❶ 生物學專業分類那些專業
生物學,簡稱生物,是自然科學六大基礎學科之一。研究生物的結構、功能、發生和發展的規律。以及生物與周圍環境的關系等的科學。生物學源自博物學,經歷實驗生物學、分子生物學而進入了系統生物學時期。
生物學專業的學科分類,簡介如下:
動物學領域:動物學、動物生理學、解剖學、胚胎學、神經生物學、發育生物學、昆蟲學、行為學、組織學。
植物學領域:植物學、植物病理學、藻類學、植物生理學。
微生物學和免疫學領域:微生物學、免疫學、病毒學。
生物化學領域:生物化學、蛋白質力學、糖類生化學、脂質生化學、代謝生化學。
演化及生態學譽鉛領域:生態慶碰好學、生物分布學、系統分吵孫類學、古生物學、演化論、分類學、演化生物學。
現代生物技術學領域:生物技術學、基因工程、酵素工程學、生物工程、代謝工程學、基因體學。
細胞及分子生物學領域:分子生物學、細胞學、遺傳學。
生物物理領域:生物物理學、結構生物學、生醫光電學、醫學工程。
生物醫學領域:感染性疾病、毒理學、放射生物學、癌生物學。
生物信息領域:生物數學、仿生學、系統生物學。
環境生物學領域:大氣生物學、生物地理學、海洋生物學、淡水生物學。
❷ 生物學領域包括哪些專業
包括:生物科學、生物技術、生物信息學、生態學
1、概況
生物科學(又稱生命科學)專業包括了生物科學和生物技術兩個專業方向,這些專業學科主要培養學生學習生物科學技術方面的基本理論、基本知識,學生將受到應用基礎研究和技術開發方面的科學思維和科學實驗訓練,進而具有較好的科學素養及初步的教學、研究、開發與管理的基本能力。其核心課程主要包括了動物生物學、植物生物學、微生物學、生物化學、遺傳學、細胞生物學、分子生物學、普通生態學等學科;必修課程則包括無機及分析化學、有機化學、大學數學、大學物理學、生物統計學、發育生物學、生物技術概論、進化生物學,生物化學,微積分等。
2、具備的技能
生物科學專業培養具備生物科學的基本理論、基本知識和較強的實驗技能,能在科研機構、高等學校及企事業單位等從事科學研究、教學工作及管理工作的生物科學高級專門人才。
學生主要學習生物科學方面的基本理論、基本知識,受到基礎研究和應用基礎研究方面的科學思維和科學實驗訓練,具有較好的科學素養及一定的教學、科研能力。
3、研究對象
生物科學專業研究對象由生物科學家根據生物的發展歷史、形態結構特徵、營養方式以及它們在生態系統中的作用等,將生物分為若干界。當前比較通行的是美國R.H.惠特克於1969年提出的5界系統。他將細菌、藍菌等原核生物劃為原核生物界,將單細胞的真核生物劃為原生生物界,將多細胞的真核生物按營養方式劃分為營光合自養的植物界、營吸收異養的真菌界和營吞食異養的動物界。中國生物科學家陳世驤於1979年提出6界系統。這個系統由非細胞總界、原核總界和真核總界3個總界組成,代表生物進化的3個階段。非細胞總界中只有1界,即病毒界。原核總界分為細菌界和藍菌界。真核總界包括植物界、真菌界和動物界,它們代表真核生物進化的3條主要路線。
❸ 大學生物學什麼
生物學(Biology),簡稱生物,是自然科學六大基礎學科之一。研究生物的結構、功能、發生和發展的規律。以及生物與周圍環境的關系等的科學。生物學源自博物學,經歷實驗生物學、分子生物學而進入了系統生物學時期。形態學
