A. 生物技術有何應用
生物技術,是20世紀70年代初開始興起的一門新興的綜合性應用學科,盡管起步晚,但是發展迅速,是解開生命之謎、創造新物種的鑰匙。比爾蓋茨在1996年說過:「生物科技將像電腦軟體一樣改變這個世界。」科學家預言,生物將取代物理。未來的時代不再是礦物時代而是生物時代,誰掌握了先進的生物技術,誰就將主宰未來。
一、生物工程技術的基礎
生物技術包含一系列的技術,它可利用生物體或細胞生產我們所需要的生物,這些新技術包括基因重組、細胞融合和一些生物製造程序等等。其實人類利用生物體或細胞生產我們所需要生物的歷史已經非常悠久,例如在1萬年前開始耕種和畜牧以提供穩定的糧食來源,6000年前利用發酵技術釀酒和做麵包,2000年前利用黴菌來治療傷口,1797年開始使用天花疫苗,1928年發現抗生素盤尼西林等。既然人類使用生物科技的歷史這么久,為什麼近年來生物技術又突然吸引大家的注意呢。這是因為20世紀中期,人類對構成生物體最小單位,即細胞及控制細胞遺傳特徵的基因有了更深入的了解,20世紀70年代又發展出基因重組和細胞融合技術。由於這兩項技術可以更有效、更快速地讓細胞或生物體生產出我們所需要的新物質,且適合工業或農業量產,因此從20世紀80年代開始,造就了一個新興的生物科技產業。
生物工程技術包括五大工程,即基因工程、細胞工程、發酵工程、酶工程和生物反應器工程。在這五大領域中,前兩者作用是將常規菌(或動植物細胞株)作為特定遺傳物質受體,使它們獲得外來基因,成為新物種。後三者的作用則為新物種創造良好的生長與繁殖條件,進行大規模的培養,以充分發揮其內在潛力,為人們提供巨大的經濟效益和社會效益。
1.基因工程
隨著DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,生物學家不再僅僅滿足於探索、揭示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性,這種分子水平的干預是這樣實現的:將一種生物的DNA中的某個遺傳密碼片斷,連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,設計出新的遺傳物質並創造出新的生物類型。這與過去培育生物繁殖後代的傳統做法完全不同,它很像技術科學的工程設計,即按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就被稱為「基因工程」,或者稱之為「遺傳工程」。
基因工程在20世紀取得了很大的進展,這至少有兩個成功典範。一是轉基因動植物,一是克隆技術。轉基因動植物由於植入了新的基因,使得動植物具有了原先沒有的全新的性狀,這引起了一場農業革命。如今,轉基因技術已經開始廣泛應用,如抗蟲西紅柿、生長迅速的鯽魚等。1997年世界十大科技突破之首是克隆羊的誕生。這只叫「多利」的母綿羊是第一隻通過無性繁殖產生的哺乳動物,它完全秉承了給予它細胞核的那隻母羊的遺傳基因。「克隆」一時間成為人們注目的焦點。
2.細胞工程
指應用現代細胞生物學、發育生物學、遺傳學和分子生物學的理論與方法,按照人們的需要和設計,在細胞水平上重組細胞的結構和內含物,以改變生物的結構和功能,快速繁殖和培養出人們所需要的新物種的生物工程技術。細胞工程的優勢在於避免了分離、提純、剪切、拼接等基因操作,只需將細胞遺傳物質直接轉移到受體細胞中就能夠形成雜交細胞,因而能夠提高基因的轉移效率。通俗地講,細胞工程是在細胞水平上動手術,也稱細胞操作技術,包括細胞融合技術、細胞器移植、染色體工程和組織培養技術。通過細胞融合技術,可以培育出新物種,打破了傳統的只有同種生物雜交的限制,實現物種間的雜交。這項技術不僅可以把不同種類或者不同來源的植物細胞或者動物細胞進行融合,還可以把動物細胞與植物細胞融合在一起。這對創造新的動植物和微生物品種具有前所未有的重大意義。
3.酶工程
酶工程又稱生物轉化反應,是利用生物學方法以酶為催化劑,使一種物質迅速轉化為另一種物質的技術。它不需要傳統的化學轉化所必不可少的高溫、高壓、強酸、強鹼等條件,節省能源,效率極高。酶工程最突出的成就是微生物發電。最原始的酶工程要追溯到人類的游牧時代。那時候的牧民已經會把牛奶製成乳酪,以便於貯存。他們從長期的實踐中摸索出一套制乳酪的經驗,其中關鍵的一點是要使用少量小牛犢的胃液。用現代的眼光看那就是在使用凝乳酶。此後,在開發使用酶的早期,人們使用的酶也多半來自動物的臟器和植物的器官。例如,從豬的胰臟中取得胰蛋白酶來軟化皮革;從木瓜的汁液中取得木瓜蛋白酶來防止啤酒混濁;用大麥麥芽的多種酶來釀造啤酒;等等。然而,隨著酶的開發應用的擴展,這些從動植物中取得的酶已經遠遠不能滿足人們需要了。人們把眼光轉向了微生物。
微生物是發酵工程的主力軍。在發酵工程里(或者說在自然界也一樣),微生物之所以有那麼大的神通,能迅速地把一種物質轉化為另一種物質,正是因為它們體內擁有神奇的酶,正是那些酶在大顯神通。說到底,發酵作用也就是酶的作用。
微生物種類繁多,繁殖奇快。要發展酶工程,微生物自然應該是人們獲取酶、生產酶的巨大寶庫、巨大資源。事實上,目前酶工程中涉及的酶絕大部分來自於微生物。
酶工程,可以分為兩部分。一部分是如何生產酶,一部分是如何應用酶。用微生物來生產酶,是酶工程的半壁江山。
4.發酵工程
