A. 具有識別作用的分子在生活中有哪些應用
分子識別空悔作為超分子結構化學的一個重要的領域,主要的應用也在超分子的方面,然而分子識別在其他方面也有廣泛的應用。下面僅就分子識別在生物化學、光化學、材料化學以
及信息化學領域的應用做一個簡單的介紹。
1、很多設計合成超分子化學的靈感和起源都來自於生物體內發現的化學現象。毫無疑問,
自然界能進化出如此高度專一的、具有選擇性和協同性的生命化學體系,時而不可思議的復
雜,時而又是絕妙的簡單,分子識別在其中起到了多麼大的,甚至是決定性的作用。事實上,
生物體系就是一個很好的超分子體系。金屬陽離子的運輸、O2的傳輸、抗原的生成、酶催化的有機化學反應等絕大部分生物過程其實就是分子識別過程。
2、超分子化學一個重要應用領域在於發展選擇性化學感測器,用來分析介質、環境以及整體或部分有機體的化學成分。底物一定要被吸引到感測器的受體部分。這是一個簡單的分子識別在其他潛在客體分子存在下,絡合必須是對目標分子具有選擇性的。同時,受體也必須與號傳輸單元(對客體絡合相應)相關聯。把信號傳輸單元和受體單元連接在一起的間隔基一要保證它們之間的相互聯通。結合過程是結合復合物內在性質發生改變(與自由客體或受體比)的觸發因素,導致信號產生。 發展有效的、寬范圍的感測方法,將在環控制、質量檢驗及諸如葯物診斷中描述有機物特性等方面發揮重要應用。
3、分子識別引導的自發過程可以看作是表述分子信息處理過程。
4、超分子在材料化學中的切入,使得材料的結構及特性更加豐富多彩。 由識別引導的締合、自組裝和自組織的罩禪發展開辟了材料化學新的研究領域:分子信息決定材料特性的超分子材料。同時,運用分子識別特徵並通過溫和的反應,能對合成結構確定的無機超分子材料和合材料進行控制,因而開辟了「軟」無機材料化學的途徑。這些材料的納米結構可能使其具有某種新穎的特性。 本質上,結晶等同於大的無邊界分子物種的自組裝。為獲得具有特定結構及物理特性的固體材料,對結晶的控制也具有重要意義。超分子效應在這一控制中起著關鍵作用。材料的定向增長可由模版誘導產生,這一過程包含有分子識別的作用。 分子識別引導的過程開啟了通向超分子固態化學和晶體工程的大門。用識別單元修飾,可形成延伸的外受體,使其在微觀層次上具有選擇性表面鍵合作用,從而實現宏觀水平上的識別控制粘合顯示了超分子效應在粘合科學中的應用潛力。
5、分子識別理論,自1984年由Blalock等提出以,已經在不同的實驗室應用不同的實驗體系加以明。分子識別的理論基礎在於:一對互補DNA或NA編碼的氨基酸多肽具有「水合互補性」,而親水和疏水作用是蛋白質多肽分子之間相互作用的重要因素。實驗證明:DNA有意義鏈(sense DNA)或RNA編碼的天然肽其互補的DNA反義鏈(antisense DNA)或RNA編碼反義肽之間可以彼此選擇性識別。在此基礎上,子識別理論推斷:蛋白質激素和相應的受體之間, 免疫網路中的獨特型和抗獨特型抗體之間相互作用分子基礎可能正是這種天然肽和反義肽之間的識別作用。於是,從理論上講,分子識別理論可以用於類激素和相應受體的作用位點的預測;應用反義與天然肽之間的選擇性識別,可分離和提取天然分子蛋白質;並可利用反義肽在生物體內誘導產抗獨特型抗體(Id-Ab),通過免疫網路進行免疫節。
6、分子識別是超分子化學的核心研究內容之一,包括離子客體和中性分子的識別。由於熒光檢測的高靈敏度和可實時及遠程檢測等優越性,在分子識別與感測中的應用得到蓬勃發展,設計合成高靈敏、高選擇性的熒光化學感測器近斗悶正年來備受關注。具有分子內電荷轉移和激發態質子轉移性質的熒光體,發射大Stokes位移的熒光,可消除基質本底熒光和散射光對化學感測和分子識別的潛在不利影響。
7、生物分子識別響應性水凝膠是模擬生命活動過程中的分子識別現象,能識別特定生物分子而產生刺激響應性的智能高分子材料.用它構築的智能系統類似於具有反饋和平衡功能的生物系統,在生物工程和生物醫學領域有非常誘人的應用前景.對能識別特定生物分子,如葡萄糖、酶、抗原、核酸等,產生刺激響應的智能水凝膠的制備及其在智能給葯系統中的應用研究情況進行了詳細介紹.這些內容有助於更好地理解生物分子識別響應性水凝膠的結構和功能,另外也為發展新型智能給葯系統提供了很好的思路。
B. 生物特異分子識別在醫學有什麼應用
生物特異分子識別包含2方面的含義,一是DNA即基因方面的識別,而是蛋白質方面的識別。在醫學檢驗方面的應用主要有:
1. 分子生物感測器在醫學檢驗中的應用
分子生物感測器是利用一定的生物或化學的固定技術,將生物識別元件(酶、抗體、抗原、蛋白、核酸、受體、細胞、微生物、動植物組織等)固定在換能器上,當待測物與生物識別元件發生特異性反應後,通過換能器將所產生的反應結果轉變為可以輸出、檢測的電信號和光信號等,以此對待測物質進行定性和定量分析,從而達到檢測分析的目的。
分子生物感測器可以廣泛地應用衫鄭於對體液中的微量蛋白、小分子有機物、核酸等多種物質的檢測。在現代醫學檢驗中,這些項目是臨床診斷和病情分析的重要依據。能夠在體內實時監控的生物感測器對於手術中和重症監護的病人很有幫助。
