武器庫,其殺傷效能遠遠超過50億美元建造的核武器庫。某國曾利用細胞中的脫氧核糖核酸的生物催化作用,把一種病毒的DNA分離出來,再與另一種病毒的DNA相結合,拼接成一種具有劇毒的「熱毒素」基因戰劑,用其萬分之一毫克就能毒死100隻貓;倘用其20g,就足以使全球55億人死於一旦。正因為如此,國外有人將「基因武器」稱為「世界末日武器」。科學家認為,不能排除隨著基因操作等知識的日益普及,基因技術被用於製造基因武器的可能。甚至有人預測,基因武器將在5至10年內出現。

2.威力巨大的生物炸彈

利用生物技術製造炸葯,生產過程簡單,成本低,燃燒充分,爆炸力強,威力比常規炸葯大3~6倍。用生物炸葯製成的武器戰斗可使武器的戰術、技術性能提高一個數量級。

3.智能化的軍用仿生導航系統

自然界中許多動物具有導航能力。研究發現,鳥體的導航系統只有幾毫克,但精確度極高,探測誤差小於0.03微瓦/平方米。目前已有一些國家在利用生物技術手段模擬動物的導航系統來簡化軍事導航系統,以提高精度,縮小體積,減輕重量,降低成本,增強在復雜條件下的導航能力。

4.敏銳的軍用生物感測器

把生物活性物質,如受體、酶、細胞等與信號轉換電子裝置結合成生物感測器,不但能准確識別各種生化戰劑,而且探測速度快、判斷准確,與計算機配合可及時提出最佳的防護和治療方案。美國國防部於1990年將生物感測器列入國防關鍵技術,2000年就製造出了機器人生物感測器。生物感測器還可通過測定炸葯、火箭推進劑的降解情況來發現敵人庫存的地雷、炮彈、炸彈、導彈等裝備的數量和位置,它將成為實施戰場偵察的有效手段。

5.取之不盡的軍用生物能源

目前主戰兵器的機動裝備大都以汽油、柴油為燃料,跟蹤補給任務重、要求高。生物技術可利用紅極毛桿菌和澱粉製成氫,每消耗1克澱粉就可生產出1毫升氫。氫和少量燃料混合即可替代汽油、柴油。這樣,機動裝備只需要帶少量的澱粉,就能進行長時間遠距離的機動作戰。日本、加拿大等國把細菌和真菌引入酵母,酶解纖維生產酒精,或用基因工程方法使大腸桿菌把葡萄糖轉化為酒精,代替汽油或柴油,可隨時為軍隊的機動裝備提供大量的生物燃料。

6.奇異的軍用生物裝具

即利用生物技術就地取材提供高能量的作戰軍需品。如美國陸軍研究發展和工程中心已經從織網蜘蛛中分離出合成蜘蛛絲的基因,從而能夠生產蛛絲;還可將基因轉移到細菌中生產可溶性絲蛋白,經濃縮後可紡成一種特殊的纖維,其強度超過鋼,可用於生產防彈背心、防彈頭盔、降落傘繩索和其他高強度輕型裝備。

7.療效快捷的軍用生物醫葯

生物技術可以製造新的疫苗、葯物和新的醫療方法。如利用生物技術生產血液代用品,已受到世界各國的重視,人造血液可望緩解戰場上血漿的供需矛盾。利用生物技術生產的高效傷口癒合材料,有望進行大規模生產。科學家正研究用重組工程菌進一步提高殼多糖(有促進傷口癒合功能)的產量。美國一些公司與陸軍醫療中心正在從事用生物技術合成「人造皮膚」的研製工作。

8.不可思議的軍用仿生動力

人和動物的肌肉具有驚人的力量,人體全身的600餘塊肌肉朝一個方向收縮,其力量可達25噸!目前,軍事仿生專家已用聚丙烯酸等聚合物製成了「人工肌肉」,把它放入鹼或酸介質中,便能產生強烈的收縮或鬆弛,直接把化學能轉變成機械能。為盡快製造出實用的肌肉發動機,專家們設想用膠原蛋白作材料。膠原蛋白分子呈螺旋狀結構,類似彈簧。將其浸入溴化鋰溶液後即迅速收縮,從而做功,用純水洗去溴化鋰,膠原蛋白就恢復到原來長度。這種「肌肉發動機」沒有齒輪、活塞和杠桿,故體積小、重量輕、無噪音、操作簡便,還省去了體大笨重易燃易爆的油箱,用來製造兵器,可大大提高機動力和生存力。