指採用現代工程技術手段,利用微生物的某些特定功能,為人類生產有用的產品,或直接把微生物應用於工業生產過程的一種技術。發酵工程的內容包括菌種選育、滅菌、接種和產品的分離提純(生物分離工程)等方面。
5.生物反應器工程
生物反應器是指為細胞增殖或生化反應提供適宜環境的設備,它是生物反應過程中的關鍵設備。生物反應器的結構、操作方式和操作條件的選定,對生物化工產品的質量、收率(轉化率)和能耗有直接影響。生物反應器的設計、放大是生化反應工程的中心內容,也是生物化學工程的重要組成部分。從生物反應過程說,發酵過程用的生物反應器稱為發酵罐;酶反應過程用的生物反應器則稱為酶反應器。另一些專為動植物細胞大量培養用的生物反應器,專稱為動植物細胞培養裝置。顧名思義,生物反應器工程就是研製各種生物反應器的工程。
基因工程、細胞工程、酶工程和發酵工程不是孤立存在的,而是彼此互相關聯、互相滲透。例如用基因重組技術和細胞融合技術可以創造出許多具有特殊功能和多功能的工程菌和超級菌,再通過微生物發酵來產生新的有用物質。再如酶工程和發酵工程相結合,可以改革發酵工藝,大大提高產量。
二、神秘的軍事生物技術
在引發21世紀武器裝備革命性變化的高新技術中,迅速興起的生物技術發展勢頭正猛。未來的武器裝備、後勤保障和軍用醫葯等各個方面,都將離不開生物技術的支撐。有識之士認為,現代化生物武器是一支重要的威懾力量,在未來戰場上,比原子彈更可怕。
以生命科學為基礎的綜合性技術——生物技術將成為軍事高技術的制高點。
1.人稱「種族武器」和「世界末日武器」的基因武器
基因武器就是在生物遺傳工程技術的基礎上,用人為的方法,按照軍事上的需要,利用基因重組技術,復制大量致病微生物的遺傳基因,並製成生物戰劑放入施放裝置內所構成的武器。它能改變非致病微生物的遺傳物質,使其產生具有顯著抗葯性的致病菌,利用人種生化特徵上的差異,使這種致病菌只對特定遺傳特徵的人們產生致病作用,從而有選擇地消滅敵方有生力量。因此,科學家們也稱這種「只對敵方具有殘酷殺傷力,而對己方毫無影響」的新型生物武器為「種族武器」。按照美國國家人類基因組研究中心的報告,由多國聯手開展的人類基因組計劃,預計於2003年完成,屆時將可排列出組成人類染色體的30億個鹼基對的DNA序列,揭開生命與疾病之謎。一旦不同種群的DNA被排列出來,就可以生產出針對不同人類種群的基因武器。
基因武器殺傷力極強,遠非普通的生物戰劑所能比擬。據估算,用5000萬美元建造一個基因武器庫,其殺傷效能遠遠超過50億美元建造的核武器庫。某國曾利用細胞中的脫氧核糖核酸的生物催化作用,把一種病毒的DNA分離出來,再與另一種病毒的DNA相結合,拼接成一種具有劇毒的「熱毒素」基因戰劑,用其萬分之一毫克就能毒死100隻貓;倘用其20g,就足以使全球55億人死於一旦。正因為如此,國外有人將「基因武器」稱為「世界末日武器」。科學家認為,不能排除隨著基因操作等知識的日益普及,基因技術被用於製造基因武器的可能。甚至有人預測,基因武器將在5至10年內出現。
2.威力巨大的生物炸彈
利用生物技術製造炸葯,生產過程簡單,成本低,燃燒充分,爆炸力強,威力比常規炸葯大3~6倍。用生物炸葯製成的武器戰斗可使武器的戰術、技術性能提高一個數量級。
3.智能化的軍用仿生導航系統
自然界中許多動物具有導航能力。研究發現,鳥體的導航系統只有幾毫克,但精確度極高,探測誤差小於0.03微瓦/平方米。目前已有一些國家在利用生物技術手段模擬動物的導航系統來簡化軍事導航系統,以提高精度,縮小體積,減輕重量,降低成本,增強在復雜條件下的導航能力。
4.敏銳的軍用生物感測器
把生物活性物質,如受體、酶、細胞等與信號轉換電子裝置結合成生物感測器,不但能准確識別各種生化戰劑,而且探測速度快、判斷准確,與計算機配合可及時提出最佳的防護和治療方案。美國國防部於1990年將生物感測器列入國防關鍵技術,2000年就製造出了機器人生物感測器。生物感測器還可通過測定炸葯、火箭推進劑的降解情況來發現敵人庫存的地雷、炮彈、炸彈、導彈等裝備的數量和位置,它將成為實施戰場偵察的有效手段。
5.取之不盡的軍用生物能源
目前主戰兵器的機動裝備大都以汽油、柴油為燃料,跟蹤補給任務重、要求高。生物技術可利用紅極毛桿菌和澱粉製成氫,每消耗1克澱粉就可生產出1毫升氫。氫和少量燃料混合即可替代汽油、柴油。這樣,機動裝備只需要帶少量的澱粉,就能進行長時間遠距離的機動作戰。日本、加拿大等國把細菌和真菌引入酵母,酶解纖維生產酒精,或用基因工程方法使大腸桿菌把葡萄糖轉化為酒精,代替汽油或柴油,可隨時為軍隊的機動裝備提供大量的生物燃料。
6.奇異的軍用生物裝具
即利用生物技術就地取材提供高能量的作戰軍需品。如美國陸軍研究發展和工程中心已經從織網蜘蛛中分離出合成蜘蛛絲的基因,從而能夠生產蛛絲;還可將基因轉移到細菌中生產可溶性絲蛋白,經濃縮後可紡成一種特殊的纖維,其強度超過鋼,可用於生產防彈背心、防彈頭盔、降落傘繩索和其他高強度輕型裝備。
7.療效快捷的軍用生物醫葯
生物技術可以製造新的疫苗、葯物和新的醫療方法。如利用生物技術生產血液代用品,已受到世界各國的重視,人造血液可望緩解戰場上血漿的供需矛盾。利用生物技術生產的高效傷口癒合材料,有望進行大規模生產。科學家正研究用重組工程菌進一步提高殼多糖(有促進傷口癒合功能)的產量。美國一些公司與陸軍醫療中心正在從事用生物技術合成「人造皮膚」的研製工作。
8.不可思議的軍用仿生動力