形態學是生物學中研究動、植物形態結構的學科。在顯微鏡發明之前,形態學只限於對動、植物的宏觀的觀察,如大體解剖學、脊椎動物比較解剖學等。比較解剖學是用比較的和歷史的方法研究脊椎動物各門類在結構上的相似與差異,從而找出這些門類的親緣關系和歷史發展。顯微鏡發明之後,組織學和細胞學也就相應地建立起來,電子顯微鏡的使用,使形態學又深入到超微結構的領域。但是形態結構的研究不能完全脫離機能的研究,形態學早已跳出單純描述的圈子,而使用各種先進的實驗手段了。
生理學
生理學是研究生物機能的學科,生理學的研究方法是以實驗為主。按研究對象又分為植物生理學、動物生理學和細菌生理學。植物生理學是在農業生產發展過程中建立起來的。生理學也可按生物的結構層次分為細胞生理學、器官生理學、個體生理學等。在早期,植物生理學多以種子植物為研究對象;動物生理學也大多聯系醫學而以人、狗、兔、蛙等為研究對象;以後才逐漸擴展到低等生物的生理學研究,這樣就發展了比較生理學。
遺傳學
是研究生物性狀的遺傳和變異,闡明其規律的學科。遺傳學是在育種實踐的推動下發展起來的。1900年孟德爾的遺傳定律被重新發現,遺傳學開始建立起來。以後,由於T.H.摩爾根等人的工作,建成了完整的細胞遺傳學體系。瑞士生物學家米舍爾首次發現在細胞核中有一種含磷量極高的物質。20年以後,這種化學成分才被定名為核酸。後來,經過許多科學家的努力,才發現核酸有兩種,一種是脫氧核糖核酸,也就是DNA,具有儲存和遺產信息的作用,另一種是核糖核酸,簡稱RNA,在遺傳信息表達的過程中起著重要的作用。1953年,遺傳物質DNA分子的結構被揭示,遺傳學深入到分子水平。基因組計劃的進展,從基因組、蛋白質組到代謝組的遺傳信息傳遞,以及細胞信號傳導、基因表達調控網路的研究,1995年系統遺傳學的概念、詞彙與原理於中科院提出與發表。遺傳信息的傳遞、基因的調控機制已逐漸被了解,遺傳學理論和技術在農業、工業和臨床醫學實踐中都在發揮作用,同時在生物學的各分支學科中佔有重要的位置。生物學的許多問題,如生物的個體發育和生物進化的機制,物種的形成以及種群概念等都必須應用遺傳學的成就來求得更深入的理解。
胚胎學
是研究生物個體發育的學科,原屬形態學范圍。1859年達爾文進化論的發表大大推動了胚胎學的研究。19世紀下半葉,胚胎發育以及受精過程的形態學都有了詳細精確的描述。此後,動物胚胎學從觀察描述發展到用實驗方法研究發育的機制,從而建立了實驗胚胎學。個體發育的研究採用生物化學方法,吸收分子生物學成就,進一步從分子水平分析發育和性狀分化的機制,並把關於發育的研究從胚胎擴展到生物的整個生活史,形成發育生物學。
生態學
是研究生物與生物之間以及生物與環境之間的關系的學科。研究范圍包括個體、種群、群落、生態系統以及生物圈等層次。揭示生態系統中食物鏈、生產力、能量流動和物質循環的有關規律,不但具有重要的理論意義,而且同人類生活密切相關。生物圈是人類的家園。人類的生產活動不斷地消耗天然資源,破壞自然環境。特別是進入20世紀以後,由於人口急劇增長,工業飛速發展,自然環境遭到空前未有的破壞性沖擊。保護資源、保持生態平衡是人類當前刻不容緩的任務。生態學是環境科學的一個重要組成成分,所以也可稱環境生物學。人類生態學涉及人類社會,它已超越了生物學范圍,而同社會科學相關聯。
生物物理學
生物物理學是用物理學的概念和方法研究生物的結構和功能、研究生命活動的物理和物理化學過程的學科。早期生物物理學的研究是從生物發光、生物電等問題開始的`,此後隨著生物學的發展,物理學新概念,如量子物理、資訊理論等的介入和新技術如 X衍射、光譜、波譜等的使用,生物物理的研究范圍和水平不斷加寬加深。一些重要的生命現象如光合作用的原初瞬間捕捉光能的反應,生物膜的結構及作用機制等都是生物物理學的研究課題。生物大分子晶體結構、量子生物學以及生物控制論等也都屬於生物物理學的范圍。
