A. 生物醫學感測器有哪些
壓力感測器、氣體感測器、超聲感測器、PH值感測器等等
B. 光學生物感測器缺點
結構復雜、尺寸大、集成困難、受溫度影響大。光學的生物感測器受到了廣泛的關注和研究,但是大羨改乎多數光學生物感測器存在結構復雜、尺寸大、集成困難、受兄悉溫度影響大殲跡等缺點。生物感測器涉及的是生物物質,主要用於臨床診斷檢查、治療時實施監控、發酵工業、食品工業、環境和機器人等方面。
C. 光學生物感測器比電化學生物感測器有什麼優勢
光學的精度高一些,而且光學的可以抗干擾
望採納,謝謝
D. 熒光紙基感測器和生物感測器原理有什麼區別嗎
熒光生物感測器主要是賀缺運用電子光學纖維光導發光體和其意外的類型來歸類的。此外利用光的吸收、熒光等變化的脊敬光導發光體,一般 要有輸入光束和輸出光束的兩個光路。且在電子光學纖維上防止能識別測定對象分子的生物體物質。而另一種主要是運用了發光現象,則只要求有一個輸出光束的光路就櫻拍慎可以了。
E. 感測器的種類有哪些
一、按照儀器分類:
1、光電/光敏感測器。
2 、電磁/磁敏感測器。
3、 霍爾/電流(壓)感測器。
4、 超聲波/聲敏感測器。
5、光纖/激光感測器。
6、 測距/距離感測器。
7、 視覺/圖像感測器 。
8、光柵/光幕感測器 。
9、壓力/稱重/力(敏)感測器 。
10、力矩/扭矩感測器 。
二、按照工作原理分類:
1、物理感測器。
2、學感測器。
三、按照其用途分類:
1、壓力敏和力敏感測器 。
2、位置感測器 。
3、液位感測器。
4、能耗感測器 。
5、速度感測器。
6、加速度感測器。
7、射線輻射感測器。
8、熱敏感測器。
9、真空度感測器 。
10、生物感測器。
F. 感測器的種類有哪些
感測器的種類:
(一)電阻式
電阻式感測器是將被測量,如位移、形變、力、加速度、濕度、溫度等這些物理量轉換式成電阻值這樣的一種器件。主要有電阻應變式、壓阻式、熱電阻、熱敏、氣敏、濕敏等電阻式感測器件。
(二)變頻功率
變頻功率感測器通過對輸入的電壓、電流信號進行交流采樣,再將采樣 值通過電纜、光纖等傳輸系統與數字量輸入二次儀表相連,數字量輸入二次儀表對電壓、電流的采樣值進行運算,可以獲取 電壓有效值、 電流有效值、基波電壓、 基波電流、諧波電壓、 諧波電流、 有功功率、 基波功率、 諧波功率等參數。
(三)稱重
稱重感測器是一種能夠將重力轉變為電信號的力→電轉換裝置,是 電子衡器的一個關鍵部件。
能夠實現力→電轉換的感測器有多種,常見的有電阻應變式、電磁力式和電容式等。電磁力式主要用於電子天平,電容式用於部分電子吊秤,而絕大多數衡器產品所用的還是電阻應變式稱重感測器。電阻應變式稱重感測器結構較簡單,准確度高,適用面廣,且能夠在相對比較差的環境下使用。因此電阻應變式稱重感測器在衡器中得到了廣泛地運用。
(四)電阻應變式
感測器中的電阻 應變片具有金屬的 應變效應,即在外力作用下產生機械形變,從而使電阻值隨之發生相應的變化。電阻應變片主要有金屬和半導體兩類,金屬應變片有金屬絲式、箔式、薄膜式之分。半導體應變片具有靈敏度高(通常是絲式、箔式的幾十倍)、 橫向效應小等優點。
(五)壓阻式
壓阻式感測器是根據半導體材料的壓阻效應在半導體材料的基片上經擴散電阻而製成的器件。其基片可直接作為測量感測元件,擴散電阻在基片內接成電橋形式。當基片受到外力作用而產生形變時,各電阻值將發生變化,電橋就會產生相應的不平衡輸出。
用作壓阻式感測器的基片(或稱膜片)材料主要為矽片和鍺片,矽片為敏感材料而製成的硅壓阻感測器越來越受到人們的重視,尤其是以測量壓力和速度的固態壓阻式感測器應用最為普遍。
(六)熱電阻
熱電阻測溫是基於金屬導體的電阻值隨溫度的增加而增加這一特性來進行溫度測量的。 熱電阻大都由純 金屬材料製成,目前應用最多的是鉑和銅,此外,已開始採用鎳、錳和銠等材料製造 熱電阻。
熱電阻感測器主要是利用電阻值隨溫度變化而變化這一特性來測量溫度及與溫度有關的參數。在溫度檢測精度要求比較高的場合,這種感測器比較適用。較為廣泛的熱電阻材料為鉑、銅、鎳等,它們具有電阻溫度系數大、線性好、性能穩定、使用溫度范圍寬、加工容易等特點。用於測量-200℃~+500℃范圍內的溫度。
熱電阻感測器分類:
1、NTC熱電阻感測器:
該類感測器為負溫度系數感測器,即感測器阻值隨溫度的升高而減小。
2、PTC熱電阻感測器:
該類感測器為正溫度系數感測器,即感測器阻值隨溫度的升高而增大。
(七)激光
利用激光技術進行測量的感測器。 它由激光器、激光檢測器和測量電路組成。激光感測器是新型測量儀表,它的優點是能實現無接觸遠距離測量,速度快,精度高,量程大,抗光、電干擾能力強等。
激光感測器工作時,先由激光發射二極體對准目標發射激光脈沖。經目標反射後激光向各方向散射。部分散射光返回到感測器接收器,被光學系統接收後成像到雪崩光電二極體上。雪崩光電二極體是一種內部具有放大功能的光學感測器,因此它能檢測極其微弱的光信號,並將其轉化為相應的電信號。
利用激光的高方向性、高單色性和高亮度等特點可實現無接觸遠距離測量。激光感測器常用於長度(ZLS-Px)、距離(LDM4x)、振動(ZLDS10X)、速度(LDM30x)、方位等物理量的測量,還可用於探傷和大氣污染物的監測等。
(八)霍爾
霍爾感測器是根據霍爾效應製作的一種磁場感測器, 廣泛地應用於工業自動化技術、檢測技術及信息處理等方面。霍爾效應是研究半導體材料性能的基本方法。通過霍爾效應實驗測定的霍爾系數,能夠判斷半導體材料的導電類型、載流子濃度及載流子遷移率等重要參數。
霍爾感測器分為線性型霍爾感測器和開關型霍爾感測器兩種。