人和動物的肌肉具有驚人的力量,人體全身的600餘塊肌肉朝一個方向收縮,其力量可達25噸!目前,軍事仿生專家已用聚丙烯酸等聚合物製成了「人工肌肉」,把它放入鹼或酸介質中,便能產生強烈的收縮或鬆弛,直接把化學能轉變成機械能。為盡快製造出實用的肌肉發動機,專家們設想用膠原蛋白作材料。膠原蛋白分子呈螺旋狀結構,類似彈簧。將其浸入溴化鋰溶液後即迅速收縮,從而做功,用純水洗去溴化鋰,膠原蛋白就恢復到原來長度。這種「肌肉發動機」沒有齒輪、活塞和杠桿,故體積小、重量輕、無噪音、操作簡便,還省去了體大笨重易燃易爆的油箱,用來製造兵器,可大大提高機動力和生存力。
9.怪異的軍用動物武器
訓練動物參戰,自古有之。但人們運用生物工程技術,創造一些「智商」高、體力強、動作敏捷和繁殖速度快、飼養簡單的動物,去充當「戰斗動物兵」並非遙遠。1992年,世界上第一頭帶有人類遺傳特徵的短吻、小眼睛、大耳朵、被稱為「阿斯特里德」的豬,在倫敦降生了。到第二年,英國就有37頭豬帶上了人類基因。科學家的目的是為了實現跨物種器官移植,以解決目前移植手術中器官來源不足的難題。但由此不難想像,隨著基因技術的發展,用這一技術「雜交」出一些怪物,甚至「人造人」,完全是有可能的。
此外,生物加工處理技術在軍事領域也有廣泛的應用。目前正在研究的課題有:生化戰劑的洗消、危險廢物的生物降解、生物除雷、生物防核污染等。已經初步研製出了無腐蝕、低成本、高速度、便於攜帶的清洗生化戰劑的生物酶,清除殘餘地雷、水雷,降解TNT炸葯的生物體和能除去鈾、鐳、砷等有毒有害元素的微生物。
B. 水、醇、酶綜合提取生物技術是什麼
一般這種技術就是提取橋此生物的大分子比凳消賀如DNA,用這些提取的特點式不會破壞生物大分子的結構和活性,只是利用物理的溶解,比如DNA在醇中的溶解度很大可以用醇把DNA先提取出來棗派,再用其他溶解使DNA沉澱,但是這種提取的方法純度不能保證,實驗的差異性也很大
C. 什麼是生物技術,它如何改變人類的生活方式
什麼是生物技術,它如何改變人類的生活方式?兩年後,黃令儀學成返校,在華中工學院創建了半導體專業,並親自講授半導體器件與材料課。她帶領一批年輕的教工和學生,風風火火地創建了國內首個半導體實驗室。他一遍一遍和需要幫助的人分享著經驗。「第一面怎麼和孩子對話,怎麼保護好數雀孩子薯坦早,孩子能不能回到原家庭,很多家長沒有經驗。我就信空想著怎麼幫這件事辦好,人家的孩子也一樣。」申軍良說。
D. 生物技術的細胞工程
關於細胞工程的定義和范圍還沒有一個統一的說法,一般認為,細胞工程是根據細胞生物學和分子生物學原理,採用細胞培養技術,在細胞水平進行的遺傳操作。細胞工程大體可分染色體工程、細胞質工程和細胞融合工程。
1、細胞培養技術
細胞培養技術是細胞工程的基礎技術。所謂細胞培養,就是將生物有機體的某一部分組織取出一小塊,進行培養,使之生長、分裂的技術。細胞培養又叫組織培養。近二十年來細胞生物學的一些重要理論研究的進展,例如細胞全能性的揭示,細胞周期及其調控,癌變機理與細胞衰老的研究,基因表達與調控等,都是與細胞培養技術分不開的。
體外細胞培養中,供給離開整體的動植物細胞所需營養的是培養基,培養基中除了含有豐富的營養物質外,一般還含有刺激細胞生長和發育的一些微量物質。培養基一般有固態和液態兩種,它必須經滅菌處理後才可使用。此外,溫度、光照、振盪頻率等也都是影響培養的重要條件。
植物細胞與組織培養的基本過程包括如下幾個步驟:
第一步,從健康植株的特定部位或組織,如根、莖、葉、花、果實、花粉等,選擇用於培養的起始材料(外植體)。
第二步,用一定的漏好化學葯劑(最常用的有次氯酸鈉、升汞和酒精等)對外植體表面消毒,建立無菌培養體系。
第三步,形成愈傷組織和器官,由愈傷組織再分化出芽並可進一步誘導形成小植株。
動物細胞培養有兩種方式。一種叫非貼壁培養:也就是細胞在培養過程中不貼壁, 條件較為復雜, 難度也大一些,但是容易同時獲得大量的培養細胞。這種方法一般用於淋巴細胞、腫瘤細胞和一些轉化好含細胞的培養。另一種培養方式是貼壁培養:也稱為細胞貼壁,貼壁後的細胞呈單層生長,所以此法又叫單層細胞培養。大多數哺乳動物細胞的培養必須採用這種方法。
動物細胞不能採用離體培養,以人的皮膚細胞培養為例,動物細胞培養的主要步驟如下:
第一步,在無菌條件下,從健康動物體內取出適量組織,剪切成小薄片。
第二步,加入適宜濃度的酶與輔助物質進行消化作用使細胞分散。
第三步,將分散的細胞進行洗滌並純化後,以適宜的濃度加在培養基中,37℃下培養,並適時進行傳代。
在細胞培養中,我們經常使用一個詞——克隆。克隆一詞是由英文clone音譯而來,指無性繁殖以及由無性繁殖而得到的細胞群體或生物群體。細胞克隆是指細胞的一個無性繁殖系。自然界早已存在天然的克隆,例如,同卵雙胞胎實際上就是一種克隆。
基因工程中,還有稱為分子克隆(molecular cloning)的,是科恩等在 1973年提出的。分子克隆發生在DNA分子水平上,是指從一種細胞中把某種基因提取出來作為外源基因,在體外與載體連接,再將其引入另一受體細胞自主復制而得到的DNA分子無性系。
2、細胞核移植技術
由於克隆是無性繁殖,所以同一克隆內所有成員的遺傳構成是完全相同的,這樣有利於忠實地保持原有品種的優良特性。人們開始探索用人工的方法來進行高等動物克隆。哺乳動物克隆的方法主要有胚胎分割和細胞核移植兩種。其中,細胞核移植是發展較晚但富有潛力的一門新技術。