生物數學
生物數學是數學和生物學結合的產物。它的任務是用數學的方法研究生物學問題,研究生命過程的數學規律。早期,人們只是利用統計學、幾何學和一些初等的解析方法對生物現象做靜止的、定量的分析。20世紀20年代以後,人們開始建立數學模型,模擬各種生命過程。生物數學在生物學各領域如生理學、遺傳學、生態學、分類學等領域中都起著重要的作用,使這些領域的研究水平迅速提高,另一方面,生物數學本身也在解決生物學問題中發展成一獨立的學科。
有少數生物學科是按方法來劃分的,如描述胚胎學、比較解剖學、實驗形態學等。按方法劃分的學科,往往作為更低一級的分支學科,被包括在上述按屬性和類型劃分的學科中。
生物界是一個多層次的復雜系統。為了揭示某一層次的規律以及和其他層次的關系,出現了按層次劃分的學科並且愈來愈受人們的重視。
分子生物學
分子生物學是研究分子層次的生命過程的學科。它的任務在於從分子的結構與功能以及分子之間的相互作用去揭示各種生命過程的物質基礎。現代分子生物學的一個主要分科是分子遺傳學,它研究遺傳物質的復制、遺傳信息的傳遞、表達及其調節控制問題等。
細胞生物學
細胞生物學是研究細胞層次生命過程的學科,早期稱細胞學是以形態描述為主的。以後,細胞學吸收了分子生物學的成就,深入到超微結構的水平,主要研究細胞的生長、代謝和遺傳等生物學過程,細胞學也就發展成細胞生物學了。
個體生物學是研究個體層次生命過程的學科。在復式顯微鏡發明之前,生物學大都是以個體和器官系統為研究對象的。研究個體的過程有必要分析組成這一過程的器官系統過程、細胞過程和分子過程。但是個體的過程又不同於器官系統過程、細胞過程或分子過程的簡單相加。個體的過程存在著自我調節控制的機制,通過這一機制,高度復雜的有機體整合為高度協調的統一體,以協調一致的行為反應於外界因素的刺激。個體生物學建立得很早,直到現在,仍是十分重要的。
種群生物學是研究生物種群的結構、種群中個體間的相互關系、種群與環境的關系以及種群的自我調節和遺傳機制等。種群生物學和生態學是有很大重疊的,實際上種群生物學可以說是生態學的一個基本部分。
以上所述,還僅僅是當前生物學分科的主要格局,實際的學科比上述的還要多。例如,隨著人類的進入太空,宇宙生物學已在發展之中。又如隨著實驗精確度的不斷提高,對實驗動物的要求也越來越嚴,研究無菌生物和悉生態的悉生生物學也由於需要而建立起來。總之,一些新的學科不斷地分化出來,一些學科又在走向融合。生物學分科的這種局面,反映了生物學極其豐富的內容,也反映了生物學蓬勃發展的景象。
❹ 生物數學是什麼
數學和生物學互相滲透形成 的學科。按研究對象和任務的不 同,又分為數學生物學和生物數 學。數學生物學指生物學不同領 域中應用數學方法所產生的一些 新的生物學分支,例如數值分類 學、數量進化論、數量仿生學等; 生物數學指用於生物科學研究中 的數學理論和方法,例如生物統 計學、生物概率論、生物微分方 程、生物系統分析、生物數學模 型、電子計算機的應用、運籌對 策等。
❺ 生物數學的研究內容