9.怪異的軍用動物武器

訓練動物參戰,自古有之。但人們運用生物工程技術,創造一些「智商」高、體力強、動作敏捷和繁殖速度快、飼養簡單的動物,去充當「戰斗動物兵」並非遙遠。1992年,世界上第一頭帶有人類遺傳特徵的短吻、小眼睛、大耳朵、被稱為「阿斯特里德」的豬,在倫敦降生了。到第二年,英國就有37頭豬帶上了人類基因。科學家的目的是為了實現跨物種器官移植,以解決目前移植手術中器官來源不足的難題。但由此不難想像,隨著基因技術的發展,用這一技術「雜交」出一些怪物,甚至「人造人」,完全是有可能的。

此外,生物加工處理技術在軍事領域也有廣泛的應用。目前正在研究的課題有:生化戰劑的洗消、危險廢物的生物降解、生物除雷、生物防核污染等。已經初步研製出了無腐蝕、低成本、高速度、便於攜帶的清洗生化戰劑的生物酶,清除殘餘地雷、水雷,降解TNT炸葯的生物體和能除去鈾、鐳、砷等有毒有害元素的微生物。

Ⅶ 現代生物技術在解決21世紀人類社會面臨的重大方面所發揮的重要作用

加入WTO在我國經濟生活中是件大事,它既帶給我們巨大的發展機遇,也使我們遭遇到巨大的挑戰。外貿形勢說明:一場曠日持久的、空前慘烈的經濟戰已經打響。與生物技術密切相關的農業、醫葯等產業的狀況也不容樂觀。在這種激烈競爭形勢下,中國企業必需學會積極發現並認真構築自己賴以生存和發展的優勢,在這當中打造企業自身的技術優勢就具有特別重要的意義。

令人欣慰的是,在新世紀向我們走來的時候,生物技術掀起了它的第三個浪潮。1999年在「Current Opinion in Microbiology」雜志的一篇文章中寫到:繼醫葯和農業之後,廣泛認為工業生物催化將是生物技術的第三個浪潮。還有,1999年底在美國加利福尼亞召開了一個學術討論會後出版了一本題為「新生物催化劑:21世紀化學工業的基本工具」的專門性書籍。這些跡象表明:以生物催化為核心內容的工業生物技術在支撐新世紀社會進步與經濟發展的技術體系中的地位已經被提到空前的戰略高度。筆者認為:正在向我們走來的「生物技術的第三個浪潮」對我國21世紀的經濟發展將是個不可多得的機遇。本文將討論這次技術革命的社會需求、技術內涵、具體實例以及這個新浪潮對產業結構所可能帶來的影響。

人類幾千年的文明史證明,一次技術革命的出現必然與以下兩個因素有密切相關:首先要有對新技術革命的強烈的社會需求;其次是必需擁有充滿活力的創新技術。

1 社會需求

恩格斯說過:「社會一旦有技術上的需要,則這種需要就會比10所大學更能把科學推向前進」。當今人類社會面臨人口、環境、資源、疾病等多種危機。人類急需從這些危機中擺脫出來,進入一個理想的可持續發展的軌道。在這個過程中,包括生物技術在內的高技術的發展和應用將可能發揮重要作用。

1.1 環境壓力

人類的生存環境正在迅速惡化,環境污染已經成為制約人類社會發展的重要因素。

在水環境方面,根據近年我國政府的環境公報的統計數據,我國年廢水排放量達416億噸,其中工業廢水排放量和生活污水排放量各半。中國主要河流有機污染普遍,面源污染日益突出,主要湖泊富營養化嚴重。我國近岸海域海水污染嚴重,近海環境狀況總體較差,海洋環境污染惡化的趨勢仍未得到有效控制。作為海洋污染的綜合指標之一的赤潮,僅1999年,中國海域共記錄到15起。

在大氣環境方面,全國廢氣中二氧化硫排放總量1857萬噸、煙塵排放總量1159萬噸、工業粉塵排放量1175萬噸。中國的大氣環境污染仍然以煤煙型為主,主要污染物為總懸浮顆粒物和二氧化硫。少數特大城市屬煤煙與汽車尾氣污染並重類型。酸雨污染范圍大體未變,污染程度居高不下。