Skladal等用經過寡核苷酸探針修飾的壓電感測器檢測血清中的丙型肝炎病毒(HCV)並實時監測其DNA的結構轉錄和聚合酶鏈式反應(PCR)擴增過程,完成整個監測過程僅需10 min且裝置可重復使用。
Petricoin等用壓電感測器研究了破骨細胞生成抑制因子(OPG)和幾種相應抗體的相互作用,研發出可快速檢驗血清中OPG的壓電免疫感測器。
Dro-sten等報道了檢測神經遞質的酶電報,將電極放置在神經肌肉接點附近可實時測定並記錄鄰近的神經元去極化後所釋放的遞質谷氨酸。
2.分子生物晶元技術在醫學檢驗中的應用
隨著分子生物學的發展及人們對疾病過程的認識加深,傳統的醫學檢驗技術已不能完全適應微量、快速、准確、全面的要求。
所謂的生物晶元是指將大量探針分子固定於支持物上(通常支持物上的一個點代表一種分子探針),並與標記的樣品雜交或反應,通過自動化儀器檢測雜交或反應信號的罩森強度而判斷樣品中靶分子的數量。
在檢測病原菌方面,由於大部分細菌、病毒的基因組測序已完成,將許多代表每種微生物的特殊基因製成1張晶元。通過反轉錄可檢測標本中的有無病原體基因的表達及表達的情況,以判斷病人感染病原及感染的進程、宿主的反應。由於P53抑癌基因在多數腫瘤中均發生突變,因此其是重要的腫瘤診斷靶基因。
Nam等人將硅基質上合成的寡核苷酸晶元用於血清樣品中的丙型肝炎病毒分型。
2.分子生物納米技術在醫學檢驗中的應用生物活性物質的檢測有很多種方法,其中,以抗體為基礎的技術尤其重要。免疫分析加上磁性修飾已成功地用於各種生物活性物質和異生質(如葯物、致癌物等)的檢測。將特異性抗體或抗原固定到納米磁球表面,並以酶、放射性同位素、熒光染料或化學發光物質為基礎所產生的檢測與傳統微量滴定板技術相比具有簡單、快速和靈敏的特點。
Van Helden等將抗體連接的納米磁性微球與高效率、快速的化學發光免疫測定技術相結合的自動檢測系統,則成功地用於血清中人免疫缺陷病毒1型和2型(HIV-1和HIV-2)抗體的檢測。另外,用於人胰島素檢測的全自動夾心法免疫測定技術也已建立,其中亦用到抗體、蛋白納米磁性微粒復合物和鹼性磷酸酶標記二抗。
4.分子蛋白組學在醫學檢驗中的應用
當前有關分子蛋白質組學的大量研究成果喜人,但一大部分結論是眾說紛紜、甚至是互相矛盾。一些經典的腫瘤標志物卻無法在當前以表面增強激光解析離子化-飛行時間質譜(SELDI-TOF-MS)技術為代表的蛋白質組學技術中體現出來。可能存在以下幾方面的問題。一方面是SELDI-TOF-MS技術自身的限制性,包括敏感性、重復性以及使用當前設備對每個峰值蛋白確認的局限性;另一方面是實驗設計及對照組選擇是否恰當,某個蛋白組模式反映的是腫瘤的特異性,還是炎症反應,或是代謝紊亂等無法定論;另一方面是不同實驗室結果可比性、標本處理過程的差異無法探究。只有這些問題得到解決, SELDI-TOF-MS技術在檢驗醫學中才能發揮革命性作用。
5.分子生物學技術在醫學檢驗發展中的趨勢
檢驗醫學中的分子生物學技術發展趨勢有二:一是定量PCR;二是PCR的全自動化,如應用擴增與檢測於一體的一次性試驗卡,可較好地解決PCR污染問題。除PCR以外的體外基因擴增技術如連接酶反應(LCR),或悶頌鏈置換擴增系統(SDA),轉錄擴增系統(TAS),自限序列擴增系統(3SR),QB復制酶擴增系統等技術也將由科研進入臨床。分子生物學技術的標准化和質量控制引起了廣泛關注,特別是衛生部頒發的PCR實驗室管理辦法對PCR技術應用的健康發展起到了關鍵作用。為解決PCR交叉污染問題,從標本制備到檢測的全封閉系統及相應的自動化儀器已在國內逐步普及。
C. 從免疫學和分子生物學討論現代生物技術在食品檢測中的應用
生物技術檢測方法具有特異的生物識別功能、極高的選擇性,它可與現代的物理化學方法相結合,產生一些簡單、結果精確、靈敏、專一、微量和快速、成本低廉的檢測方法,因此其在食品檢驗中佔有越來越重要的地位。
在食品檢驗中應用的幾種生物檢測技術
1 免疫法
免疫法是最靈敏的生物檢測方法,具有高特異性和高靈敏性(靈敏度可達1ppb,1ppm)、操作簡便、再現性好,應用前景看好。用免疫法可進行蛋白質檢測,由於不同蛋白質的物理、化學性質差別極小,只能通過各種免疫方法或標記探針法加以區別。
(1) 熒光抗體法
將熒光抗體溶液滴加於固定的標本上,一定時間後用緩沖液沖洗,若有相應抗原存在,即與熒光抗體結合,在熒光顯微鏡下即可看到發熒光的抗體復合物。熒光抗體法在微生物污染鑒定中經常使用,最常用於沙門氏菌的檢測。
(2) 放射免疫法
靈敏度高,但操作相對復雜,放射免疫法同位素半衰期短,保存及操作不便。目前應用情況受到限制。
(3) 酶聯免疫吸附法
是一種基本的酶免疫檢測方法,其選擇性好、靈敏度高、快速、易操作、結果判斷客觀准確、實用性強。酶免疫法和其他免疫法一樣,都是以抗體和抗原的特異性結合為基礎的。以酶或輔酶為標記物,標記抗原或抗體,用酶促反應的放大作用來顯示初級免疫學反應。
酶聯免疫吸附法除可檢測食品中的毒素、殘留農葯及微生物外還可用於營養素的測定。
(4) 凝集反應法
當有電解質存在時,顆粒狀的抗原與其特異性的抗體結合並生成可見凝集塊的反應稱為凝集反應,有直接反應和間接反應法。利用凝集反應可測定抗體的效價,也可用於細菌、病毒等的分類。