細胞核移植技術屬於細胞質工程。所謂細胞核移植技術,是指用機械的辦法把一個被稱為「供體細胞」的細胞核(含遺傳物質)移入另一個除去了細胞核被稱為「受體」的細胞中,然後這一重組細胞進一步發育、分化。核移植的原理是基於動物細胞的細胞核的全能性。
採用細胞核移植技術克隆動物的設想,最初由一位德國胚胎學家在1938年提出。從1952年起,科學家們首先採用兩棲類動物開展細胞核移植克隆實驗,先後獲得了蝌蚪和成體蛙。1963年,我國童第周教授領導的科研組,以金魚等為材料,研究了魚類胚胎細胞核移植技術,獲得成功。到1995年為止,在主要的哺乳動物中,胚胎細胞核移植都獲得成功,但成體動物已分化細胞的核移植一直未能取得成功。
1996年,英國愛丁堡羅斯林研究所,伊恩?維爾穆特研究小組成功地利用細胞核移植的方法培養出一隻克隆羊——多利,這是世界上首次利用成年哺乳動物的體細胞進行細胞核移植而培養出的克隆動物。。
在核移植中,並不是所有的細胞都可以作為核供體。作為供體的細胞有兩種:一種是胚胎細胞,一種是某些體細胞。
研究表明,卵細胞、卵母細胞和受精卵細胞都是合適的返襪鉛受體細胞。
2000年6月,我國西北農林科技大學利用成年山羊體細胞克隆出兩只「克隆羊」,這表明我國科學家也掌握了哺乳動物體細胞核移植的尖端技術。
核移植的研究,不僅在探明動物細胞核的全能性、細胞核與細胞質關系等重要理論問題方面具有重要的科學價值,而且在畜牧業生產中有著非常重要的經濟價值和應用前景。
3、細胞融合技術
細胞融合技術屬於細胞融合工程。細胞融合技術是一種新的獲得雜交細胞以改變細胞性能的技術,它是指在離體條件下,利用融合誘導劑,把同種或不同物種的體細胞人為地融合,形成雜合細胞的過程。細胞融合術是細胞遺傳學、細胞免疫學、病毒學、腫瘤學等研究的一種重要手段
動物細胞融合的主要步驟是:
第一步,獲取親本細胞。將取樣的組織用胰蛋白酶或機械方法分離細胞,分別進行貼壁培養或懸浮培養。
第二步,誘導融合。把兩種親本細胞置於同一培養液中,進行細胞融合。動物細胞的融合過程一般是:兩個細胞緊密接觸→細胞膜合並→細胞間出現通道或細胞橋→細胞橋數增加擴大通道面積→兩細胞融合為一體。
植物細胞融合的主要步驟是:
第一步,制備親本原生質體。
第二步,誘導融合。
微生物細胞的融合步驟與植物細胞融合基本相同。
從20世紀70年代開始,已經有許多種細胞融合成功,有植物間、動物間、動植物間甚至人體細胞與動植物間的成功融合的新的雜交植物,如 「西紅柿馬鈴薯」、「擬南芥油菜」和「蘑菇白菜」等。(圖4-36是利用細胞融合培育雜交植物)從目前的技術水平來看,人們還不能把許多遠緣的細胞融合後培養成雜種個體,尤其是動物細胞難度更大。
酶工程、發酵工程與蛋白質工程
1、酶工程酶工程是指利用酶、細胞或細胞器等具有的特異催化功能,藉助生物反應裝置和通過一定的工藝手段生產出人類所需要的產品。它是酶學理論與化工技術相結合而形成的一種新技術。
酶工程,可以分為兩部分。一部分是如何生產酶,一部分是如何應用酶。
酶的生產大致經歷了四個發展階段。最初從動物內臟中提取酶,隨著酶工程的進展,人們利用大量培養微生物來獲取酶,基因基因工程誕生後,通過基因重組來改造產酶的微生物,近些年來,酶工程又出現了一個新的熱門課題,那就是人工合成新酶,也就是人工酶。
酶在使用中也存在著一些缺點。如遇到高溫、強酸、強鹼時就會失去活性,成本高,價錢貴。實際應用中酶只能使用一次等。利用酶的固定化可以解決這些問題,它被稱為是酶工程的中心。
60年代初,科學家發現,許多酶經過固定化以後,活性絲毫未減,穩定性反而有了提高。這一發現是酶的推廣應用的轉折點,也是酶工程發展的轉折點。如今,酶的固定化技術日新月異。它表現在兩方面:
一是固定的方法。目前固定的方法有四大類:吸附法、共價鍵合法、交聯法和包埋法。
二是被固定下來的酶,具有多種酶,能催化一系列的反應。
與自然酶相比,固定化酶和固定化細胞具有明顯的優點:
1、可以做成各種形狀,如顆粒狀、管狀、膜狀,裝在反應槽中,便於取出,便於連續、反復使用;
2、穩定性提高,不易失去活性,使用壽命延長;
3、便於自動化操作,實現用電腦控制的連續生產。
如今已有數十個國家採用固定化酶和固定化細胞進行工業生產,產品包括酒精、啤酒、各種氨基酸、各種有機酸以及葯品等等。
2、發酵工程
現代的發酵工程。又叫微生物工程,指採用現代生物工程技術手段,利用微生物的某些特定的功能,為人類生產有用的產品,或直接把微生物應用於工業生產過程。
發酵是微生物特有的作用,幾千年前就已被人類認識並且用來製造酒、麵包等食品。20世紀20年代主要是以酒精發酵、甘油發酵和丙醇發酵等為主。20世紀40年代中期美國抗菌素工業興起,大規模生產青黴素以及日本谷氨酸鹽(味精)發酵成功,大大推動了發酵工業的發展。
20世紀70年代,基因重組技術、細胞融合等生物工程技術的飛速發展,發酵工業進入現代發酵工程的階段。不但生產酒精類飲料、醋酸和麵包,而且生產胰島素、干擾素、生長激素、抗生素和疫苗等多種醫療保健葯物,生產天然殺蟲劑、細菌肥料和微生物除草劑等農用生產資料,在化學工業上生產氨基酸、香料、生物高分子、酶、維生素和單細胞蛋白等。
從廣義上講,發酵工程由三部分組成:上游工程,發酵工程和下游工程。其中上游工程包括優良種株的選育,最適發酵條件(pH、溫度、溶解氧和營養組成)的確定,營養物的准備等。發酵工程主要指在最適發酵條件下,發酵罐中大量培養細胞和生產代謝產物的工藝技術。下游工程指從發酵液中分離和純化產品的技術。