在陸地環境方面,全國工業固體廢物產生量為7.8億噸,工業固體廢物累計貯存量64億噸。工業固體廢物的堆存佔用大量土地,並對空氣、地表水和地下水產生二次污染。削減工業固體廢物產生量是我國污染物排放總量控制的重要內容之一。有些地區已經形成垃圾圍城、藍天綠水不再的可怕局面。

以上情況說明:我國環境污染的規模已經達到十分嚴重地步。尋求已污染環境的治理措施,發展防止新的污染發生的技術已經成為社會可持續發展的當務之急。

微生物是自然界基本的循環器,微生物及其酶系可以有效分解纖維素、木質素、脂肪、烷烴、芳香烴、某些人工多聚物等等,因此微生物可以在造紙、石油化工、紡織印染、食品加工、炸葯、冶金、殺蟲劑、除草劑、洗滌劑、電鍍、生活污水等污染環境的治理中發揮巨大作用。例如最成熟的活性污泥廢水處理技術就是依靠微生物的作用。毋庸置疑,生物技術是解決環境污染的一種基本工具,它能提供保護環境、恢復環境所必須的許多手段。

近30年來現代生物技術的多數內容已經滲透到環境工程領域中。有應用前景的領域包括廢物的高效生物處理技術、污染事故的現場補救、污染場地的現場修復技術、可降解材料的生物合成技術等許多方面。具體環境生物技術內容包括構建高效降解殺蟲劑、除草劑、多環芳烴類化合物等污染物的高效基因工程菌和具有抗污染特性的轉基因植物,無廢物、無污染的「綠色」生產工藝,高效污水處理生物反應器,廢物資源化,PCR技術及其他環境監測技術等。以上內容涉及重組DNA技術、固定化技術、高效反應器技術等單元技術及其技術組合的應用。

環境污染治理產業已經形成了一個巨大的市場,1990年為1900億美元;2000年為3100億美元,世界市場平均增長率達5%。但是其中環境生物技術(主要指微生物菌劑和部分環境監控工程)所佔市場分額還十分有限。

1.2 資源壓力

當今人類社會面臨的第二個問題是資源壓力。我們應該十分清醒地意識到「一次性能源的末日已經不遠」已成為一個無須更多爭論的前景。石油剩餘儲量1400億噸,而年開采量為32億噸,計算下來43年告罄!

在交通運輸能源結構中石油大約佔97%,隨著石油資源不可避免的枯竭,在過去20年中,無論政府或工業部門都在十分積極地開發交通運輸的代替燃料。一個正在成長、但尚存爭論的替代燃料是發酵法生產的乙醇。任何農業國家都可以用現行技術生產燃料乙醇,其中美國發酵生產燃料乙醇的原料是玉米葡萄糖,而巴西則是蔗糖。汽車製造商目前生產的汽車都可以用混合有10%或85%燃料酒精(E85)的燃料。巴西用甘蔗年生產120億升乙醇,以22%比例與汽油混合,或者可用近100%的乙醇。美國用玉米年生產50億升乙醇,上百個加油站能提供E85號燃油。

目前的問題是需要政府的財政補貼才能維持燃料乙醇的正常生產。令人高興的是從非食品植物發酵生產燃料乙醇的研究取得可喜進展。通過預處理、酶的應用和發酵工藝的改進,把各種農業下腳料,諸如玉米、稻、麥秸稈、甘蔗廢料、廢紙等統稱為「biomass」的一些物質轉化為燃料乙醇。這樣一來,有希望進一步降低燃料乙醇的生產成本。歷史上酒精的價格曾經從每升1.22降到0.31美元。如果酶法加工和生物量利用技術得以進一步改進,預期到2015年,價格還會降到0.12—0.13美元。樂觀地估計,到時候即使沒有政府的價格補貼政策,乙醇也可以取代汽油。