根據生命科學的需要,生物數學的內容分為以下幾個主要方面。 所謂生命現象數量化,就是以數量關系描述生命現象。數量化是利用數學工具研究生物學的前提。生物表現性狀的數值表示是數量化的一個方面。生物內在的或外表的,個體的或群體的,器官的或細胞的,直到分子水平的各種表現性狀,依據性狀本身的生物學意義,用適當的數值予以描述。數量化還表現在引進各種定量的生物學概念,並進行定量分析。如體現生物親緣關系的數值是相似性系數。各種相似性系數的計算方法以及在此基礎上的聚類運算構成數量分類學表徵分類的主要內容。遺傳力表示生物性狀遺傳給後代的能力,對它的計算以及圍繞這個概念的定量分析是研究遺傳規律的一個重要部分。多樣性,在生物地理學和生態學中是研究生物群落結構的一個抽象概念,它從種群組成的復雜和紊亂程度體現群落結構的特點。多樣性的定量表示方法基於信息理論。
數量化的實質就是要建立一個集合函數,以函數值來描述有關集合。傳統的集合概念認為一個元素屬於某集合,非此即彼、界限分明。可是生物界存在著大量界限不明確的、「軟」的模糊現象,如此「硬」的集合概念不能貼切地描述這些模糊現象,給生命現象的數量化帶來困難。1965年L.A.扎德提出模糊集合概念,模糊集合適合於描述生物學中許多「軟」的模糊現象,為生命現象的數量化提供了新的數學工具。以模糊集合為基礎的模糊數學已廣泛應用於生物數學。 為了研究的目的而建立,並能夠表現和描述真實世界某些現象、特徵和狀況的數學系統,稱為數學模型。數學模型能定量地描述生命物質運動的過程,一個復雜的生物學問題藉助數學模型能轉變成一個數學問題,通過對數學模型的邏輯推理、求解和運算,就能夠獲得客觀事物的有關結論,達到對生命現象進行研究的目的。
例如描述種群增長最簡單的模型是馬爾薩斯方程:(圖一)(常數r>0)式中N表示種群的數量;r是種群增長的相對速率。方程的解為(圖二)式中N0表示時間為t0時初始種群大小。這個模型簡單地描述種群按幾何級數增長的過程。從數學模型獲得的結果應該符合實際情況,否則對模型應進行修改,使之盡可能正確地表達生命物質運動的真實情況。模型的不斷完善是對生命現象認識逐漸深入的過程。上述模型的解,種群隨時間推後無限增大,這個結果顯然不合理。如果考慮有限生存條件的限制,改進之後的模型有費爾許爾斯特-珀爾方程,又稱Logistic方程 (圖三)。 (常數a,b>0)如果初始值取(圖四),方程的解(圖五)當t→∞,解的漸近值是a/b,它表示種群受生存條件限制不可能超過的極限。這個模型比較正確地表示種群增長的規律,具有廣泛用途。描述捕食與被捕食兩個種群相剋關系的數學模型是洛特卡-沃爾泰拉方程:(圖六)常數a1、a2、b1和b2>0)其中N1和N2分別表示被捕食和捕食種群的大小。方程的解是
a2lnN1+α1lnN2-b2N1-b1N2=C其中C為積分常數,由初始條件(初始兩個種群大小)確定。不同的初始條件得到相應的曲線簇,從曲線的形狀可以看出種群此起彼落周期性的變化(圖1)。對模型的進一步分析可知,如果捕食與被捕食種群以相同的比例減小,將有利於被捕食種群大量增長。這個結果從理論上說明了不適當地使用農葯,在毒殺害蟲的同時也殺死了害蟲的天敵,而常常導致害蟲更猖獗地發生。利用方程的解,還可算出種群變化的近似周期和振幅等十分有意義的結果。A.L.霍奇金和A.F.赫胥黎從生物膜上電離子的遷移闡明神經興奮傳導的機理。他們建立的模型屬於二階偏微分方程,稱霍奇金-赫胥黎方程(H-H方程): (圖七)
其中V表示神經纖維膜電位,R是軸向電阻率,α是軸突半徑,x表示神經纖維軸向距離。等式左邊代表膜電容產生的電流分量;右邊第一項代表神經纖維橫截面電流變化率;右邊其餘三項分別代表鉀、鈉和其他離子產生的電流分量。霍奇金曾以槍烏賊神經纖維為實驗材料,根據H-H方程計算得到的曲線與實驗結果吻合得很好(見生物膜離子通道)。