發酵工程的步驟一般包括:
第一步,菌種的選育。
第二步,培養基的制備和滅菌。
第三步,擴大培養和接種。
第四步,發酵過程。
第五步,分離提純。
發酵工程在醫葯工業、食品工業、農業、冶金工業、環境保護等許多領域得到廣泛應用。
3、蛋白質工程
在現代生物技術中,蛋白質工程是在20世紀80年代初期出現的。蛋白質工程是指在深入了解蛋白質空間結構以及結構與功能的關系,並在掌握基因操作技術的基礎上,用人工合成生產自然界原來沒有的、具有新的結構與功能的、對人類生活有用的蛋白質分子。
蛋白質工程的類型主要有兩種:
一是從頭設計,即完全按照人的意志設計合成蛋白質。從頭設計是蛋白質工程中最有意義也是最困難的操作類型,目前技術尚不成熟,已經合成的蛋白質只是一些很小的短肽。
二是定位突變與局部修飾,即在已有的蛋白質基礎上,只進行局部的修飾。這種通過造成一個或幾個鹼基定位突變,以達到修飾蛋白質分子結構目的的技術,稱為基因定位突變技術。
蛋白質工程的基本程序是:首先要測定蛋白質中氨基酸的順序,測定和預測蛋白質的空間結構,建立蛋白質的空間結構模型,然後提出對蛋白質的加工和改造的設想,通過基因定位突變和其它方法獲得需要的新蛋白質的基因,進而進行蛋白質合成。(圖4-37)
由於蛋白質工程是在基因工程的基礎上發展起來的,在技術方面有很多同基因工程技術相似的地方,因此蛋白質工程也被稱為第二代基因工程。
蛋白質工程為改造蛋白質的結構和功能找到了新途徑,而且還預示人類能設計和創造自然界不存在的優良蛋白質的可能性,從而具有潛在的巨大社會效益和經濟效益。
E. 生物制葯是什麼意思
分類: 理工學科
問題描述:
如題..請用白話文解釋
解析:
是醫學上通過生物技術生產出大量廉價的防治人類疾病的葯物,如入胰島素、干擾素、生長激素、乙型肝炎疫苗等。生物工程在食品、輕工中的應用面也很廣。1983年美國用生物工程生產的用於製作飲料的高果糖漿的年產量達600萬噸,從而使蔗糖的消耗量減少一半。採用生物慎腔此工程技術,使育種工作發生了很大變化,如把抗病基因轉移到煙草中去,已培育寬迅出防止害蟲的煙草新品種;圓顫把低等生物根瘤菌的固氮基因轉移到高等作物的細胞中,使之能自己製造氮肥,也取得了一定成果。目前世界各國對生物工程十分重視,我國也把生物工程列為重點發展的科研項目之一。生物工程學的研究將對人類的生產方式和生活方式產生巨大的影響。
F. 什麼是生物技術
生物技術是以生命科學的理論和技術為基礎,結合各種現代工程技術,充分運用分子生物學的最新成就,按人類需要提供商品和社會服務的綜合性科學技術體系,主要包括基因工程、細胞工程、酶工程、發酵工程和蛋白質工程5個分支領域。
生物技術按發展歷史可分為傳統生物技術和現代生物技術兩部分。傳統生物技術是指傳統的製造醬、醋、酒、麵包、乳酪、酸奶、泡菜及其他食品的傳統工藝;現代生物技晌虛術是指20世宴春燃紀70年代末發展起來的以現代生物學研究成果為基礎,以基因工程,特別是DNA重組為核心的新興學科森胡。目前所稱的生物技術,基本上是指現代生物技術。
生物技術根據是否使用基因工程技術可分為基因工程技術和非基因工程技術兩大類。基因工程包括基因分析、基因圖譜、基因指紋、基因提取、基因重組、轉基因改造及基因庫建立等。非基因工程技術包括菌種篩選和誘變、高密度發酵工程技術、太空育種、細胞冷凍和休眠、細胞體外培養、細胞雜交、胚胎移植、體外受精等。
生物技術按行業分為醫葯生物技術、工業生物技術、農業生物技術和海洋生物技術等。在每個行業生物技術又細分為更專業的生物技術,如農業生物技術又可分為飼料生物技術、食品生物技術、獸醫生物技術、植物生物技術、動物生物技術等。
G. 各種酶的生產方法是什麼簡要概括。
酶工程(Enzyme Engineering))又稱為酶技術。隨著酶學研究的迅速發展,特別是酶應用的推廣,使酶學基本原理與化學工程相結合,從而形成了酶工程.酶工程是酶制劑的大批量生產和應用的技術。它從應用的目的出發,將酶學理論與化學工程相結合研究酶,並在一定的反應裝置中利用酶的催化特性,將原料轉化為產物的一門新技術,就酶工程本身的發展來說,包括下列主要內容:
2.1酶的產生
酶制劑的來源,有微生物、動物和植物,但是,主要的來源是微生物。由於微生物比動植物具有更多的優點,因此, —般選用優良的產酶菌株,通過發酵來產生酶。為了提高發酵液中的酶濃度,選育優良菌株、研製基因工程菌、優化發酵條件。工業生產需要特殊性能的新型酶,如耐高溫的α—澱粉酶、耐鹼性的蛋白酶和脂肪酶等,因此,需要研究、開發生產特殊性能新型酶的菌株。
2. 2 酶的制備
酶的分離提純技術是當前生物技術「後處理工藝」的核心。採用各種分離提純技術,從微生物細胞及其發酵液,或動、植物細胞及其培養液中分離提純酶,製成高活性的不同純度的酶制劑,為了使酶制劑更廣泛地應用於國民經濟各個方面,必須提高酶制劑的活性、純度和收率,需要研究新的分離提純技術。
2. 3 酶和細胞固定化
酶和細胞固定化研究是酶工程的中心任務。為了提高酶的穩定性,重復使用酶制劑,擴大酶制劑的應用范圍,採用各種固定化方法對酶進行固定化,制備了固定化酶,如固定化葡萄糖異構酶、固定化氨基醯化酶等,測定固定化酶的各種性
質,並對固定化酶作各方面的應用與開發研究。目前固定化酶仍具有強大的生命力。它受到生物化學、化學工程、微生物、高分子、醫學等各領域的高度重視。