現代化工中差不多全部人工高分子聚合物的出發原料都來自石油或煤炭。全球龐大的化學工業對一次性礦業資源的過分依賴,使人類社會所面臨的資源短缺形勢更加雪上加霜。2002年6月在加拿大多倫多剛剛閉幕的Bi02002國際大會上有一個專題討論會,來自不同國家的科學家認為:一個全球性的產業革命正在朝著以碳水化合物為基礎的經濟發展。科學家們已經預測:當今高分子化工的碳氫化合物時代將逐步讓位於碳水化合物時代。目前正在開發的多聚乳酸、多聚賴氨酸、多聚羥基丁酸、燃料乙醇以及各種功能寡糖等可視為這個碳水化合物時代來臨的前奏。

2 技術平台

上個世紀70年代以來,在生物技術基礎性研究工作的帶動下已經建立了基因工程、蛋白質工程、代謝工程、組合生物合成、生物催化工程及其他一系列工程體系和技術平台。這是第三個浪潮又一個必要條件。以下本文以發現新酶為例,簡述這類技術平台的科學內涵。

對於工業目的,生物催化劑的吸引力不外乎高效率的催化作用及對底物結構嚴格的選擇性。

當然,另一方面,生物催化劑用於工業目的也面臨著一些挑戰。首先,酶雖然有其令人滿意的周轉數(turnover numbers),即單位活性位點在單位時間內可以催化產生較大數量的產物。可是大多數酶的分子量很大,卻只有一個唯一的活性位點。這樣一來,單位質量的催化劑的催化效率有時候就顯得很低。其次,酶一般是不大穩定的,在大多數工業系統中則很難採用這種脆弱的催化劑。最後,現有技術水平尚難保證以工業規模生產出各種物美價廉的生物催化劑。以上三條可概括為酶的可用性、穩定性和可生產性。在考慮把生物催化劑用作工業酶之前,以上三個難點必須加以克服。因此人們急需發現或創造新一代生物催化劑。近年,由於在新技術方面取得了許多新突破,又重新燃起了人們對酶在工業上應用的巨大興趣。

發現或創造新一代生物催化劑的技術平台包括天然生物多樣性的篩選、基因組測序、定向進化、噬菌體展示、理性設計、化學修飾、催化性抗體和核酶等。這里僅就與發現和創造新工業酶密切相關的前四項內容作些介紹和討論。

2.1 生物多樣性

自然界蘊藏著巨大的微生物資源,但是人類至今對極端環境微生物(extremophiles)和未培養微生物(unculturable microorganisms)兩個資源寶庫涉足不深,所以研究開發潛力極大。

可以預期,人們能從嗜酸、嗜鹼、嗜冷、嗜熱、嗜鹽、嗜壓等等極端微生物中獲得許多有價值的酶、蛋白質以及其他活性物質。在過去幾年中,隨著重組酶生產技術的開發,使人們有可能從更廣泛的來源獲取更廉價的酶。近年在這方面取得的進展在一定程度上得益於極端微生物培養技術的進步,更得益於把極端微生物的基因轉移到常用受體微生物宿主能力的提高。如此一來,人們有理由相信:在溫和、便宜的生長條件下就可以生產出對極端環境具有耐受性能的生物催化劑來。

另外據知,能夠在實驗室培養的微生物的種類僅占自然界中微生物總數的不到1%!也就是說,還有99%的不可培養的微生物等待著我們用非常規手段加以研究。作為微生物資源研究和開發領域里的一個重大探索,可以採用最新的分子生物學方法,繞過菌種分離純化這一步驟,直接在自然界中尋找有開發價值的微生物基因。把來源於未經培養的微生物的DNA克隆到業經培養馴化的宿主生物體中,然後用高通量篩選技術從重組的克隆里篩選為新酶編碼的基因。

微生物世界展示給人類如此巨大的機會使我們興奮不已,一些有識之士指出:未知的微生物世界或許是地球上最大的未開發的自然資源,能充分利用這個微生物資源寶庫的國家必將取得發展的先機。

2.2 基因組測序

隨著DNA測序能力的提高,對序列的分析能力也得到加強,於是可以發現許多新的基因。通過同已知基因序列進行比較來推斷新基因表達產物的基本酶活性。當然目前的技術水平還不足以推斷出這些酶性質的許多細節。因此必須表達這些新發現的基因,以確定它們在一個特定的過程中是否確實有用。假定,從一種生物體來源的所有的酶在它的正常生長溫度下都有功能,那麼來自超級嗜熱微生物的DNA序列就能成為尋找在沸點附近仍然有功能的酶的合理起點;同樣可以認為,嗜冷微生物的基因則可能成為在零度仍然具有功能的酶的可能來源。