1、線性型霍爾感測器由霍爾元件、線性放大器和射極跟隨器組成,它輸出模擬量。
2、開關型 霍爾感測器由穩壓器、霍爾元件、 差分放大器,斯密特觸發器和輸出級組成,它輸出數字量。
霍爾電壓隨磁場強度的變化而變化, 磁場越強,電壓越高,磁場越弱,電壓越低。霍爾電壓值很小,通常只有幾個毫伏,但經集成電路中的放大器放大,就能使該電壓放大到足以輸出較強的信號。若使霍爾集成電路起感測作用,需要用機械的方法來改變磁場強度。下圖所示的方法是用一個轉動的葉輪作為控制磁通量的開關,當葉輪葉片處於磁鐵和霍爾集成電路之間的氣隙中時,磁場偏離集成片,霍爾電壓消失。這樣,霍爾集成電路的輸出電壓的變化,就能表示出葉輪驅動軸的某一位置,利用這一工作原理,可將霍爾集成電路片用作用點火正時感測器。霍爾效應感測器屬於被動型感測器,它要有外加電源才能工作,這一特點使它能檢測轉速低的運轉情況。
(九)溫度
1、室溫管溫感測器:室溫感測器用於測量室內和室外的環境溫度, 管溫感測器用於測量蒸發器和冷凝器的管壁溫度。室溫感測器和管溫感測器的形狀不同,但溫度特性基本一致。按溫度特性劃分,美的使用的室溫管溫感測器有二種類型:1.常數B值為4100K±3%,基準電阻為25℃對應電阻10KΩ±3%。在0℃和55℃對應電阻公差約為±7%;而0℃以下及55℃以上,對於不同的供應商,電阻公差會有一定的差別。溫度越高,阻值越小;溫度越低,阻值越大。離25℃越遠,對應電阻公差范圍越大。
2、排氣 溫度感測器:排氣溫度感測器用於測量壓縮機頂部的排氣溫度,常數B值為3950K±3%,基準電阻為90℃對應電阻5KΩ±3%。
3、模塊溫度感測器:模塊溫度感測器用於測量變頻模塊(IGBT或IPM)的溫度,用的感溫頭的型號是602F-3500F,基準電阻為25℃對應電阻6KΩ±1%。幾個典型溫度的對應阻值分別是:-10℃→(25.897~28.623)KΩ;0℃→(16.3248~17.7164)KΩ;50℃→(2.3262~2.5153)KΩ;90℃→(0.6671~0.7565)KΩ。
溫度感測器的種類很多,經常使用的有熱電阻:PT100、PT1000、Cu50、Cu100;熱電偶:B、E、J、K、S等。溫度感測器不但種類繁多,而且組合形式多樣,應根據不同的場所選用合適的產品。
測溫原理:根據電阻阻值、熱電偶的電勢隨溫度不同發生有規律的變化的原理,我們可以得到所需要測量的溫度值。
(十)無線溫度
無線溫度感測器將控制對象的溫度參數變成電信號,並對接收終端發送無線信號,對系統實行檢測、調節和控制。可直接安裝在一般工業熱電阻、熱電偶的接線盒內,與現場感測元件構成一體化結構。通常和無線中繼、接收終端、通信串口、電子計算機等配套使用,這樣不僅節省了補償導線和電纜,而且減少了信號傳遞失真和干擾,從而獲的了高精度的測量結果。
無線溫度感測器廣泛應用於化工、 冶金、石油、電力、水處理、制葯、食品等自動化行業。例如:高壓電纜上的溫度採集;水下等惡劣環境的溫度採集;運動物體上的溫度採集;不易連線通過的空間傳輸 感測器數據;單純為降低布線成本選用的數據採集方案;沒有交流電源的工作場合的數據測量;攜帶型非固定場所數據測量。
(十一)智能
智能感測器的功能是通過模擬人的感官和大腦的協調動作, 結合長期以來測試技術的研究和實際經驗而提出來的。是一個相對獨立的智能單元,它的出現對原來硬體性能苛刻要求有所減輕,而靠軟體幫助可以使感測器的性能大幅度提高。
1、信息存儲和傳輸——隨著全智能集散控制系統(SmartDistributedSystem)的飛速發展,對智能單元要求具備通信功能,用通信網路以數字形式進行雙向通信,這也是智能感測器關鍵標志之一。智能感測器通過測試數據傳輸或接收指令來實現各項功能。如增益的設置、補償參數的設置、內檢參數設置、測試數據輸出等。
2、自補償和計算功能——多年來從事感測器研製的工程技術人員一直為感測器的溫度漂移和輸出非線性作大量的補償工作,但都沒有從根本上解決問題。而智能感測器的自補償和計算功能為感測器的溫度漂移和非線性補償開辟了新的道路。這樣,放寬感測器加工精密度要求,只要能保證感測器的重復性好,利用微處理器對測試的信號通過軟體計算,採用多次擬合和差值計算方法對漂移和非線性進行補償,從而能獲得較精確的測量結果壓力感測器。
3、自檢、自校、自診斷功能——普通感測器需要定期檢驗和標定,以保證它在正常使用時足夠的准確度,這些工作一般要求將感測器從使用現場拆卸送到實驗室或檢驗部門進行。對於在線測量感測器出現異常則不能及時診斷。採用智能感測器情況則大有改觀,首先自診斷功能在電源接通時進行自檢,診斷測試以確定組件有無故障。其次根據使用時間可以在線進行校正,微處理器利用存在EPROM內的計量特性數據進行對比校對。
4、復合敏感功能——觀察周圍的自然現象,常見的信號有聲、光、電、熱、力、化學等。敏感元件測量一般通過兩種方式:直接和間接的測量。而智能感測器具有復合功能,能夠同時測量多種物理量和化學量,給出能夠較全面反映物質運動規律的信息。
(十二)光敏
光敏感測器是最常見的感測器之一,它的種類繁多,主要有:光電管、光電倍增管、光敏電阻、光敏三極體、太陽能電池、紅外線感測器、紫外線感測器、光纖式光電感測器、色彩感測器、CCD和CMOS圖像感測器等。它的敏感波長在可見光波長附近,包括紅外線波長和紫外線波長。光感測器不只局限於對光的探測,它還可以作為探測元件組成其他感測器,對許多非電量進行檢測,只要將這些非電量轉換為光信號的變化即可。光感測器是目前產量最多、應用最廣的感測器之一,它在自動控制和非電量電測技術引中佔有非常重要的地位。最簡單的光敏感測器是光敏電阻,當光子沖擊接合處就會產生電流。
(十三)生物