固定化細胞是在固定化酶的基礎發發展起來的。用各種固定化方法對微生物細胞、動物細胞和植物細胞進行固定化,製成各種固定化生物細胞.研究固定化細胞的酶學性質,特別是動力學性質,研究與開發固定化細胞在各方面的應用,是當今酶工程的一個熱門課題。
固定化技術是酶技術現代化的一個重要里程碑,是克服天然酶在工業應用方面的不足之處,而又發揮酶反應特點的突破性技術。可以說沒有固定化技術的開發,就沒有現代的酶技術。
2.4.酶分子改造
又稱為酶分子修飾。為了提高酶的穩定性,降低抗原性,延長葯用菌在機體內的半衰期,採用各種修飾方法對酶分子結構進行改造,以便創造出天然酶所不具備的某些優良特性(如較高的穩定性、無抗原性、抗蛋白酶水解等),甚至於創造出新的酶活性,擴大酶的應用,從而提高酶的應用價值,達到較大的經濟效益和社會效益。
酶分子改造可以從兩個方面進行:
(1)用蛋白質工程技術對酶分子結構基因進行改造,期望獲得一級結構和空間結構較為合理的具有優良特性、高活性的新酶(突變酶)。
(2)用化學法或酶法改造酶蛋白的一級結構,或者用化學修飾法對酶分子中側鏈基團進行化學修飾.以便改變酶學性質。這類酶在酶學基礎研究上和醫葯上特別有用。
H. 技術用白話怎麼說
技-------gei6,讀第六聲。同音字孝談:妓。
術亂告-------seot6,讀第六聲。同音字:述、秫、術。
給你一個《嘩慎明粵語在線發聲字典》,你自己找一下:
http://arts.cuhk.e.hk/Lexis/lexi-can/
I. 生物技術的利與弊
我們所說的生物技術的利和弊主要指的是克隆,其利和弊是
利:1) 克隆技術可解除那些不能成為母親的女性的痛苦。
2) 克隆實驗的實施促進了遺傳學的發展,為「製造」能移植於人體的動物器官開辟了前景。
3) 克隆技術也可用於檢測胎兒的遺傳缺陷。將受精卵克隆用於檢測各種遺傳疾病,克隆的胚胎與子宮中發育的胎兒遺傳特徵完全相同。
4) 克隆技術可用於治療神經系統的損傷。成年人的神經組織沒有再生能力,但幹細胞可以修復神經系統損傷。
5) 在體外受精手術中,醫生常常需要將多個受精卵植入子宮,以從中篩選一個進入妊娠階段。但許多女性只能提供一個卵子用於受精。通過克隆可以很好地解決這一問題。這個卵細胞可以克隆成為多個用於受精,從而大大提高妊娠成功率。
弊:1) 克隆將減少遺傳變異,通過克隆產生的個體具有同樣的遺傳基因,同樣的疾病敏感性,一種疾病就可以毀滅整個由克隆產生的群體。 可以設想,如果一個國家的牛群都是同一個克隆產物,一種並不嚴重的病毒就可能毀滅全國的畜牧業。
2) 克隆技術的使用將使人們傾向於大量繁殖現有種群中最有利用價值的個體,而不是按自然規律促進整個種群的優勝劣汰。從這個意義上說,克隆技術干擾了自然進化過程.
3) 克隆技術是一種昂貴的技術,需要大量的金錢和生物專業人士的參與,失敗率非常高。多莉就是277次實驗唯一的成果。雖然現在發展出了更先進的技術,成功率也只能達到2-3%。
4) 轉基因動物提高了疾病傳染的風險。例如,如果一頭生產葯物牛奶的牛感染了病毒,這種病毒就可能通過牛奶感染病人
5) 克隆技術應用於人體將導致對後代遺傳性狀的人工控制。克隆技術引起爭論的核心就是能否允許對發育初期的人類胚胎進行遺傳操作。這是很多倫理學家所不能接受的。
6) 克隆技術也可用來創造「超人」,或擁有健壯的體格卻智力低下的人。而且,如果克隆技術能夠在人類中有效運用,男性也就失去了遺傳上的意義。
7) 克隆技術對家庭關系帶來的影響也將是巨大的。一個由父親的DNA克隆生成的孩子可以看作父親的雙胞胎兄弟,只不過延遲了幾十年出生而已。很難設想,當一個人發現自己只不過是另外一個人的完全復製品,他(或她)會有什麼感受?
所以說,科學技術有時就是一把雙刃劍,有利也有沒弊,沒有標准答案!就看人們這樣利用了!
J. 生物葯物分離提取技術的特點與原理以及生化葯物的特點請知道的大俠說一下,先多謝了。
90、穩態:神經系統、體液和免疫系統調節下,內環境的相對穩定
溫度、pH、滲透壓,水、無機鹽、血糖等化學物質含量
血漿 7.35—7.45 緩沖對 NaHCO3/H2CO3 Na2HPO4/NaH2PO4
2/3細胞內液 組織液
91、65%體液 1/3細胞外液 血漿 淋巴
(內環境) 不是血液 血液>血漿>血清
食物 排尿
92、體內水來源 飲水 水排出途徑 出汗 皮膚
代謝水(有氧呼吸)面蟲、駱駝 呼氣 肺
(氨基酸脫水縮合) 排遺 消化道
93、K不吃也排 不經過出汗排
腎上腺分泌醛固酮(固醇) 保Na排K
高溫工作、重體力勞動、嘔吐、腹瀉→→應特別注意補充足夠的水、Na(食鹽)
細胞外液滲透壓下降,出現四肢發冷、血壓下降、心率加快
K對細胞內液細胞滲透壓起決定作用,維持心肌緊張、心肌正常興奮性 K心
94、血糖三來源(食物、分解、轉化) 三去向
糖的主要功能:供能
胰島素 唯一降血糖激素;增加糖的去路,減少糖的來源 胰高血糖素、 腎上腺素 升血糖
胰高血糖素促進胰島素分泌,胰島素卻抑制胰高血糖素分泌
血 糖 升 高
↓ ↑ ↑
下丘腦某區域→胰島B細胞 胰高血糖素↑ 腎上腺素↑
↓ ↑ ↑
胰島素↑ 胰島A細胞 腎上腺髓質
↓ ↑ ↑ 下丘腦另一區域
血 糖 降 低
<50-60 低早 <45 低晚 >130高 >160-180糖尿
一次性攝糖過多,暫時尿糖 持續糖尿不一定糖尿病,如腎炎重吸收不行
糖尿病 血糖高且有糖尿 驗尿驗血 三多一少症狀?