一種比H-H方程更一般的方程類型,稱為反應擴散方程。作為數學模型這一類方程在生物學中廣為應用,它與生理學、生態學、群體遺傳學、醫學中的流行病學和葯理學等研究有較密切的關系。 多元分析適應生物學等多元復雜問題的需要、在統計學中分化出來的一個分支領域。它是從統計學的角度進行綜合分析的數學方法。多元統計的各種矩陣運算體現多種生物實體與多個性狀指標的結合,在相互聯系的水平上,綜合統計出生命活動的特點和規律性。
系統論和控制論 以系統和控制的觀點,進行綜合分析的數學方法。
例如有一個生態系統,包括水、一個水生植物種群和一個草食動物種群,研究物質磷在系統中的變化過程。水、水生植物和草食動物含有磷的數量是系統的基本變數,分別以x1、x2和x3表示,稱為狀態變數;以u表示磷從流水中帶進系統的速率,稱為輸入量;分別以y1和y2表示磷從水中流失和草食動物帶出系統的速率,稱為輸出量。系統內部磷的變化關系見圖2。考慮每個狀態變數的變化,得到描述該系統的方程,稱為狀態方程:(圖八)其中Ci(i=1,2,…,6)是一組參數。當參數值、輸入、輸出以及初始狀態給定以後,物質磷在系統中的變化可由方程完全確定。對方程進行分析或者利用電腦求解,就可以認識磷在系統中變化的規律。
實際情況遠比這個虛構的例子復雜。一個系統可以是多輸入、多輸出,狀態變數的個數可大到幾十,甚至上百,它顯示生命活動異常復雜的情形。
可控系統的最優控制是控制理論的中心問題。所謂最優控制,就是從實際需要出發設計適當的性能指標,在一定的約束條件下選取輸入u(t),使性能指標取最小值。尋求生物系統最優控制的方法常常採用龐特里雅金最小值原理和貝爾曼的動態規劃,有關農業、林業、醫學和環境問題的最優控制可望獲得解決。 概率與統計方法的應用還表現在隨機數學模型的研究中。原來數學模型可分為確定模型和隨機模型兩大類。如果模型中的變數由模型完全確定。
這里舉出一種離散的隨機數學模型,稱為馬爾科夫鏈。考慮具有兩個等位基因A與α的群體,如果相應的基因頻率分別是p和q,三種基因型AA,Aa和aa在群體中的分配比率構成向量【PHQ】(P+H+Q=1)。在一定的假設條件下,按馬爾科夫鏈的數學模型,描述該群本隨機交配的遺傳過程。經過第一代隨機交配,基因型分配比率將從向量【PHQ】轉變為(圖九) 等式左邊的矩陣是轉移矩陣,不難驗證該馬爾科夫鏈是正則的,不動點向量就是【p22pqq2】。 這個結果說明基因頻率的不變性,也就是群體遺傳學中的哈迪-魏因貝格定律:隨機交配的群體在沒有外界遷入、定向選擇、基因突變和遺傳漂變的條件下,基因頻率保持不變。
馬爾科夫鏈數學模型不僅對遺傳學重要,如果使狀態變數代表不同的意義,它還能適用於更廣泛的生物學問題,如生態、環境和醫學等。下面是一個流行病學的例子。討論某地區某種傳染病的流行,分4個狀態:敏感者、患病者、免疫者和死亡。建立的馬爾科夫鏈數學模型可以由轉移圖的形式表示(圖3)。這是一個吸收馬爾科夫鏈,利用這個模型可以分析疾病流行的規律。 不連續性是一切物質存在的基本屬性。首先物質和能量兩個最基本的概念是不連續的;再看生命現象,物種、個體、細胞、基因等等都是生命活動不連續的最小單位,不連續性表現尤其突出。因此,不連續的數學方法在生物數學中佔有重要地位。再舉單一種群增長的生態模型討論。若考慮個體生活年齡,按年齡單位將個體分屬於不同年齡組。令Nit代表在時刻t,年齡為i的個體數;Pi表示年齡在i能活到i+1的存活率;Fi表示年齡在i的增殖率。則新增殖的個體數(圖十),其中m代表該群體年齡可能達到的上界。於是種群變化的規律可以用下面的矩陣運算表示,(圖十一) 這就是著名的萊斯利模型。這個模型是離散的,它不僅表示種群增長的速度,而且還顯示出年齡分布狀況,從年齡分布的結構上展示整個種群變化的規律。因而遠遠勝過前面所舉單一種群增長連續模型。