生物感測器是用生物活性材料(酶、 蛋白質、 DNA、抗體、抗原、生物膜等)與 物理化學換能器有機結合的一門交叉學科,是發展生物技術必不可少的一種先進的檢測方法與監控方法,也是物質分子水平的快速、微量分析方法。各種生物感測器有以下共同的結構:包括一種或數種相關生物活性材料(生物膜)及能把生物活性表達的信號轉換為電信號的物理或化學換能器(感測器),二者組合在一起,用現代微電子和 自動化儀表技術進行生物信號的再加工,構成各種可以使用的生物感測器分析裝置、儀器和系統。
生物感測器的原理:
待測物質經擴散作用進入生物活性材料,經分子識別,發生生物學反應,產生的信息繼而被相應的物理或化學換能器轉變成可定量和可處理的電信號,再經二次儀表放大並輸出,便可知道待測物濃度。
生物感測器的分類:
按照其感受器中所採用的生命物質分類,可分為:微生物感測器、免疫感測器、組織感測器、細胞感測器、 酶感測器、DNA感測器等等。
按照感測器器件檢測的原理分類,可分為:熱敏生物感測器、場效應管生物感測器、壓電生物感測器、光學生物感測器、聲波道生物感測器、酶電極生物感測器、介體生物感測器等。
按照生物敏感物質相互作用的類型分類,可分為親和型和代謝型兩種。
(十四)視覺
視覺感測器是指:具有從一整幅圖像捕獲光線的數發千計像素的能力,圖像的清晰和細膩程度常用解析度來衡量,以像素數量表示。
視覺感測器具有從一整幅圖像捕獲光線的數以千計的像素。圖像的清晰和細膩程度通常用解析度來衡量,以像素數量表示。
在捕獲圖像之後,視覺感測器將其與內存中存儲的基準圖像進行比較,以做出分析。例如,若視覺感測器被設定為辨別正確地插有八顆螺栓的機器部件,則感測器知道應該拒收只有七顆螺栓的部件,或者螺栓未對準的部件。此外,無論該機器部件位於視場中的哪個位置,無論該部件是否在360度范圍內旋轉,視覺感測器都能做出判斷。
視覺感測器的低成本和易用性已吸引機器設計師和工藝工程師將其集成入各類曾經依賴人工、多個光電感測器,或根本不檢驗的應用。視覺感測器的工業應用包括檢驗、計量、測量、定向、瑕疵檢測和分撿。以下只是一些應用範例:
在汽車組裝廠,檢驗由機器人塗抹到車門邊框的膠珠是否連續,是否有正確的寬度;
在瓶裝廠,校驗瓶蓋是否正確密封、裝灌液位是否正確,以及在封蓋之前沒有異物掉入瓶中;
在包裝生產線,確保在正確的位置粘貼正確的包裝標簽;
在葯品包裝生產線,檢驗阿斯匹林葯片的泡罩式包裝中是否有破損或缺失的葯片;
在金屬沖壓公司,以每分鍾逾150片的速度檢驗沖壓部件,比人工檢驗快13倍以上。
(十五)位移
位移感測器又稱為線性感測器,把位移轉換為電量的感測器。位移感測器是一種屬於金屬感應的線性器件,感測器的作用是把各種被測物理量轉換為電量它分為電感式位移感測器,電容式位移感測器,光電式位移感測器,超聲波式位移感測器,霍爾式位移感測器。
在這種轉換過程中有許多物理量(例如壓力、流量、加速度等)常常需要先變換為位移,然後再將位移變換成電量。因此位移感測器是一類重要的基本感測器。在生產過程中,位移的測量一般分為測量實物尺寸和機械位移兩種。機械位移包括線位移和角位移。按被測變數變換的形式不同,位移感測器可分為模擬式和數字式兩種。模擬式又可分為物性型(如自發電式)和結構型兩種。常用位移感測器以模擬式結構型居多,包括 電位器式位移感測器、 電感式位移感測器、自整角機、電容式位移感測器、電渦流式位移感測器、霍爾式位移感測器等。數字式位移感測器的一個重要優點是便於將信號直接送入計算機系統。這種感測器發展迅速,應用日益廣泛。
(十六)壓力
壓力感測器引是工業實踐中最為常用的一種感測器,其廣泛應用於各種工業自控環境,涉及水利水電、鐵路交通、智能建築、生產自控、航空航天、軍工、石化、油井、電力、船舶、機床、管道等眾多行業。
(十七)超聲波測距離
超聲波測距離感測器採用超聲波回波測距原理,運用精確的時差測量技術,檢測感測器與目標物之間的距離,採用小角度,小盲區超聲波感測器,具有測量准確,無接觸,防水,防腐蝕,低成本等優點,可應於液位,物位檢測,特有的液位,料位檢測方式,可保證在液面有泡沫或大的晃動,不易檢測到回波的情況下有穩定的輸出,應用行業:液位,物位,料位檢測,工業過程式控制制等。
(十八)24GHz雷達
24GHz雷達感測器採用高頻微波來測量物體運動 速度、 距離、 運動 方向、方位角度信息,採用平面微帶天線設計,具有體積小、質量輕、靈敏度高、穩定強等特點,廣泛運用於智能交通、工業控制、安防、體育運動、智能家居等行業。工業和信息化部2012年11月19日正式發布了《工業和信息化部關於發布24GHz頻段短距離車載雷達設備使用頻率的通知》(工信部無〔2012〕548號),明確提出24GHz頻段短距離車載雷達設備作為車載雷達設備的規范。
(十九)一體化溫度
一體化溫度感測器一般由測溫探頭(熱電偶或熱電阻感測器)和兩線制固體電子單元組成。採用固體模塊形式將測溫探頭直接安裝在接線盒內,從而形成一體化的感測器。一體化溫度感測器一般分為熱電阻和熱電偶型兩種類型。
熱電阻溫度感測器是由基準單元、R/V轉換單元、線性電路、反接保護、限流保護、V/I轉換單元等組成。測溫熱電阻信號轉換放大後,再由線性電路對溫度與電阻的非線性關系進行補償,經V/I轉換電路後輸出一個與被測溫度成線性關系的4~20mA的恆流信號。