不吃少吃多吃含膳食纖維多的粗糧和蔬菜
95、營養物質:
蛋白質不足:嬰幼兒、兒童、少年生長發育遲緩、體重過輕 成年人浮腫
提供能量
營養物質功能 提供構建和修復機體組織的物質
提供調節機體生理功能的物質
維生素:維持機體新陳代謝、某些特殊生理功能
VA:夜盲症
維生素 VB:腳氣病
VC:壞血病
VD:佝僂病、骨軟化病、骨質疏鬆症
96、溫度感受器分為冷覺感受器和溫覺感受器(分布皮膚、粘膜、內臟器官)
體溫來自代謝釋放熱量(不是ATP提供),體溫恆定是產熱量,散熱量動態平衡結果
寒冷 炎熱
↓ ↓
皮膚冷覺感受器 溫覺感受器 血管
↓傳入神經 ↓ 立毛肌
下丘腦體溫調節中樞 下丘腦 骨骼肌
傳出神經 ↓ 汗
皮膚血管收縮 骨骼肌戰粟(產能特多) 血管舒張
皮膚立毛肌收縮 皮膚立毛肌收縮 汗液分泌增多
↓雞皮疙瘩 腎上腺素↑
縮小汗毛孔 甲狀泉激素↑
減少散熱 增加產熱 散熱量增加 不能減少產熱
調節水分、血糖、體溫
97、下丘腦 分泌激素:促激素釋放激素 抗利尿激素
感受刺激:下丘腦滲透壓感受器
傳導興奮:產生渴覺
第一道防線:皮膚、粘膜等
非特異性免疫(先天免疫)第二道防線:體液中殺菌物質、吞噬細胞
98、免疫 特異性免疫(獲得性免疫) 第三道防線:體液免疫和細胞免疫
在特異性免疫中發揮免疫作用的主要是淋巴細胞
淋巴細胞的起源和分化:胸腺—T 骨髓—B
免疫細胞:B、T
免疫系統的物質基礎 免疫器官:扁桃體、淋巴結、脾
免疫物質:抗體、淋巴因子(白介素、干擾素)
99、抗原特點:①一般異物性 但也有例外:如癌細胞、損傷或衰老的細胞
②大分子性
③特異性 抗原決定簇(病毒的衣殼)
100、體液免疫: 記憶細胞
↓ ↓再次受相同抗原刺激
抗原→→吞噬細胞→→T細胞→→B細胞→→→效應B細胞→→→抗體
↑ (攝取處理) (呈遞) (識別)
感應階段 反應階段 效應階段
效應B細胞產生:抗體(免疫球蛋白)、抗毒素、凝集素
效應T細胞產生:淋巴因子、干擾素、白細胞介素
識別抗原:B細胞、效應T細胞、記憶B/T
效應B細胞獲得有三途徑(直接、間接、記憶)
記憶細胞受相同抗原再次刺激後引起的二次免疫反應:更迅速、更強
再次接受過敏原(概念)
過敏反應 抗體分布 細胞表面
組織胺:體液調節
101、免疫失調引起的疾病 自身免疫疾病:風濕…類風濕…系統性紅斑狼瘡
先天性:先天性胸腺發育不全
免疫缺陷病 獲得性:艾滋病、肺炎、氣管炎
(人類免疫缺陷病毒) HIV↓攻擊T細胞
(AIDS) 獲得性免疫缺陷綜合症
102、色素吸收、傳遞、轉換光能 色素不能儲存光能
蛋白質、氨基酸也不能儲存
少數特殊狀態葉綠素a 最終電子供體:水
高能量、易失電子 光能→ 電能 最終電子受體:NADP+
103、C4植物:玉米、高梁、甘庶、莧菜
既C3又C4 CO2固定能力強 先CO2+C3→C4
C3、C4葉肉細胞都含正常葉綠體
選修 C3維管束鞘細胞無葉綠體
圖 C4維管束鞘細胞含無基粒的葉綠體 不進行光反應
(P29) C4植物花環型結構 里圈:維管束鞘細胞 外圈:部分葉肉細胞
降低呼吸消耗 增加凈光合量
104、提高產量 延長光合作用時間 光:光質、強度、長短
提高農作物對 增大光合作用面積 溫度:影響酶的活性
光能利用率 提高光合作用效率 水
礦質元素 N、P、K、Mg
CO2 農家肥、CO2發生器
105、生物固氮:N2 → NH3
根瘤菌的特異性:蠶豆根瘤菌侵入蠶豆、菜豆、豇豆;大豆根瘤菌侵入大豆。
N素
根瘤菌 有機物 豆科植物 異養需氧
共生固氮菌 根瘤 薄壁細胞 愈傷組織
固氮菌 自生≠自養 根瘤菌拌種 豆科植物綠肥
自生固氮菌:圓褐固氮菌(固氮+激素)
生物固氮(主:根瘤菌) 工業固氮 高能固氮
106、N循環 硝化、反硝化、氨化作用
反硝化:氧氣不足NO3-→N2
自生固氮菌的分離原理:無氮培養基對固氮菌的選擇生長
物質基礎:線粒體、葉綠體中的DNA(質基因)
…線粒體
107、細胞質遺傳 典型代表 …葉綠體 花斑植株→三種
特點 母系遺傳(受精卵中的細胞質幾乎全來自卵細胞)
後代性狀不出現一定分離比
(形成配子時,質基因不均等分配)
編碼區:編碼蛋白質 連續的
原核細胞 非編碼區 編碼區上游:RNA聚合酶結合位點
基因結構 調控 編碼區下游
108、基因的結構 真核細胞 非編碼區
基因結構 編碼區 內含子:非編碼序列
外顯子:能編碼蛋白質內含子>外顯子
原核基因無外顯子內含子之說
主要分布於微生物
剪刀:限制性內切酶 特異性(專一性)
(200多種) 獲得粘性末端
109、基因的操作工具 針線:DNA連接酶:扶手(磷酸二脂鍵)不是踏板(氫鍵)
條件①復制保存②多切點③標記基因
種類:質粒、病毒
運輸工具:運載體 ①染色體外小型環狀DNA
②存在於細菌、酵母菌
質粒特點 ③質粒是常用的運載體
④最常用:大腸桿菌
⑤對宿主細胞的生存無
基因工程 (基因拼接技術、DNA重組技術、轉基因技術) 決定性作用
直接分離 常用鳥槍法
提取目的基因 人工合成(反轉錄法、根據已知AA序列合成DNA)
目的基因與運載體結合 同一種限制酶
110、基因操作步驟 將目的基因導入受體細胞→細菌、酵母菌、動植物
CaCl2處理細胞壁 ( 受精卵好 繁殖速度快)
目的基因的檢測和表達:標記基因、目的基因是否表達?