描述生命現象的離散模型有兩態和多態之分。馬爾科夫鏈和萊斯利模型都屬於多態;兩態的模型應生物學的二元表現狀態而產生。如神經興奮沿著神經細胞的軸突,經過突觸在閥的控制下傳給另一個神經細胞,興奮波的通過與否就是一個二元表現狀態。1943年W.S.麥卡洛克和W.皮茨在布爾代數的基礎上,首次給出描述神經傳遞現象的離散模型。此模型不斷改進,並藉助電腦加以實現,已做到模擬許多較復雜的神經功能,成為探索人類大腦思維奧秘的一個重要手段(見人工智慧)。
不連續數學方法還表現在對連續方法的補充。微積分學的基本理論指出,函數的可微性蘊涵著連續性。因此以微分運算為基礎的數學模型都是連續的。這些模型只能適用於連續變化范圍,對於連續函數出現不連續點或奇點(包括導函數不連續點)情形,將無能為力。而恰恰在這些破壞了連續性的區域,卻常常是生物學需要研究的課題。
60年代末,法國數學家R.托姆從拓撲學提出一種幾何模型,能夠描繪多維不連續現象,他的理論稱為突變論。
繼R.托姆之後,躍變論不斷地發展。例如E.C.塞曼又提出初級波和二級波的新理論。
上述各種生物數學方法的應用,對生物學產生重大影響。20世紀50年代以來,生物學突飛猛進地發展,多種學科向生物學滲透,從不同角度展現生命物質運動的矛盾,數學以定量的形式把這些矛盾的實質體現出來。從而能夠使用數學工具進行分析;能夠輸入電腦進行精確的運算;還能把來自各方面的因素聯系在一起,通過綜合分析闡明生命活動的機制。生物數學在農業、林業、醫學、環境科學、社會科學和人口控制等方面的應用,已經成為人類從事生產實踐的手段。
當今的生物數學仍處於探索和發展階段。生物數學的許多方法和理論還很不完善,它的應用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強的。許多更復雜的生物學問題至今未能找到相應的數學方法進行研究。因此,生物數學還要從生物學的需要和特點,探求新方法、新手段和新的理論體系,還有待發展和完善。
❻ 生物數學是什麼專業,哪些學校有
生物數學是在生物學的不同領域中應用數學工具對生命現象進行研究的學科。其一般方法是建立被研究對象的數學模型並對其進行定性和定量研究,主要應用的數學方法有:微分方程、線性代數、概率論和數理統計、抽象代數、拓撲學、突變理論等,電子計算機的發展使生物數學的研究又有了新的突破。生物數學的內容是多
生物數學方面的:生物統計、數量遺傳、數學生態和數學生物分類學可做為四大分支。生物統計學用統計方法研究生物界的客觀現象;數量遺傳學用數學方法研究在各種不同情況下全體基因型的變化,研究數量性遺傳規律;數學生態學用數學理論和和方法描述生態系統的的行為動態定量關系,建立各種生態模型,模擬動物行為;數學生物分類學使用現代數學方法和工具(特別是電子計算機)對古老的生物分類學進行研究。數學方法幾乎滲透到生物學的每個角落。有人預言:生物學將會取代物理學成為使用數學工具最多的部門,21世紀可能是生物數學的黃金時代。