熱電偶溫度感測器一般由基準源、冷端補償、放大單元、線性化處理、V/I轉換、斷偶處理、反接保護、限流保護等電路單元組成。它是將熱電偶產生的熱電勢經冷端補償放大後,再帽由線性電路消除熱電勢與溫度的非線性誤差,最後放大轉換為4~20mA電流輸出信號。為防止熱電偶測量中由於電偶斷絲而使控溫失效造成事故,感測器中還設有斷電保護電路。當熱電偶斷絲或接解不良時,感測器會輸出最大值(28mA)以使儀表切斷電源。一體化溫度感測器具有結構簡單、節省引線、輸出信號大、抗干擾能力強、線性好、顯示儀表簡單、固體模塊抗震防潮、有反接保護和限流保護、工作可靠等優點。一體化溫度感測器的輸出為統一的 4~20mA信號;可與微機系統或其它常規儀表匹配使用。也可用戶要求做成防爆型或防火型測量儀表。
(二十)液位
1、浮球式液位感測器
浮球式液位感測器由磁性浮球、測量導管、信號單元、電子單元、接線盒及安裝件組成。
一般磁性浮球的比重小於0.5,可漂於液面之上並沿測量導管上下移動。導管內裝有測量元件,它可以在外磁作用下將被測液位信號轉換成正比於液位變化的電阻信號,並將電子單元轉換成4~20mA或其它標准信號輸出。該感測器為模塊電路,具有耐酸、防潮、防震、防腐蝕等優點,電路內部含有恆流反饋電路和內保護電路,可使輸出最大電流不超過28mA,因而能夠可靠地保護電源並使二次儀表不被損壞。
2、浮簡式液位感測器
浮筒式液位感測器是將磁性浮球改為浮筒,它是根據阿基米德浮力原理設計的。浮筒式液位感測器是利用微小的金屬膜應變感測技術來測量液體的液位、界位或密度的。它在工作時可以通過現場按鍵來進行常規的設定操作。
3、靜壓或液位感測器
該感測器利用液體靜壓力的測量原理工作。它一般選用硅壓力測壓感測器將測量到的壓力轉換成電信號,再經放大電路放大和補償電路補償,最後以4~20mA或0~10mA電流方式輸出。
(二十一)真空度
真空度感測器,採用先進的硅微機械加工技術生產,以集成硅壓阻力敏元件作為感測器的核心元件製成的絕對壓力變送器,由於採用硅-硅直接鍵合或硅-派勒克斯玻璃靜電鍵合形成的真空參考壓力腔,及一系列無應力封裝技術及精密溫度補償技術,因而具有穩定性優良、精度高的突出優點,適用於各種情況下絕對壓力的測量與控制。
採用低量程晶元真空絕壓封裝,產品具有高的過載能力。晶元採用真空充注硅油隔離,不銹鋼薄膜過渡傳遞壓力,具有優良的介質兼容性,適用於對316L不銹鋼不腐蝕的絕大多數氣液體介質真空壓力的測量。真空度傳染其應用於各種工業環境的低真空測量與控制。
(二十二)電容式物位
電容式物位感測器適用於工業企業在生產過程中進行測量和控制生產過程,主要用作類導電與非導電介質的液體液位或粉粒狀固體料位的遠距離連續測量和指示。
電容式液位感測器由電容式感測器與電子模塊電路組成,它以兩線制4~20mA恆定電流輸出為基型,經過轉換,可以用三線或四線方式輸出,輸出信號形成為 1~5V、0~5V、0~10mA等標准信號。電容感測器由絕緣電極和裝有測量介質的圓柱形金屬容器組成。當料位上升時,因非導電物料的介電常數明顯小於空氣的介電常數,所以電容量隨著物料高度的變化而變化。感測器的模塊電路由基準源、脈寬調制、轉換、恆流放大、反饋和限流等單元組成。採用脈寬調特原理進行測量的優點是頻率較低,對周圍元射頻干擾、穩定性好、線性好、無明顯溫度漂移等。
(二十三)銻電極酸度
銻電極酸度感測器是集 PH檢測、自動清洗、電信號轉換為一體的工業在線分析儀表,它是由銻電極與參考電極組成的PH值測量系統。在被測酸性溶液中,由於銻電極表面會生成三氧化二銻氧化層,這樣在金屬銻面與三氧化二銻之間會形成電位差。該電位差的大小取決於三所氧化二銻的濃度,該濃度與被測酸性溶液中氫離子的適度相對應。如果把銻、三氧化二銻和水溶液的適度都當作1,其電極電位就可用能斯特公式計算出來。
銻電極酸度感測器中的固體模塊電路由兩大部分組成。為了現場作用的安全起見,電源部分採用交流24V為二次儀表供電。這一電源除為清洗電機提供驅動電源外,還應通過電流轉換單元轉換成相應的直流電壓,以供變送電路使用。第二部分是測量感測器電路,它把來自感測器的基準信號和PH酸度信號經放大後送給斜率調整和定位調整電路,以使信號內阻降低並可調節。將放大後的PH信號與溫度被償信號進行迭加後再差進轉換電路,最後輸出與PH值相對應的4~20mA恆流電流信號給二次儀表以完成顯示並控制PH值。
(二十四)酸、鹼、鹽
酸、鹼、鹽濃度感測器通過測量溶液電導值來確定濃度。它可以在線連續檢測工業過程中酸、鹼、鹽在水溶液中的濃度含量。這種感測器主要應用於鍋爐給水處理、化工溶液的配製以及環保等工業生產過程。
酸、鹼、鹽濃度感測器的工作原理是:在一定的范圍內,酸鹼溶液的濃度與其電導率的大小成比例。因而,只要測出溶液電導率的大小變可得知酸鹼濃度的高低。當被測溶液流入專用電導池時,如果忽略電極極化和分布電容,則可以等效為一個純電阻。在有恆壓交變電流流過時,其輸出電流與電導率成線性關系,而電導率又與溶液中酸、鹼濃度成比例關系。因此只要測出溶液電流,便可算出酸、鹼、鹽的濃度。
酸、鹼、鹽濃度感測器主要由電導池、電子模塊、顯示表頭和殼體組成。電子模塊電路則由激勵電源、電導池、電導放大器、相敏整流器、解調器、溫度補償、過載保護和電流轉換等單元組成。
(二十五)電導
它是通過測量溶液的電導值來間接測量離子濃度的流程儀表(一體化感測器),可在線連續檢測工業過程中水溶液的電導率。
由於電解質溶液與金屬導體一樣的電的良導體,因此電流流過電解質溶液時必有電阻作用,且符合歐姆定律。但液體的電阻溫度特性與金屬導體相反,具有負向溫度特性。為區別於金屬導體,電解質溶液的導電能力用電導(電阻的倒數)或電導率(電阻率的倒數)來表示。當兩個互相絕緣的電極組成電導池時,若在其中間放置待測溶液,並通以恆壓交變電流,就形成了電流迴路。如果將電壓大小和電極尺寸固定,則迴路電流與電導率就存在一定的函數關系。這樣,測了待測溶液中流過的電流,就能測出待測溶液的電導率。電導感測器的結構和電路與酸、鹼、鹽濃度感測器相同。