網際網路最新資料表明:大約60種微生物的基因組序列已經完成,另外還有近200種微生物基因組預期很快就可以完成。測序工作的努力已經揭示了數萬個新基因,主要的是編碼酶的一些基因,其中大約三分之一可以被歸到「有功能」的家族裡,這是一個十分豐富、而且每天都在增加的新工業酶後選者的來源。相信隨著基因組時代的到來,將會有大量新的工業酶被人類發現。

2.3 定向性進化

在以發現工業酶為主要目標的所有技術中,定向進化(directed evolution簡稱DE)可能是最強有力的一種。DE是一種快速而廉價的發現各種新酶的方法。這類新酶在特定的條件下應該比天然酶工作得更好。DE模擬自然進化,這種進化取決於從多樣性群體中選擇合適「個體」,這里的「個體」就是酶。DE是定向的,意思是研究者通過一步步改進使選擇的各種酶要符合一定預期的標准。DE從克隆擬改進的酶的基因起始。分離到的基因通過體外突變使其多樣性得到加強。然後,克隆這些突變株的DNA,並且在通常的受體中表達,分析表達產物的酶活力,選擇最好的變異株克隆。它的基因又作為下一輪篩選的新起點。使用這一方法需要掌握兩項重要的支撐技術,即DNA重排(DNA shaffling)和高通量篩選技術。

2.4 噬菌體展示

該技術最初是用於鑒定和分離蛋白質的一些結構域,該結構域能夠牢固地結合到別的分子上。但是近年這個核心技術又經過進一步設計和發展,致使擬被改良的酶在理論上也可充當被鑒定和分離的靶子。噬菌體展示最簡單的形式涉及把小段靶子DNA,(該DNA應該是突變和篩選的靶子)插入噬菌體的基因組中,其插入位置要求其編碼的蛋白質結構域能夠出現在噬菌體顆粒的表面上。靶子基因的突變導致各種不同的結構域在表面上展示,如果各種不同的結構域的任何一個能足夠牢固地結合到一種固定化底物上,則編碼這個結構域的顆粒便粘到這一固定相上,藉以把它們從未結合的結構域分開。然後把結合的噬菌體從固定化的底物上洗脫下來,收集之,增殖之。重復這一過程則可以增加獲得具有優良品質酶的幾率。

3 兩個實例

以下結合本實驗室的研究工作舉兩個實例。一個是酶制劑L—天冬醯胺酶;另一個是氨基酸,L—天冬酸。這兩個例子在我們討論的生物技術第三個浪潮這個主題下有一定的代表性。

3.1 L-天冬醯胺酶

作為抗白血病首選葯物的L—天冬醯胺酶早就用大腸桿菌發酵的方法生產,但是生產和應用至少存在兩個問題。一個問題是細胞形成酶的能力很低;另一個問題是酶在體內半衰期短。這兩個問題的存在導致葯物生產成本過高,加大了患者的負擔。

本實驗室藉助基因工程技術提高了酶合成能力,首先從大腸桿菌獲得編碼該酶的基因,體外重組之後再轉化到大腸桿菌體內,不同的是強化了上游調控元件,便大大提高了酶合成能力40多倍!

本實驗室解決半衰期短和穩定性差的策略是制備L—天冬醯胺酶—抗體的融合蛋白。首先從噬菌體抗體庫中篩選得到L—天冬醯胺酶(ASNase)的保護性抗體scFv46,然後構建融合蛋白scFv-ASNase及ASNase—scFv。穩定性測定結果表明:這兩種融合蛋白比天然ASNase的抗蛋白酶降解的能力強,並將天然ASNase的體外半衰期由2小時分別提高到9小時和6小時,另外,二者對高溫及低pH條件都具有較強的抗性。通過計算機模擬技術,預測了融合蛋白ASNase—scFv及scFv—ASNase的三維結構,並與報道的天然ASNase的三維結構進行比較分析。通過結構分析並結合上述的實驗結果,提出scFv的保護機制是scFv的空間阻礙效應(如封閉蛋白酶作用位點)與改變酶分子靜電勢表面的綜合作用結果。