(5) 沉澱反應法
沉澱反應法常見的是一種瓊脂擴散試驗。單向擴散是利用不同抗原抗體在瓊脂中不同的擴散速度而會在瓊脂中出現幾條相互分離的沉澱帶。雙向擴散則是利用抗原抗體都向中間層―――瓊脂擴散而形成沉澱帶,根據分離沉澱帶的數量可確定抗原抗體種類。
(6) 免疫擴散法
利用蛋白質在半固體基質上的擴散作用,使抗原和抗體在濃度比例合適的部位產生沉澱帶或沉澱環,從而檢測蛋白質。如血清中IgG、IgA、IgM含量的測定。
(7) 免疫電泳法
免疫電泳法是將電泳和瓊脂擴散沉澱反應相結合的一種方法,即先將血清或蛋白質抗原在瓊脂凝膠中進行電泳。帶電的蛋白質抗原向負極移動,加入抗血清後,不同區點的抗原再與抗體進行沉澱,當相應抗原抗體接觸,在適當比例下形成弧形沉澱帶,根據沉澱帶的位置對蛋白質的各組分進行檢測。如免疫球蛋白含量的測定。
2 酶檢測法
酶檢測法就是用酶來測定某些用一般化學方法難於檢測的食品成分的含量或測定食品中某些特殊酶的活性或含量。其最大特點就是特異性強。所以常用於分析結構和物理化學性質比較相近的同類物質的分別鑒定。如測定食品中殘存有機農葯的含量、微生物污染或了解食品的制備、保存情況。
酶檢測法的樣品一般不需要進行很復雜的預處理,由於酶的催化效率很高,反應條件溫和,酶檢測法的檢測速度也比較快。常用的有以下方法:
(1) 終點測定法
在以待測物質為底物的酶反應中,如果使底物能夠接近完全地轉化為產物,而且底物或產物又具有某種特徵性質,通過直接測定轉化前後底物的減少量、產物的增加量或輔酶的變化等就可以定量待測物質。
(2) 動力學測定法
在反應體系中精確加入一定數量的酶,測定反應物或產物變化的速度。測定的參數可以是吸光度、熒光度、pH值等。
(3) 多酶偶聯測定法
當被測定的底物或反應產物沒有易於檢測的物理化學手段時,可採用兩種或兩種以上的酶進行連續式或平行式的偶聯反應,使底物通過兩步或多步反應,轉化為易於檢測的產物,從而測定待測物質的含量。例如葡萄糖的定量測定。
(4) 利用輔酶作用或抑制劑作用測定法
如果待測物質可作為某種酶專一的輔酶或抑制劑,則這種物質的濃度和將其作為輔酶或抑制劑的酶的反應速度之間有一定關聯,因此通過測定該酶的反應速度就能進行這種物質的定量。嘌呤、核甙酸、維生素、輔酶及食品中農葯、殺蟲劑的檢驗可用此法。
(5) 通過酶反應循環系統的高靈敏度測定法
對於極微量的物質進行酶法檢測時,由於靈敏度的原因,在很多情況下不能應用通常的終點測定法,可設計一個酶反應循環系統來提高檢測靈敏度。
(6) 酶標免疫檢測法
抗體與相應的抗原具有選擇和結合的雙重功能。若要測定樣品中抗原的含量,就將酶與待測定抗原的對應抗體結合在一起,製成酶標抗體。然後將酶標抗體與樣品液中待測抗原,通過免疫反應結合在一起,形成酶―抗體―抗原復合物,通過測定復合物中酶的含量就可得出待測抗原的含量。此法可用於食品的污染檢測,尤其適用於毒素的快速檢測。
(7) 放射性同位素測定法
酶的活性可以採用同位素標記的底物進行測量。經酶解後隨時間所生成的放射性產物含量與酶的濃度成正比。也可用放射性同位素的底物在酶的作用下得到的產物,分離測定產物的同位素含量。此法可用於需要進行極微量的分析或因新發現的酶還未找到適當的分析法時的測定。
3 核酸探針技術
核酸探針技術又名基因探針技術或核酸分子雜交技術,具有敏感性高(可檢出10-9―10-12的核酸)和特異性強等優點。兩條不同來源的核酸鏈如果具有互補的鹼基序列,就能夠特異性的結合而成為分子雜交鏈。據此,可在已知的DNA或RNA片段上加上可識別的標記(如同位素標記、生物素標記等),使之成為探針,用以檢測未知樣品中是否具有與其相同的序列,並進一步判定其與已知序列的同源程度。
核酸探針技術已被廣泛應用於進出口動植物及其產品的檢驗。用於檢驗食品中一些常見的致病菌及產毒素菌,如大腸桿菌、沙門氏菌等多種病原體的檢驗。近年來,放射性同位素標記的核酸探針正越來越多地用於產腸毒素性大腸桿菌的快速檢測。
4 多聚酶鏈反應技術
多聚酶鏈反應技術是一種極敏感的分子生物學方法,是一項DNA體外擴增技術,在體外對特定的雙鏈DNA片段進行高效擴增,故又稱基因體外擴增法。
多聚酶鏈反應技術快速、特異、敏感,在食品中致病菌的檢測方面具有很大的應用潛力。如可用於單核細胞增多症李氏桿菌、金黃色葡萄球菌、頑固性梭狀芽胞桿菌、沙門氏菌等的檢測。
5 基因晶元技術
基因晶元技術能同時將大量探針固定於支持物上,可以一次性對樣品大量序列進行檢測和分析,從而解決了傳統核酸印跡雜交技術的操作繁雜、自動化程度低、操作序列數量少、檢測效率低等不足,是一種在生物技術產品檢測中極有發展前景和應用價值的技術,也是近年來國內外研究的熱點,基因晶元檢測技術完全可能成為21世紀最具活力的檢測技術之一。
基因晶元檢測技術可以判斷該植物是否含有外來的基因序列,而鑒定該植物是否為生物技術作物。
6 免疫感測器
免疫感測器是根據生物體內抗原-抗體特異性結合並導致化學變化而設計的生物感測器,其主要由感受器、轉換器和放大器組成。免疫感測器是多學科邊緣交叉的產物,其研究涉及到電化學、物理、生物、免疫學和計算機等領域的相關知識。