感測器(英文名稱:transcer/sensor)是一種檢測裝置,能感受到被測量的信息,並能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。
主要特點:
感測器的特點包括:微型化、數字化、智能化、多功能化、系統化、網路化,它不僅促進了傳統產業的改造和更新換代,而且還可能建立新型工業,從而成為21世紀新的經濟增長點。微型化是建立在微電子機械繫統(MEMS)技術基礎上的,已成功應用在硅器件上做成硅壓力感測器。
G. 感測器資料
英文名稱:transcer / sensor
感測器是一種物理裝置或生物器官,能夠探測、感受外界的信號、物理條件(如光、熱核友、濕度)或化學組成(如煙霧),並將探知的信息傳遞給其他裝置或器官。
[編輯本段]感測器的定義
國家標准GB7665-87對感測器下的定義是:「能感受規定的被測量並按照一定的規律轉換成可用信號的器件或裝置,通常由敏感元件和轉換元件組成」。感測器是一種檢測裝置,能感受到被測量的信息,並能將檢測感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。它是實現自動檢測和自動控制的首要環節。
[編輯本段]感測器的分類
可以用不同的觀點對感測器進行分類:它們的轉換原理(感測器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及製作它們的材料和工藝等。
根據感測器工作原理,可分為物理感測器和化學感測器二大類 :
感測器工作原理的分類物理感測器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。
化學感測器包括那些以化學吸附、電化學反應等現象為因果關系的感測器,被測信號量的微小變化也將轉換成電信號。
有些感測器既不能劃分到物理類,也不能劃分為化學類。大多數感測器是以物理原理為基礎運作的。化學感測器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學感測器的應用將會有巨大增長。
常見感測器的應用領域和工作原理改帆槐列於表1.1。
按照其用途,感測器可分類為:
壓力敏和力敏感測器 �位置感測器
液面感測器 �能耗感測器
速度感測器 �熱敏感測轎擾器
加速度感測器 �射線輻射感測器
振動感測器� 濕敏感測器
磁敏感測器� 氣敏感測器
真空度感測器� 生物感測器等。�
以其輸出信號為標准可將感測器分為:
模擬感測器——將被測量的非電學量轉換成模擬電信號。�
數字感測器——將被測量的非電學量轉換成數字輸出信號(包括直接和間接轉換)。�
膺數字感測器——將被測量的信號量轉換成頻率信號或短周期信號的輸出(包括直接或間接轉換)。�
開關感測器——當一個被測量的信號達到某個特定的閾值時,感測器相應地輸出一個設定的低電平或高電平信號。
�
在外界因素的作用下,所有材料都會作出相應的、具有特徵性的反應。它們中的那些對外界作用最敏感的材料,即那些具有功能特性的材料,被用來製作感測器的敏感元件。從所應用的材料觀點出發可將感測器分成下列幾類:
(1)按照其所用材料的類別分�
金屬� 聚合物� 陶瓷� 混合物�
(2)按材料的物理性質分� � 導體� 絕緣體� 半導體� 磁性材料�
(3)按材料的晶體結構分�
單晶� 多晶� 非晶材料�
與採用新材料緊密相關的感測器開發工作,可以歸納為下述三個方向:�
(1)在已知的材料中探索新的現象、效應和反應,然後使它們能在感測器技術中得到實際使用。�
(2)探索新的材料,應用那些已知的現象、效應和反應來改進感測器技術。�
(3)在研究新型材料的基礎上探索新現象、新效應和反應,並在感測器技術中加以具體實施。�
現代感測器製造業的進展取決於用於感測器技術的新材料和敏感元件的開發強度。感測器開發的基本趨勢是和半導體以及介質材料的應用密切關聯的。表1.2中給出了一些可用於感測器技術的、能夠轉換能量形式的材料。�
按照其製造工藝,可以將感測器區分為:
集成感測器�薄膜感測器�厚膜感測器�陶瓷感測器
集成感測器是用標準的生產硅基半導體集成電路的工藝技術製造的。通常還將用於初步處理被測信號的部分電路也集成在同一晶元上。�
薄膜感測器則是通過沉積在介質襯底(基板)上的,相應敏感材料的薄膜形成的。使用混合工藝時,同樣可將部分電路製造在此基板上。�
厚膜感測器是利用相應材料的漿料,塗覆在陶瓷基片上製成的,基片通常是Al2O3製成的,然後進行熱處理,使厚膜成形。
陶瓷感測器採用標準的陶瓷工藝或其某種變種工藝(溶膠-凝膠等)生產。�
完成適當的預備性操作之後,已成形的元件在高溫中進行燒結。厚膜和陶瓷感測器這二種工藝之間有許多共同特性,在某些方面,可以認為厚膜工藝是陶瓷工藝的一種變型。�
每種工藝技術都有自己的優點和不足。由於研究、開發和生產所需的資本投入較低,以及感測器參數的高穩定性等原因,採用陶瓷和厚膜感測器比較合理。
[編輯本段]感測器靜態特性
感測器的靜態特性是指對靜態的輸入信號,感測器的輸出量與輸入量之間所具有相互關系。因為這時輸入量和輸出量都和時間無關,所以它們之間的關系,即感測器的靜態特性可用一個不含時間變數的代數方程,或以輸入量作橫坐標,把與其對應的輸出量作縱坐標而畫出的特性曲線來描述。表徵感測器靜態特性的主要參數有:線性度、靈敏度、分辨力和遲滯等。
[編輯本段]感測器動態特性