逆轉錄 鹼基互補配對
mRNA 單鏈DNA 雙鏈DNA
推測 推測 合成
氨基酸序列 mRNA序列 DNA鹼基序列 目的基因
葯(胰島素、干擾素、白細胞介素、乙肝疫苗)
111、基因工程的成果 治病:基因診斷與基因治療(基因替換)
新品種(轉基因) 食品工業(食物)
環境監測(DNA分子雜交 探針)
生物固氮、基因診斷、基因治療、單細胞蛋白(微生物菌體本身)、
單克隆抗體、生物導彈(單抗+抗癌葯物)
112、 間接聯系 核心 核膜
高爾基體 內質網 細胞膜
線粒體膜
間接(具膜小泡) (內吞外排說明雙向)
分泌蛋白:抗體、蛋白質類激素、胞外酶(消化酶)等分泌到細胞外
粗面內質網上的核糖體 內質網運輸加工 高爾基體加工 成熟蛋白質 胞外
113、生物膜系統(不等於生物膜):細胞膜、核膜及由膜圍繞而成的細胞器
離體→營養物質+激素 適宜溫度+無菌
植物組織培養 離體→愈傷組織→根芽(胚狀體)→植物體
選無病毒 尖(生長點) 紫草素
114、植物細胞工程 兩種不同→雜種細胞→新植物體
植物體細胞 去掉細胞壁→原生質體→雜種細胞→新植物體
雜交 種間存在生殖隔離 不能有性雜交
好處:克服遠源雜交不親和障礙 培育新品種
是其它動物細胞工程技術的基礎
動物細胞培養 液體培養基:動物血清
115、 動 取自動物胚胎或出生不久的幼齡動物的器官或組織
物 用胰蛋白酶處理
細 原代培養→傳代培養(細胞株→細胞系 遺傳物質發生改變)
胞 滅活的病毒做誘導劑+物理、化學方法
工 動物細胞融合 最重要用途:制備單克隆抗體
程 理論基礎:細胞膜的流動性
單克隆抗體→指單個B淋巴細胞經克隆形成的細胞群產生的化學性質單一、特異性強的抗體(優點:特異性強、靈敏度高)。每一個B淋巴細胞只分泌一種特異性抗體(共百萬種) *雜交瘤細胞 *生物導彈
116、微生物包含了除植物界和動物界以外的所有生物
質粒(小型環狀DNA)控制抗葯性、固氮、抗生素生成
核區(大型環狀DNA)控制主要遺傳性狀 有的細菌有莢膜、芽孢、鞭毛
碳源:無機/有機碳源 自養/異養
117、 微生物生長 氮源:加不加額外的氮源
所需的營養物質 生長因子:(維生素、氨基酸、鹼基→構成酶和核酸)
水:
無機鹽:
固體培養基:分離、鑒定、計數
物理性質 半固體培養基:運動、保藏菌種
液體培養基:工業生產
118、培養基 天然培養基:工業生產
化學性質 合成培養基:分類鑒定
選擇培養基 青黴素→選出酵母菌、黴菌等真菌
用途 NaCl:金黃色葡萄球菌
鑒定培養基:伊紅美藍→大腸桿菌→深紫色和金屬光澤
自己設計實驗:把混合在一起的圓褐固氮菌、硝化細菌、大腸桿菌區分開,並篩選純種。
酶合成的調節 誘導酶:基因和誘導物控制
119、微生物代謝調節 酶活性的調節 結構改變 可逆 快速 准確
必需物質,一直產生 氨基酸、核苷酸、維生素
初級代謝產物 無種的特異性 多糖、脂類
120、代謝產物 非必需物質,一定階段 抗生素、毒素
次級代謝產物 有種的特異性 四素 色素、激素
121、微生物群體生長曲線: 3
2 4
1
(1)調整期:代謝活躍,開始合成誘導酶 初級代謝產物收獲的最佳時期
(2)對數期:形態和生理特性穩定,代謝旺盛;科研用菌種,接種最佳時期
(3)穩定期:次級代謝產物收獲最佳時期,芽孢生成(種內斗爭最劇烈)
及時補充營養物質,可以延長穩定期
(4)衰亡期:多種形態,出現畸形,釋放次級代謝產物 生存環境惡劣
與無機環境斗爭最激烈的是4衰亡期。
營養物質消耗有害代謝產物積累PH不適宜導致3.4時期的出現。
注意:前三個時期類似「S」型增長曲線,但是多了衰亡期
122、影響微生物生活的環境因素
PH值:影響酶的活性、細胞膜的穩定性,從而影響微生物對營養物質的吸收
溫度:影響酶和蛋白質的活性
O2濃度:產甲烷桿菌
123、高壓蒸汽滅菌法:1/5、1/2、2/3、75% 由里向外、細密、不重復
溶化後分裝前必須要 調節pH
細菌培養的過程:培養基的配製→滅菌→擱置斜面→接種→培養觀察
實例:谷氨酸發酵(黃色短桿菌、谷氨酸棒狀桿菌)
概念:
菌種選育:誘變育種、基因工程、細胞工程
培養基的配製:成分、比例,pH適宜
124、發酵工程 內容 滅菌:去除雜菌
擴大培養和接種:菌種多次培養達到一定數量
發酵過程:(中心階段)控制各種條件,生產發酵產品
分離提純 菌體:過濾、沉澱(單細胞蛋白即微生物菌體本身)
代謝產物:蒸餾、萃取、離子交換
應用 醫葯工業:生產葯品和基因工程葯品
食品工業:傳統發酵產品、食品添加劑、單細胞蛋白等
125、 C/N=4/1 菌體大量繁殖但產生的谷氨酸少(P79)
記住 C/N=3/1 菌體繁殖受抑制,但谷氨酸的合成量大增
溶氧不足: 產生乳酸或琥珀酸
pH呈酸性: 產生乙醯谷氨醯胺(P95)