免疫感測器主要有:酶免疫感測器、電化學免疫感測器(電位型、電流型、電導型、電容型)、光學免疫感測器(標記型、非標記型)、壓電晶體免疫感測器、表面等離子共振型免疫感測器和免疫晶元等。
基於抗原-抗體特異性結合的工作原理,免役感測器在食品檢測中的應用主要體現在對生物性危害的檢測。如可用於致病菌、生物毒素、農葯、獸葯等的檢測。
D. 什麼是生物分子間的特異性結合
異性結合是指生物體內發生特異性免疫時
,相應的抗原和抗體得結合叫做特異性結合,效應T細胞和靶細胞結和,催化該底物進行化學反應。例如、配基-受體之間的相互辨別和選擇性結合反應,即酶與底物接近基岩時誘導酶蛋白變構,表現出酶對其底物具有嚴格的選擇性。這種現象可用誘導楔合學說來解釋,並與其中構象最合適的一種底物結合:抗體和抗原接合產生沉澱。首鋒叢
生物特異性結合;有特異性的(抗體等者櫻)和相應的病毒或細胞結合,從立體結構角度上說就是相應的反應物之間構象的對應性。酶的特異性是指一種酶能在兩種或多種不同底物之間作出辨別。通過X射線衍射分析證明,生物酶-底物,在此基礎上酶與底物互補楔合進行反應、抗原-抗體,酶與底物結合時有顯著的構象變化
E. 什麼叫生物化學研究對象包括哪些主要內容
生物化學(biochemistry)是一門研究生物體的化學組成及其變化規律,從分子水平上揭示生命現象本質的一門生命科學,又稱生命的化學。
生物化學的研究對象:蛋白質、核酸、酶。
生物化學的主要內容:
1、人體的物質組成;
2、生物分子的結構與功能;
3、物質代謝及調控;
4、基因信息傳遞與表達及調控;
5、器官生化。
(5)如何利用化學性分子識別和生物學特異性擴展閱讀
生物化學若以不同的生物為對象,可分為動物生化、植物生化、微生物生化、昆蟲生化等。若以生物體的不同組織或過程為研究對象,則可分為肌肉生化、神經生化、免疫生化、生物力能學等。因研究的物質不同,又可分為蛋白質化學、核酸化學、酶學等分支。
生物化學對其他各門生物學科的深刻影響首先反映在與其關系比較密切的細胞學、微生物學、遺傳學、生理學等領域。
通過對生物高分子結構與功能進行的深入研究,揭示了生物體物質代謝、能量轉換、遺傳信息傳遞、光合作用、神經傳導、肌肉收縮、激素作用、免疫和細胞間通訊等許多奧秘,使人們對生命本質的認識躍進到一個嶄新的階段。
F. 生物大分子的特異性指的是什麼舉個例子
在生物學上,某種生物現象由兩個或兩個以上的因素互相作用所引起時,這種現象的發生和性質多依存於各因素的生物學來源和化學性質。這種因素間的相互選擇棚散性或因素與現象的對立性,稱為特異性。根據形成特異性的基礎,有可鏈核氏能產生種的特異性、器官特異性、組織特異性、基質特異性、抗原特異性等。一般地,抗原特異性較為顯著,這可以認為是生物學反應的特點之一。主要由於蛋白質、核酸、多糖等生物大分子的微小且動態的構氏桐造上的特殊差異所致。
G. 如何利用分子生物學進行品種鑒定
如何利用分子生物大液學進行品種鑒定
利用基顫基因測序技術就可以.品茄仿謹種之間的基因保守性序列差異很小,但是特異性序列之間差異很大,可以利用保守性序列設計引物進行PCR擴增,將得到的帶進行核酸序列測定即可區分.
H. ●生物化學的研究內容以及與分子生物學關系。10分
第一章 緒 論
一生物化學研究的內容
1生物化學:生物化學(biochemistry)是研究生物機體(微生物、植物、動物)的化學組成和生命現象中的化學變化規律的一門科學,即研究生命活動化學本質的學科。所以生物化學可以認為就是生命的化學。
生物化學利用化學的原理與方法去探討生命,是生命科學的基礎。它是介於化學、生物學及物理學之間的一門邊緣學科。2 生物化學研究的主要方面:(1)生物體的物質組成 高等生物體主要由蛋白質、核酸、糖類、脂類以及水、無機鹽等組成,此外還含有一些低分子物質,如維生素、激素、氨基酸、多肽、核苷酸及一些分解產物
(2)物質代謝生物體與其外環境之間的物質交換過程就稱為物質代謝或新陳代謝。物質代謝的基本過程主要包括三大步驟:消化、吸收→中間代謝→排泄。其中,中間代謝過程是在細胞內進行的,最為復雜的化學變化過程,它包括合成代謝,分解代謝,物質物質代謝調控,能量代謝幾方面的內容。(3)生物分子的結構與功能 根據現代生物化學及分子生物學研究還原論的觀點 ,要想了解細胞及亞細胞的結構和功能,必先了解構成細胞及亞細胞的生物分子的結構和功能。因此,研究生物分子的結構和功能之間的關系,代表了現代生物化學與分子生物學發展的方向。
二生物學的發展
(-)靜態生物化學階段
大約從十八世紀中葉到二十世紀初,主要完成了各種生物體化學組成的分析研究,發現了生物體主要由糖、脂、蛋白質和核酸四大類有機物質組成 。
(二)動態生物化學階段
大約從二十世紀初到二十世紀五十年代。此階段對各種化學物質的代謝途徑有了一定的了解。
其中主要的有: 1932年,英國科學家Krebs 建立了尿素合成的鳥氨酸循環;1937年,Krebs又提出了各種化學物質的中心環節——三羧酸循環的基本代謝途徑; 1940年,德國科學家Embden和Meyerhof提出了糖酵解代謝途徑。
(三、)分子生物學階段
從1953年至今。以1953年,Watson和Crick提出DNA的雙螺旋結構模型為標志,生物化學的發展進入分子生物學階段。這一階段的主要研究工作就是探討各種生物大分子的結構與其功能之間的關系。