所謂動態特性,是指感測器在輸入變化時,它的輸出的特性。在實際工作中,感測器的動態特性常用它對某些標准輸入信號的響應來表示。這是因為感測器對標准輸入信號的響應容易用實驗方法求得,並且它對標准輸入信號的響應與它對任意輸入信號的響應之間存在一定的關系,往往知道了前者就能推定後者。最常用的標准輸入信號有階躍信號和正弦信號兩種,所以感測器的動態特性也常用階躍響應和頻率響應來表示。
[編輯本段]感測器的線性度
通常情況下,感測器的實際靜態特性輸出是條曲線而非直線。在實際工作中,為使儀表具有均勻刻度的讀數,常用一條擬合直線近似地代表實際的特性曲線、線性度(非線性誤差)就是這個近似程度的一個性能指標。
擬合直線的選取有多種方法。如將零輸入和滿量程輸出點相連的理論直線作為擬合直線;或將與特性曲線上各點偏差的平方和為最小的理論直線作為擬合直線,此擬合直線稱為最小二乘法擬合直線。
[編輯本段]感測器的靈敏度
靈敏度是指感測器在穩態工作情況下輸出量變化△y對輸入量變化△x的比值。
它是輸出一輸入特性曲線的斜率。如果感測器的輸出和輸入之間顯線性關系,則靈敏度S是一個常數。否則,它將隨輸入量的變化而變化。
靈敏度的量綱是輸出、輸入量的量綱之比。例如,某位移感測器,在位移變化1mm時,輸出電壓變化為200mV,則其靈敏度應表示為200mV/mm。
當感測器的輸出、輸入量的量綱相同時,靈敏度可理解為放大倍數。
提高靈敏度,可得到較高的測量精度。但靈敏度愈高,測量范圍愈窄,穩定性也往往愈差。
[編輯本段]感測器的分辨力
分辨力是指感測器可能感受到的被測量的最小變化的能力。也就是說,如果輸入量從某一非零值緩慢地變化。當輸入變化值未超過某一數值時,感測器的輸出不會發生變化,即感測器對此輸入量的變化是分辨不出來的。只有當輸入量的變化超過分辨力時,其輸出才會發生變化。
通常感測器在滿量程范圍內各點的分辨力並不相同,因此常用滿量程中能使輸出量產生階躍變化的輸入量中的最大變化值作為衡量分辨力的指標。上述指標若用滿量程的百分比表示,則稱為解析度。解析度與感測器的穩定性有負相相關性。
[編輯本段]電阻式感測器
電阻式感測器是將被測量,如位移、形變、力、加速度、濕度、溫度等這些物理量轉換式成電阻值這樣的一種器件。主要有電阻應變式、壓阻式、熱電阻、熱敏、氣敏、濕敏等電阻式感測器件。
[編輯本段]電阻應變式感測器
感測器中的電阻應變片具有金屬的應變效應,即在外力作用下產生機械形變,從而使電阻值隨之發生相應的變化。電阻應變片主要有金屬和半導體兩類,金屬應變片有金屬絲式、箔式、薄膜式之分。半導體應變片具有靈敏度高(通常是絲式、箔式的幾十倍)、橫向效應小等優點。
[編輯本段]壓阻式感測器
壓阻式感測器是根據半導體材料的壓阻效應在半導體材料的基片上經擴散電阻而製成的器件。其基片可直接作為測量感測元件,擴散電阻在基片內接成電橋形式。當基片受到外力作用而產生形變時,各電阻值將發生變化,電橋就會產生相應的不平衡輸出。
用作壓阻式感測器的基片(或稱膜片)材料主要為矽片和鍺片,矽片為敏感 材料而製成的硅壓阻感測器越來越受到人們的重視,尤其是以測量壓力和速度的固態壓阻式感測器應用最為普遍。
[編輯本段]熱電阻感測器
熱電阻感測器主要是利用電阻值隨溫度變化而變化這一特性來測量溫度及與溫度有關的參數。在溫度檢測精度要求比較高的場合,這種感測器比較適用。目前較為廣泛的熱電阻材料為鉑、銅、鎳等,它們具有電阻溫度系數大、線性好、性能穩定、使用溫度范圍寬、加工容易等特點。用於測量-200℃~+500℃范圍內的溫度。
[編輯本段]溫度感測器
1、室溫管溫感測器:
室溫感測器用於測量室內和室外的環境溫度,管溫感測器用於測量蒸發器和冷凝器的管壁溫度。室溫感測器和管溫感測器的形狀不同,但溫度特性基本一致。按溫度特性劃分,目前美的使用的室溫管溫感測器有二種類型:1、常數B值為4100K±3%,基準電阻為25℃對應電阻10KΩ±3%。溫度越高,阻值越小;溫度越低,阻值越大。離25℃越遠,對應電阻公差范圍越大;在0℃和55℃對應電阻公差約為±7%;而0℃以下及55℃以上,對於不同的供應商,電阻公差會有一定的差別。茲附「南韓新基」感測器的溫度與電阻的對應關系表(中間為標稱值,左右分別為最小最大值):-10℃→(57.1821—62.2756—67.7617)KΩ;-5℃→(48.1378—46.5725—50.2355)KΩ;0℃→(32.8812—35.2024—37.6537)KΩ;5℃→(25.3095—26.8778—28.5176)KΩ;10℃→(19.6624—20.7184—21.8114)KΩ;15℃→(15.4099—16.1155—16.8383)KΩ;20℃→(12.1779—12.6431—13.1144)KΩ;30℃→(7.67922—7.97078—8.26595)KΩ;35℃→(6.12564—6.40021—6.68106)KΩ;40℃→(4.92171—5.17519—5.43683)KΩ;45℃→(3.98164—4.21263—4.45301)KΩ;50℃→(3.24228—3.45097—3.66978)KΩ;55℃→(2.65676—2.84421—3.04214)KΩ;60℃→(2.18999—2.35774—2.53605)KΩ。除個別老產品外,美的空調電控使用的室溫管溫感測器均使用這種類型的感測器。常數B值為3470K±1%,基準電阻為25℃對應電阻5KΩ±1%。同樣,溫度越高,阻值越小;溫度越低,阻值越大。離25℃越遠,對應電阻公差范圍越大。茲附「日本北陸」感測器的溫度與電阻的對應關系表(中間為標稱值,左右分別為最小最大值):-10℃→(22.1498—22.7155—23.2829)KΩ;0℃→(13.9408—14.2293—14.5224)KΩ;10℃→(9.0344—9.1810—9.3290)KΩ;20℃→(6.0125—6.0850—6.1579)KΩ;30℃→(4.0833—4.1323—4.1815)KΩ;40℃→(2.8246—2.8688—2.9134)KΩ;50℃→(1.9941—2.0321—2.0706)KΩ;60℃→(1.4343—1.4666—1.4994)KΩ。這種類型的感測器僅用於個別老產品,如RF7.5WB、T-KFR120C、KFC23GWY等。