藉助完全基因組序列信息進一步提高L—天冬醯胺酶的穩定性的新嘗試。通過近年中國科學院一個科學家小組的不懈努力,完成了一種極端嗜熱微生物長達2689443 bp全部基因組的測序研究工作。為進一步提高L—天冬醯胺酶的穩定性並延長該葯的體內半衰期,我們在這方面作出了的新努力,即試圖藉助完全基因組序列信息,從一株極端嗜熱微生物中尋找穩定性更好的L—天冬醯胺酶。

本實驗室已經測知E.coli L—天冬醯胺酶的氨基酸序列及為其編碼的基因核苷酸序列。在上述極端嗜熱微生物的完全基因組序列資料庫中搜尋E.coli L—天冬醯胺酶的結構類似物,結果在No.967號基因編碼的蛋白質中,發現了一個一級結構與L—天冬醯胺酶十分相似的蛋白質。其中35%(115/323)的氨基酸完全一樣,另有52%(171/323)的氨基酸相似。因此,有理由相信在這株極端嗜熱微生物中很有可能存在一個與E.coli L—天冬醯胺酶有類似功能的蛋白質。又鑒於該基因來自極端嗜熱微生物,預期這個蛋白質還將會具有更好的熱穩定性。當然,一切結論將留待通過對該基因的克隆、表達、產物的分離和功能分析的結果予以最後的證實或澄清。

3.2 L—天冬酸

通常的生產方法是用富含L—天冬酸酶的微生物細胞,經過固定化處理後,將底物反丁烯二酸轉化為L—天冬酸。本實驗室早期也曾作過一些工作並且投入生產應用。在2000年柏林生物技術大會上得知,日本一個公司採取一系列改進措施,使生產工藝水平大大提升了一步。首先為解決酶合成能力低下問題,也是採用基因工程技術,提高合成能力50倍;固定化酶的通透性問題因採用離子交換性質的材料而得以解決;反應熱—反應器設計及降低反應溫度,從37℃降低到20℃;消除了污染環境的副產物硫酸銨,代之以能重復使用的反丁烯二酸銨;正在開辟L—天冬酸的新用途,用於製造多聚L—天冬酸酶。這個經過改進的新工藝既是先進的、高效的,又是綠色的、環保的。使這一產品的生產工藝幾乎達到盡善盡美的地步,代表了21世紀傳統產業改造的方向。

4 產業結構

我們正處在這樣一個時代:社會經濟發展所遇到的一些重大障礙有待工業生物技術去解決;科學技術的迅速發展形成了一批先進的技術平台;許許多多實例說明生物技術的第三個浪潮正在向我們走來。我們相信:在這第三個浪潮中,中國和世界工業生物技術產業結構將會發生巨大的變化。

上世紀工業生物技術產業格局大體上包括抗生素、維生素、氨基酸、有機酸、(醋酸、乳酸、檸檬酸、衣康酸、蘋果酸、葡萄糖酸等)、酶制劑、單細胞蛋白、溶劑(丙酮、丁醇)、乙醇、核酸、核苷酸等等。傳統產業的全面技術改造:向高產、優質、高效、資源節約、環境友好型過度,還肯定誕生一批新產業,包括生物材料產業、生物能源產業、生物化工產業及環境生物技術產業等等。

閱讀全文

與現代生物技術可以解決哪些問題相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:735
乙酸乙酯化學式怎麼算 瀏覽:1399
沈陽初中的數學是什麼版本的 瀏覽:1344
華為手機家人共享如何查看地理位置 瀏覽:1037
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:879
數學c什麼意思是什麼意思是什麼 瀏覽:1403
中考初中地理如何補 瀏覽:1293
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:695
數學奧數卡怎麼辦 瀏覽:1382
如何回答地理是什麼 瀏覽:1017
win7如何刪除電腦文件瀏覽歷史 瀏覽:1049
大學物理實驗干什麼用的到 瀏覽:1479
二年級上冊數學框框怎麼填 瀏覽:1694
西安瑞禧生物科技有限公司怎麼樣 瀏覽:956
武大的分析化學怎麼樣 瀏覽:1243
ige電化學發光偏高怎麼辦 瀏覽:1332
學而思初中英語和語文怎麼樣 瀏覽:1645
下列哪個水飛薊素化學結構 瀏覽:1420
化學理學哪些專業好 瀏覽:1481
數學中的棱的意思是什麼 瀏覽:1053