三 生物化學與其他學科的關系
生物化學是介乎生物學與化學的一門邊緣科學,它與生物科學的許多分支學科均有密切關系。
首先,它與生理學是特別密切的姊妹學科。例如植物生理學,它是研究植物生命活動原理的一門科學。植物的生命活動包括許多方面,其中有機物代謝是重要的方面,這本身也屬於生物化學的內容。因此,在植物生理學的教科書中也包括部分生物化學內容。
生物化學與遺傳學也有密切關系,現已知核酸是一切生物遺傳信息載體,而遺傳信息的表達,則是通過核酸所攜帶的遺傳信息翻譯為蛋白質以實現的。因此,核酸和蛋白質的結構、代謝與功能,同時是生物化學與遺傳學的內容。
生物化學也與微生物學有關,目前所積累的生物化學知識,有相當部分是用微生物為研究材料獲得的,如大腸桿菌是被生物化學廣泛應用的材料。
生物化學與分類學也有關系,由於蛋白質在進化上是較少變化的,因此,近代利用某些蛋白質結構的研究,可以作為分類的依據。此外,農業科學、生物技術、食品科學、醫葯衛生及生態環境等科學,都需要生物化學的基礎。
四 生物化學的應用與發展
二十一世紀是以信息科學和生命科學為前沿科學的時代。生物化學在生命科學中居於基礎地位,也是醫學、畜牧、獸醫、農學、林學和食品科學等專業必修的基礎課。生物化學在生產生活中的應用主要體現在醫療、農業和食品行業等方面。在醫學上,人們根據疾病的發病機理以及病原體與人體在代謝和調控上的差異,設計或篩選出各種高效低毒的葯物。比如最早的抗生素——璜胺類葯物就是競爭性抑制使細菌不能合成葉酸從而死亡。依據免疫學知識人們設計研製出各種疫苗,使人類從傳染病中得以倖免。艾滋病疫苗的研製工作也在不斷取得進步民以食為天,這說明了農業生產在人類生活中的基礎地位。我國是一個人口大國,且人均耕地少,如果不是通過生物技術改良農作物提高產量和質量,那麼不要說實現小康,可能連社會穩定都無從談起。大家可能對轉基因這個概念比較陌生,但在當今社會,沒有跟轉基因產
品打過交道的人可2002年,我國本土生產大豆1541萬噸,從美國和阿根廷等國家共進口了1397萬噸大豆,進口大豆占我國大豆總消費量50%左右。其中美國佔573萬噸,剩下是阿根廷和巴西。美國100%轉基因,阿根廷98%,巴西至少10%。這說明市面上流通的豆類製品,近50%是轉基因作物製造。而這一信息知道的人並不多,但隨著認證的進行,這一狀況會逐步好轉。
現代生命科學技術可以大大加快人類的進化歷程並改變某些物種,從而影響到整個自然界的發展歷程。科技的每一小步前進都會帶來社會的深刻變化。正如網路的出現促成了虛擬社區的形成,而這虛擬的世界卻又實實在在地影響著人們的現實生活。總的來說科技的進步給人類帶來的更多是利益,生命科學領域中的工作者們正在努力實現使生命更完美的目標。沒有疾病的困擾,胎兒在發育之前已對其缺陷基因進行了徹底的修復;不必殺生,人工合成的蛋白質取代了動物肉類;200歲被定為青年,衰老的器官被人工合成的新器官所移植。。。我想這就是生命科學的未來,她將營造出一個健康、繁榮和幸福的生命世界!
第二章 生物體內的糖類
糖是自然界中存在的一大類具有廣譜化學結構和生物功能的有機化合物。它主要是由綠色植物經光合作用形成的。這類物質主要是由碳、氫、氧所組成,是含多羥基的醛類或酮類化合物。根據水解後產生單糖殘基的多少可將糖作如下分類:
單糖:這是一類最簡單的多羥基醛或多羥基酮,它不能再進行水解。根據其所含的碳原子數,單糖又可分為丙糖、丁糖、戊糖、己糖、庚糖等。依其帶有的基團,又可分為醛糖和酮糖。
寡糖:是由2~10個單糖分子聚合而成的糖,如二糖、三糖、四糖、……、九糖等。
多糖:由多分子單糖及其衍生物所組成,依其組成又可分為兩類:(1)同聚多糖:由相同單糖結合而成,如戊聚糖、澱粉、纖維素等。(2)雜聚多糖:由一種以上單糖或其衍生物所組成,如半纖維素、粘多糖等。
第一節 單糖及其衍生物
任何單糖的構型都是由甘油醛及二羥丙酮派生的,形成醛糖和酮糖。由於糖的構型有D-構型與L-構型,即凡分子中靠近伯醇(—CH2OH)的仲醇基(—CHOH)中的羥基如在分子的右方者稱為D-糖,在左方者稱為L-糖,因此又有D-醛糖和L-醛糖、D-酮糖和L-酮糖之分。它們的關系如圖1-1、圖1-2。
植物體內最重要的單糖有戊糖、己糖和庚糖,現在分別舉例說明如下:
一、 戊糖(pentose)
高等植物中有三種重要的戊糖,即D-核糖、D木糖及L-阿拉伯糖。其環狀結構式為:
β-D-核糖 L-阿拉伯糖 D-木糖
D-核糖(D-ribose)是所有生活細胞的普遍成分之一,在細胞質中含量最多。核糖是構成遺傳物質——核糖核酸(RNA)的主要成分。如果D-核糖在C2上被還原,則形成2脫氧-D-核糖。脫氧核糖是另一類遺傳物質——脫氧核糖核酸(DNA)的主要成分。
L-阿拉伯糖(L-arabinose)在植物中分布很廣,是粘質、樹膠、果膠質與半纖維素的組成成分,在植物體內以結合態存在。
D-木糖(D-xylose)是植物粘質、樹膠及半纖維素的組成成分,也以結合態存在於植物體內。
圖1-1 D-醛糖的關系圖
圖1-2 D-酮糖的關系圖
二、 己糖(hexose)