2、排氣溫度感測器:
排氣溫度感測器用於測量壓縮機頂部的排氣溫度,常數B值為3950K±3%,基準電阻為90℃對應電阻5KΩ±3%。茲附「日本芝蒲」感測器的溫度與電阻的對應關系表(中間為標稱值,左右分別為最小最大值):-30℃→(823.3—997.1—1206)KΩ;-20℃→(456.9—542.7—644.2)KΩ;-10℃→(263.7—307.7—358.8)KΩ;0℃→(157.6—180.9—207.5)KΩ;10℃→(97.09—109.8—124.0)KΩ;20℃→(61.61—68.66—76.45)KΩ;25℃→(49.59—54.89—60.70)KΩ;30℃→(40.17—44.17—48.53)KΩ;40℃→(26.84—29.15—31.63)KΩ;50℃→(18.35—19.69—21.12)KΩ;60℃→(12.80—13.59—14.42)KΩ;70℃→(9.107—9.589—10.05)KΩ;80℃→(6.592—6.859—7.130)KΩ;100℃→(3.560—3.702—3.846)KΩ;110℃→(2.652—2.781—2.913)KΩ;120℃→(2.003—2.117—2.235)KΩ;130℃→(1.532—1.632—1.736)KΩ。
3.、模塊溫度感測器:模塊溫度感測器用於測量變頻模塊(IGBT或IPM)的溫度,目前用的感溫頭的型號是602F-3500F,基準電阻為25℃對應電阻6KΩ±1%。幾個典型溫度的對應阻值分別是:-10℃→(25.897—28.623)KΩ;0℃→(16.3248—17.7164)KΩ;50℃→(2.3262—2.5153)KΩ;90℃→(0.6671—0.7565)KΩ。
[編輯本段]濕度感測器
高分子電容式濕度感測器通常都是在絕緣的基片諸如玻璃、陶瓷、硅等材料上,用絲網漏印或真空鍍膜工藝做出電極,再用浸漬或其它辦法將感濕膠塗覆在電極上做成電容元件。濕敏元件在不同相對濕度的大氣環境中,因感濕膜吸附水分子而使電容值呈現規律性變化,此即為濕度感測器的基本機理。影響高分子電容型元件的溫度特性,除作為介質的高分子聚合物的介質常數ε及所吸附水分子的介電常數ε受溫度影響產生變化外,還有元件的幾何尺寸受熱膨脹系數影響而產生變化等因素。根據德拜理論的觀點,液體的介電常數ε是一個與溫度和頻率有關的無量綱常數。水分子的ε在T=5℃時為78.36,在T=20℃時為79.63。有機物ε與溫度的關系因材料而異,且不完全遵從正比關系。在某些溫區ε隨T呈上升趨勢,某些溫區ε隨T增加而下降。多數文獻在對高分子濕敏電容元件感濕機理的分析中認為:高分子聚合物具有較小的介電常數,如聚醯亞胺在低濕時介電常數為3.0一3.8。而水分子介電常數是高分子ε的幾十倍。因此高分子介質在吸濕後,由於水分子偶極距的存在,大大提高了吸水異質層的介電常數,這是多相介質的復合介電常數具有加和性決定的。由於ε的變 化,使濕敏電容元件的電容量C與相對濕度成正比。在設計和製作工藝中很難組到感濕特性全濕程線性。作為電容器,高分子介質膜的厚度d和平板電容的效面積S也和溫度有關。溫度變化所引起的介質幾何尺寸的變化將影響C值。高分子聚合物的平均熱線脹系數可達到 的量級。例如硝酸纖維素的平均熱線脹系數為108x10-5/℃。隨著溫度上升,介質膜厚d增加,對C呈負貢獻值;但感濕膜的膨脹又使介質對水的吸附量增加,即對C呈正值貢獻。可見濕敏電容的溫度特性受多種因素支配,在不同的濕度范圍溫漂不同;在不同的溫區呈不同的溫度系數;不同的感濕材料溫度特性不同。總之,高分子濕度感測器的溫度系數並非常數,而是個變數。所以通常感測器生產廠家能在-10-60攝氏度范圍內是感測器線性化減小溫度對濕敏元件的影響。
比較優質的產品主要使用聚醯胺樹脂,產品結構概要為在硼硅玻璃或藍寶石襯底上真空蒸發製作金電極,再噴鍍感濕介質材料(如前所述)形式平整的感濕膜,再在薄膜上蒸發上金電極.濕敏元件的電容值與相對濕度成正比關系,線性度約±2%。雖然,測濕性能還算可以但其耐溫性、耐腐蝕性都不太理想,在工業領域使用,壽命、耐溫性和穩定性、抗腐蝕能力都有待於進一步提高。
陶瓷濕敏感測器是近年來大力發展的一種新型感測器。優點在於能耐高溫,濕度滯後,響應速度快,體積小,便於批量生產,但由於多孔型材質,對塵埃影響很大,日常維護頻繁,時常需要電加熱加以清洗易影響產品質量,易受濕度影響,在低濕高溫環境下線性度差,特別是使用壽命短,長期可靠性差,是此類濕敏感測器迫切解決的問題。
當前在濕敏元件的開發和研究中,電阻式濕度感測器應當最適用於濕度控制領域,其代表產品氯化鋰濕度感測器具有穩定性、耐溫性和使用壽命長多項重要的優點,氯化鋰濕敏感測器已有了五十年以上的生產和研究的歷史,有著多種多樣的產品型式和製作方法,都應用了氯化鋰感濕液具備的各種優點尤其是穩定性最強。
氯化鋰濕敏器件屬於電解質感濕性材料,在眾多的感濕材料之中,首先被人們所注意並應用於製造濕敏器件,氯化鋰電解質感濕液依據當量電導隨著溶液濃度的增加而下降。電解質溶解於水中降低水面上的水蒸氣壓的原理而實現感濕。
氯化鋰濕敏器件的襯底結構分柱狀和梳妝,以氯化鋰聚乙烯醇塗覆為主要成份的感濕液和製作金質電極是氯化鋰濕敏器件的三個組成部分。多年來產品製作不斷改進提高,產品性能不斷得到改善,氯化鋰感濕感測器其特有的長期穩定性是其它感濕材料不可替代的,也是濕度感測器最重要的性能。在產品製作過程中,經過感濕混合液的配製和工藝上的嚴格控制是保持和發揮這一特性的關鍵。
生物感測器的概念
生物感測器是用生物活性材料(酶、蛋白質、DNA、抗體、抗原、生物膜等)與物理化學換能器有機結合的一門交叉學科,是發展生物技術必不可少的一種先進的檢測方法與監控方法,也是物質分子水平的快速、微量分析方法。各種生物感測器有以下共同的結構:包括一種或數種相關生物活性材料(生物膜)及能把生物活性表達的信號轉換為電信號的物理或化學換能器(感測器),二者組合在一起,用現代微電子和自動化儀表技術進行生物信號的再加工,構成各種可以使用的生物感測器分析裝置、儀器和系統。
生物感測器的原理
待測物質經擴散作用進入生物活性材料,經分子識別,發生生物學反應,產生的信息繼而被相應的物理或化學換能器轉變成可定量和可處理的電信號,再經二次儀表放大並輸出,便可知道待測物濃度。
生物感測器的分類
按照其感受器中所採用的生命物質分類,可分為:微生物感測器、免疫感測器、組織感測器、細胞感測器、酶感測器、DNA感測器等等
按照感測器器件檢測的原理分類 ,可分為:熱敏生物感測器、場效應管生物感測器、壓電生物感測器、光學生物感測器、聲波道生物感測器、酶電極生物感測器、介體生物感測器等。
按照生物敏感物質相互作用的類型分類,可分為親和型和代謝型兩種。
UVA-1210是一個近紫外波光電感測器,可見光范圍不響應,輸出電流與紫外指數呈線性關系。適用於手機、PDA、MP4等攜帶型移動產品測量紫外指數,隨時提醒人們(特別是女士)紫外線的強度並注意防曬,也適用於紫外波段的檢測器、紫外線指數檢測器。
紫外感測器
■電氣特性
採用氮化鎵基材料;
PIN型光電二極體;
光伏工作模式;
對可見光無響應;
暗電流低;
輸出電流與紫外指數成線性關系。
符合歐盟RoHS指令,無鉛、無鎘
■典型應用
測量紫外指數:手機、數碼相機、MP4、PDA、GPS等攜式移動產品;
用於紫外檢測器:全部紫外線波段的檢測器、單UV-A波段檢測器、紫外線指數檢測器、紫外線殺菌燈輻照檢測器。
H. 生物感測器對現代人類生活的影響
簡而言之,生物感測器就是一種集現代生物技術與先進的電子技術於一體的高科技產品,是當今全球醫學檢測和快速分析技術(EMERGING RAPID ASSAY TECHNOLOGIES),英文為biosensor,它是對生物物質敏感並將其濃度轉換為電信號進行檢測的儀器,它通過固定化的生物敏感材料作識別元件(包括酶、抗體、抗原、微生物、細胞、組織、核酸等生物活性物質),再與適當的理化換能器(如氧電極、光敏管、場效應管、壓電晶體等等)及信號放大裝置構成的分析工具或系統,從而使這個工具和系統具有接受器與轉換器的功能。從1962年,Clark和Lyons先提出生物感測器的設想距今已有40 年。生物感測器在發酵工藝、環境監測、食品工程、臨床醫學、軍事及軍事醫學等方面得到了深度重視和廣泛應用。現在關於孔板流量計生物感測器相關的研究項目陸續獲得各個工業和科技大國來自於政府的驚人巨額的研究資助,其地位越來越受到重視。可以想像,這個的熱點領域在不遠的將來會有極為廣闊的應用前景。
全球知名市場調研公司PMR(Persistence Market Research)近日發布了一份令人震驚的新報告,預計在未來6年內,全球孔板流量計生物感測器市場將經歷跨越式增長,統計數據表明,該市場2014市值為129億美元,在進入2020年市場價值將達到225億美元,復合年增長率高達9.7%。縱覽全球,北美是全球生物感測器的大市場,單是2014年市值就達到了57億美元,到2020年預計將達到95億美元,預測期內復合年增長率為8.9%。由於生物感測器大的受益人群來自於醫療,因亞太地區醫療保險普及率的不斷擴大、人口基數大以及衛生保健系統的不斷升級,未來對於孔板流量計生物感測器的需求將是巨大的,這畢將會帶動亞太地區成為生物感測器增長快的地區。
根據應用類型劃分,生物感測器市場可分為醫療診斷、食品毒性檢測、工業過程式控制制、農業檢測以及環境污染控制等等,其中醫療診斷是生物感測器流行也是深入的應用領域,而醫療診斷中即時檢測是生物感測器應用多的領域。
根據技術類型來劃分,現在的孔板流量計生物感測器市場主要包括電化學、光學、壓電、熱敏電阻等方面;其中,電化學生物感測器是生物感測器中常用的技術,而光學生物感測器將成為增長快的技術類型。
根據產品的終端用戶來劃分,生物感測器市場可分為研究實驗室、、安全和生物防禦、家庭保健診斷、以及即時檢測,其中安全和生物防禦將成為增長快的終端用戶類型。
由於生物感測器的問世可以取代常規的化學分析方法,並且比傳統的化學分析方法有更快更方便的優點,隨著研究的深入,生產方法的改進,其優勢將更為明顯,因此,它的出現無疑就是一場技術革命。因此,世界上一些科技發達的國家都把孔板流量計生物感測器的研究作為生物技術產業化的關鍵技術也就不足為怪了,這此科技大國都投入了相當大的人力、物力進行研製開發,並且不斷有新的產品出現。近年來,孔板流量計生物感測器已經在醫學診斷、食品營養、環境監測、國防工業及人類衛生保健等諸多領域中得到了廣泛的應用。
我們也樂觀地預測,在不久的將來將完全可以研製出全有機分子晶元和生物計算機。生物矽片與先進的電子系統的廣泛結合,可以創造出更為復雜的仿生系統。 隨著各種類型的高性能的生物感測器以及生物矽片的問世,必將對現代的高科技產品產生重大的影響,從而推動人類社會發展進程。