高等植物中重要的己醛糖有D-葡萄糖、D-甘露糖、 D-半乳糖;重要的己酮糖有D-果糖和D-山梨糖。
葡萄糖(glucose)是植物界分布最廣、數量最多的一種單糖,多以D-式存在。葡萄糖在植物的種子、果實中以游離狀態存在,它也是許多多糖的組成成分,如蔗糖是由D-葡萄糖與D-果糖結合而成的,澱粉及纖維素都是由D-葡萄糖聚合而成的。
-D-吡喃葡萄糖 -D-吡喃葡萄糖
果糖(fructose)也是自然界中廣泛存在的一種單糖。存在於植物的蜜腺、水果及蜂蜜中,是單糖中最甜的糖類。在游離狀態時,果糖為-D-吡喃果糖,結合態時為-D-呋喃果糖。
甘露糖(mannose)在植物體內以聚合態存在,如甘露聚糖。它是植物粘質與半纖維的組成成分。花生皮、椰子皮、樹膠中含有較多的甘露糖。甘露糖的還原產物——甘露糖醇是柿霜的主要成分。
半乳糖(galactose)在植物體內僅以結合狀態存在。乳糖、蜜二糖、棉籽糖、瓊脂、樹膠、果膠類及粘質等都含有半乳糖。
山梨糖(sorbose)又稱清涼茶糖,存在於細菌發酵過的山梨汁中,是合成維生素C的中間產物,在製造維生素C的工藝中佔有重要的地位。桃、李、蘋果、櫻桃等果實中含有山梨糖的還原產物——山梨糖醇。
三、 庚糖(heptose)
庚糖雖然在自然界分布較少,但在高等植物中存在。最重要的有D-景天庚酮糖及D-甘露庚酮糖。前者存在於景天科及其他肉質植物的葉子中,故名景天庚酮糖。它以游離狀態存在。該糖是光合作用的中間產物,在碳循環中佔有重要地位。D-甘露庚酮糖存在於樟梨果實中,也以游離狀態存在。它們的線狀結構如下:
四、糖的重要衍生物
由於電子顯微鏡的應用及近代細胞壁化學的研究,自然界中又發現有兩種其他的脫氧糖類,它們是細胞壁的成分。一種是L-鼠李糖(L-rhamnose),另一種是6-脫氧-L-甘露糖。
糖醛酸(uronic acid)由單糖的伯醇基氧化而得。其中最常見的是葡萄糖醛酸(glucouronic acid)它是臟內的一種解毒劑。半乳糖醛酸存在於果膠中。
糖胺(glycosamine)又稱氨基糖, 即糖分子中的一個羥基為氨基所代替。自然界中存在的糖胺都是己糖胺。常見的是D-葡萄糖胺(D-glucosamine),為甲殼質(幾丁質)的主要成分。甲殼質是組成昆蟲及甲殼類結構的多糖。 D-半乳糖胺則為軟骨組成成分軟骨酸的水解產物。
第二節 寡 糖
寡糖的概念是1930年提出的,是指由2~10個單糖分子聚合而成的糖。自然界中存在著大量的寡聚糖,早在1962年就已經發現了584種之多。寡聚糖在植物體內具有貯藏、運輸、適應環境變化、抗寒、抗凍、調節酶活性等功能。寡糖中以雙糖分布最為普遍,意義也較大。
一、 雙糖(disaccharides)
雙糖是由兩個相同的或不同的單糖分子縮合而成的。雙糖可以認為是一種糖苷,其中的配基是另外一個單糖分子。在自然界中,僅有三種雙糖(蔗糖、乳糖和麥芽糖)以游離狀態存在,其他多以結合形式存在(如纖維二糖)。蔗糖在碳水化合物中是最重要的雙糖,而麥芽糖和纖維二糖在植物中也很重要,它們是兩個重要的多糖——澱粉和纖維素的基本結構單位。
1. 蔗糖(sucrose)
蔗糖在植物界分布最廣泛,並且在植物的生理功能上也最重要。蔗糖不僅是主要的光合作用產物,而且也是碳水化合物儲藏和積累的一種主要形式。在植物體中碳水化合物也以蔗糖形式進行運輸。此外,我們日常食用的糖也是蔗糖。它可以大量地由甘蔗或甜菜中得到,在各種水果中也含有較多。
蔗糖是-D-吡喃葡萄糖-D-呋喃果糖苷。它不是還原糖,因為2個還原性的基團都包括在糖苷鍵中。蔗糖有一個特殊性質,就是極易被酸水解,其水解速度比麥芽糖或乳糖大1 000倍。蔗糖水解後產生等量的D-葡萄糖及D-果糖,這個混合物稱為轉化糖。在高等植物和低等植物中有一種轉化酶(invertase),可以使蔗糖水解成葡萄糖和果糖。
2. 麥芽糖(maltose)
它大量存在於發芽的穀粒,特別是麥芽中,在自然界中很少以游離狀態存在。它是澱粉的組成成分。澱粉在澱粉酶作用下水解可以產生麥芽糖。用大麥澱粉酶水解澱粉,可以得到產率為80%的麥芽糖。
用酸或麥芽糖酶水解麥芽糖只得到D-葡萄糖,麥芽糖酶的作用表明這2個D-葡萄糖是通過第l和第4碳原子連結的,故麥芽糖可以認為是-D-葡萄糖-(l,4)-D-葡萄糖苷。因為有一個醛基是自由的,所以它是還原糖。
3. 乳糖(Iactose)
乳糖存在於哺乳動物的乳汁中(牛奶中含乳糖4%~7%)。高等植物花粉管及微生物中也含有少量乳糖。乳糖是由D-葡萄糖和D-半乳糖分子以 l,4鍵連結縮合而成的,乳糖是還原糖。分子結構如下:
4. 纖維二糖 (cellobiose)
纖維素經過小心水解可以得到纖維二糖,它是由2個葡萄糖通過β-l,4-葡萄糖苷鍵縮合而成的還原性糖。與麥芽糖不同,它是β-葡萄糖苷。
纖維二糖[β-D-吡喃葡萄糖(1,4)-D-吡喃葡萄糖苷]
二、 三糖
自然界中廣泛存在的三糖(trisaccharide)僅有棉籽糖(raffinose),主要存在於棉籽、甜菜及大豆中,水解後產生D-葡萄糖、D-果糖及D-半乳糖。在蔗糖酶作用下,由棉籽糖中分解出果糖而留下蜜二糖;在-半乳糖苷酶作用下,由棉籽糖中分解出半乳糖而留下蔗糖。棉籽糖的分子結構如下:
三、四糖
水蘇糖(stachyose)是目前研究得比較清楚的四糖,存在於大豆、豌豆、洋扁豆和羽扇豆種子內,由2個分子半乳糖、1分子-葡萄糖及1個分子-果糖組成。結構如下:
第三節 植物的貯藏多糖和結構多糖
多糖(polysaccharides)是分子結構很復雜的碳水化合物,在植物體中佔有很大部分。 多糖可以分為兩大類:一類是構成植物骨架結構的不溶性的多糖,如纖維素、半纖維素等,是構成細胞壁的主要成分;另一類是貯藏的營養物質,如澱粉、菊糖等。
多糖是由許多單糖分子縮合而成的:由一種單糖分子縮合而成的如澱粉、糖原、纖維素等;由二種單糖分子縮合而成的如半乳甘露糖膠、阿拉伯木糖膠等;由數種單糖及非糖物質構成的如果膠物質等。
1.澱粉(starch)
澱粉幾乎存在於所有綠色植物的多數組織中。是植物中最重要的貯藏多糖,是禾穀類和豆科種子、馬鈴薯塊莖和甘薯塊根的主要成分,它是人類糧食及動物飼料的重要來源。在植物體中,澱粉以澱粉粒狀態存在,形狀為球形、卵形,隨植物種類不同而不同。即使是同種作物,澱粉含量也因品種、氣候、土壤等條件變化而有所不同。
澱粉在酸和體內澱粉酶的作用下被降解,其最終水解產物為葡萄糖。這種降解過程是逐步進行的:
澱粉—紅色糊精—無色糊精—麥芽糖—葡萄糖
遇碘顯 (紫藍色) (紅色) (不顯色) (不顯色)
用熱水溶解澱粉時,可溶的一部分為直鏈澱粉;另一部分不能溶解的為支鏈澱粉。
(1) 直鏈澱粉(amylose) 直鏈澱粉溶於熱水,遇碘液呈紫藍色,在620~680nm間呈最大光吸收。相對分子質量約在10 000~50 000之間。每個直鏈澱粉分子只含有一個還原性端基和一個非還原性端基,所以它是一條長而不分枝的鏈。直鏈澱粉是由 l,4糖苷鍵連結的-葡萄糖殘基組成的,當它被澱粉酶水解時,便產生大量的麥芽糖,所以直鏈澱粉是由許多重復的麥芽糖單位組成的,分子結構如下:
直鏈澱粉
(2) 支鍵澱粉(amylopectin) 支鏈澱粉的相對分子質量非常之大,在50 000一1 000 000之間。端基分析表明,每24~30個葡萄糖單位含有一個端基,因而它必定具有支鏈的結構,每條直鏈都是-l,4鍵連結的鏈,支鏈之間由-l,6鍵連結,可見支鏈澱粉分支點的葡萄糖殘基不僅連接在C4上,而且連接在C6上,-1,6-糖苷鍵佔5%~6%。支鏈澱粉的分支長度平均為24~30個葡萄糖殘基。遇碘顯紫色或紫紅色,在530~555nm呈現最大光吸收。
一般澱粉都含有直鏈澱粉和支鏈澱粉。但在不同植物中,直鏈澱粉和支鏈澱粉所佔的比例不同,如表1-1。即使是同一作物,品種不同二者的比例也不同,如糯玉米中幾乎不含直鏈澱粉,全為支鏈澱粉。
支鏈澱粉
表1-1 不同植物的澱粉中直鏈澱粉和支鏈澱粉的比例
淀 粉 直鏈澱粉(%) 支鏈澱粉(%)
馬鈴薯澱粉
小麥澱粉
玉米澱粉
稻米澱粉 19~20
24
21~23
17 78~81
76
77~79
83
2. 糖原(glycogen)
糖原是動物細胞中的主要多糖,是葡萄糖極容易利用的儲藏形式。其作用與澱粉在植物中的作用一樣,故有「動物澱粉」之稱。糖原中的大部分葡萄糖殘基是以-1,4-糖苷鍵連結的,分支是以-1,6-糖苷鍵結合的,大約每10個殘基中有一個鍵(圖1-3)。糖原端基含量佔9%而支鏈澱粉為4%,故糖原的分支程度比支鏈澱粉約高1倍多。糖原的相對分子質量很高,約為5 000 000。它與碘作用顯棕紅色,在430~490nm下呈最大光吸收。
圖1-3 糖原的分子結構
3. 菊糖(inu1in)
菊糖是多聚果糖,菊糖中的果糖一律以D-呋喃糖的形式存在。菊科植物如菊芋、大麗花的根部,蒲公英、橡膠草等都含有菊糖,代替了一般植物的澱粉,因而也稱為菊粉。菊糖分子中含有約30個 l,2-糖苷鍵連接的果糖殘基。菊糖分子中除含果糖外,還含有葡萄糖。葡萄糖可出現在鏈端,也可以出現在鏈中。
菊糖不溶於冷水而溶於熱水,因此,可以用熱水提取,然後在低溫(如0℃)下沉澱出來。菊糖具有還原性。澱粉酶不能水解菊糖,因此人和動物不能消化它。蔗糖酶可以以極慢的速度水解菊糖。真菌如青黴菌(Penicillium glaucum)、酵母及蝸牛中含有菊糖酶,可以使菊糖水解。
4. 纖維素(cellulose)
纖維素是最豐富的有機化合物,是植物中最廣泛的骨架多糖,植物細胞壁和木材差不多有一半是由纖維素組成的。棉花是較純的纖維素,它含纖維素高於90%。通常纖維素、半纖維素及木質素總是同時存在於植物細胞壁中。
植物纖維素不是均一的一種物質,粗纖維可以分為-纖維素、-纖維素和γ-纖維素三種。-纖維素不溶於17.5%NaOH,它不是純粹的纖維素,因為在其中含有其他聚糖(如甘露聚糖); -纖維素溶於17.5%NaOH,加酸中和後沉澱出來;γ-纖維素溶於鹼而加酸不沉澱。這種差別大概是由於纖維素結構單位的結合程度和形狀的不同。
實驗證明, 纖維素不溶於水,相對分子質量在50 000~400 000,每分子纖維素含有300~2 500個葡萄糖殘基。葡萄糖分子以-l,4-糖苷鍵連接而成。在酸的作用下完全水解纖維素的產物是-葡萄糖,部分水解時產生纖維二糖,說明纖維二糖是構成纖維素的基本單位。水解充分甲基化的纖維素則產生大量的2,3,6-三甲氧基葡萄糖,表明纖維素的分子沒有分枝。其分子結構如下:
二、醯甘油的類型
三醯甘油有許多不同的類型,主要是由它們所含脂肪酸的情況決定的。三醯甘油的通式為:
如果三個脂肪酸是相同的(即R 1、 R 2 、R 3是相同的),稱為簡單三醯甘油(simple triacylglycerols),具體命名時稱為某某脂醯甘油,如三硬脂醯甘油、三軟脂醯甘油、三油脂醯甘油等。如果含有兩個或三個不同脂肪酸(即R 1、 R 2 、R 3不同時)的三醯甘油稱為混合三醯甘油,如一軟脂醯二硬脂醯甘油。在混合三醯甘油中各脂醯基由於位置不同,又有不同的異構體。
多數天然油脂都是簡單三醯甘油和混和三醯甘油的極其復雜的混合物。到目前為止,還沒有發現在天然油脂中脂肪酸分布的規律。
三、三醯甘油的理化性質
1. 溶解度
三醯甘油不溶於水,也沒有形成高度分散的傾向。二醯甘油和單脂醯甘油則不同,由於它們有游離羥基,故有形成高度分散態的傾向,其形成的小微粒稱為微團(micelles),它們常用於食品工業,使食物更易均勻,便於加工,且二者都可以被機體利用。
2. 熔點
三醯甘油的熔點是由其脂肪酸的組成決定的,一般隨飽和脂肪酸的數目和鏈長的增加而升高。如三軟脂醯甘油和三硬脂醯甘油在常溫下為固態,三油醯甘油和三亞油醯甘油在常溫下為液態。豬的脂肪中油酸佔50%,豬油固化點為30.5℃。人脂肪中油酸佔70%,人脂固化點為15℃。植物油中含大量的不飽和脂肪酸,因此呈液態。
3.皂化和皂化值
當將脂醯甘油與酸或鹼共煮或經脂酶(lipase)作用時,都可發生水解。酸水解可逆;鹼水解,由於脂肪酸羧基全部處於解離狀態,即成為負離子,因而沒有和甘油作用的可能性,故鹼水解不可逆。當用鹼水解三醯甘油時,生成物之一為脂肪酸的鹽類,這就是日常所用的肥皂,所以脂類的鹼水解反應一般稱為皂化反應(saponification)。完全皂化1g油或脂所消耗的氫氧化鉀毫克數稱為皂化值(saponification number),用以評估油脂質量,並計算該油脂相對分子質量。
4.酸敗和酸值
油脂在空氣中暴露過久即產生難聞的臭味,這種現象稱為「酸敗」(rancidity)。其化學本質是油脂水解放出遊離的脂肪酸,後者再氧化成醛或酮,低分子的脂肪酸(如丁酸)的氧化產物都有臭味。脂肪分解酶或稱脂酶(lipase)可加速此反應。油脂暴露在日光下可加速此反應。 中和1g油脂中的游離脂肪酸所消耗的氫氧化鉀毫克數稱為酸值(acid value)。酸敗的程度一般用酸值來表示。不飽和脂肪酸氧化後所形成的醛或酮可聚合成膠狀的化合物。桐油等可用作油漆即是根據此原理。
5.氫化和鹵化
油脂中的不飽和鍵可以在催化劑的作用下發生氫化反應。工業上常用Ni粉等催化氫化使液狀的植物油適當氫化成固態三醯甘油酯,這稱為人造奶油,便於運輸。氫化可防止酸敗作用。
油脂中的不飽和鍵可與鹵素發生加成作用,生成鹵代脂肪酸,這一作用稱為鹵化作用(halogenation)。
100g油脂所能吸收的碘的克數稱為碘值(iodine value),在實際碘值測定中,多用溴化碘或氯化碘為鹵化試劑。
6.乙醯化值(acetylation number)
含羥基的脂醯化合物,羥基含量可通過與乙酸酐或其他醯化劑反應生成乙醯化酯或相應醯化酯而測得。乙醯化值指1g乙醯化的油脂所分解出的乙酸用氫氧化鉀中和時所需氫氧化鉀的毫克數。
第二節 其它醯基甘油類
一、烷基醚脂醯甘油(alkyl ether acylglycerols)
它含有兩個脂肪酸分子和一個長的烷基或烯基鏈分別與甘油分子以酯鍵相連。例如烷基醚鍵二脂醯甘油和、-烯基醚二脂醯甘油(、-alkenyl ether acylglycerols),其結構如下:
烷基醚鍵二脂醯甘油 、-烯基醚二脂醯甘油
這種脂類不易與甘油三酯分開,因此發現較晚。用弱鹼或酶促水解,它們則形成甘油醚(glycerol ethers)。例如,鮫肝醇和鯊肝醇實際上都是甘油醚,其結構如下:
二、糖基脂醯甘油(glycosylacylglycerols)
糖基與甘油分子第三個羥基以糖果苷鍵相連,甘油另兩個羥基與脂肪酸以酯鍵相連。最普通的例子是在高等植物和脊椎動物神經組織中發現的單半乳糖基二脂醯甘油,其結構如下:
3. 磷酸甘油酯的命名
如果將甘油C1或C3分別用脂肪酸或磷酸酯化,C2則成為一個不對稱C原子,於是形成兩個互為對映體(antipode)的異構物。天然存在的甘油磷脂都屬L-構型。結構如下:
D-構型 L-構型
1967年國際理論和應用化學聯合會及國際生物化學聯合會的生物化學命名委員會建議採用下列命名原則:
將甘油的三個碳原子分別標號為1,2,3(三者順序不能隨便顛倒)。
用投影式表示,C2上羥基一定要放在C2的左邊。這種編號稱為立體專一編號(stereospecific numbering),用sn表示,寫在化合物名稱前面。根據這一命名原則,磷酸甘油和磷脂酸命名如下:
sn-甘油-1-磷酸 sn-甘油-3-磷酸
sn-二脂醯甘油-1-磷酸 sn-二脂醯甘油-3-磷酸
三、非皂化脂質
非皂化脂質的特點是它們都不含脂肪酸,因此不能為鹼所皂化。它們在組織和細胞內含量雖少,但卻包括許多有重要生物功能的物質,如維生素和激素等。