Ⅰ 生物統計學中研究的誤差有那些 各有何特點 在實際統計分析中如何對待
生物統計學分析的第一步是資料的收集和整理。收集資料主要有調研和開展生物學試驗兩種方法,而資料的整理主要通過對原始資料的核查、校對,製作次數分布表和次數分布圖來完成。生命科學領域的試驗資料一般都具有集中性、離散性及分布形態三個基本特徵:集中性主要利用算術平均數、中位數、幾何平均數等反映;離散性主要通過標准差、方差、變異系數等特徵數進行度量;分布形態則主要藉助偏度和峰度體現。本章首先介紹總體與變數等最基本的生物統計學名詞術語,繼而結合實例,應用軟體來闡明實驗原始數據整理的具體方法,並對實驗數據的特徵進行統計分析,全面闡明數據資料的整理分析方法。
在科學試驗與調查中,常常會得到大量的原始數據,這些對某種具體事物或現象觀察的結果稱為資料(data)。這些資料在統計分析前,一般是分散的、零星的和孤立的,是一堆無序的數字。為了揭示這些資料中所蘊含的科學意義,需要對其進行必要的整理分析,揭示其內在的規律。
2.1 常用統計學術語
為了更好地學習和理解後續章節的生物統計學知識,首先必須掌握以下幾組生物統計學基本概念。
2.1.1 總體、個體與樣本
總體(population)是指研究對象的全體,其中的每一個成員稱為個體(indivial)。依據構成總體的個體數目的多寡,總體可以分為有限總體(finitepopulation)和無限總體(infinitepopulation)。例如,研究珠母貝的殼高,因為無法估計出珠母貝的具體數量,可以認為珠母貝是無限總體。
總體的數目往往非常龐大,全部測定需要耗費大量的時間、人力和物力,甚至根本無法完全測定每一個個體;另外,有時候數據的獲取過程對研究對象具有破壞性,如要測定貝殼硬度,需要壓碎貝殼。因此,只能通過研究總體中的一部分個體來反映總體的特徵。從總體中隨機獲得部分個體的過程,稱為抽樣(sampling)。為了使抽樣的結果具有代表性,需要採取隨機抽樣(randomsampling)的方法,如對一個生物的總體,機會均等地抽取樣本,估計其總體的某種生物學特性。簡單的隨機抽樣的方法有抽簽、抓鬮、隨機數字表法等。從總體中抽取的一部分個體所組成的集合稱為樣本(sample)。樣本中個體的數量稱為樣本容量、樣本含量或樣本大小(samplesize),通常記為n。如果n≤30,則該樣本為小樣本;n>30,該樣本則為大樣本。例如,2009年3月,某珍珠養殖場為了調查2007年繁育的100萬只馬氏珠母貝生長情況,隨機取10籠,共227隻馬氏珠母貝。這里需要研究的100萬只馬氏珠母貝是總體,其中的每隻珠母貝則是個體,隨機抽取的全部227隻馬氏珠母貝是一個樣本。該樣本的樣本容量為227,遠大於30,屬於大樣本。
2.1.2 變數與常量
變數是研究對象所反映的指標,如海水中葉綠素a的含量,動物的體重、體長,魚的攝食量,酶活力,細胞的直徑,DNA分子的大小等。變數通常記作X或Y等大寫的英文字母,而變數的觀測值可以標記為x,稱為資料或數據。例如,測量一批魚的體長X,我們可以隨機抽取10尾魚作為一個樣本,測量它們的體長(x,cm),得到10個觀測值14.2、15.4、13.6、15.8、15.5、16.1、14.9、15.3、14.8、15.7,這里體長是變數X,而這10個觀測值就是樣本數據x。按照其可能取得的值,可將變數分為連續型變數(continuousvariable)和離散型變數(discretevariable)。連續型變數是指在某一個區間內可以取任何數值的變數,其測量值可無限細分,數值之間是連續不斷的。例如,50~60cm的水稻株高為連續變數,因為在該范圍內可取出無數個值,同樣,分子運動速度、魚的體重、貝類的殼高、酶活力的大小、DNA分子的大小等都屬於連續型隨機變數。連續型變數需通過測量才能獲得,其觀測值稱為連續型數據(continuousdata),也稱為度量數據(measurementdata),如長度值、時間、重量值等。如果變數可能取值的數值為自然數或整數,這種變數稱為離散型變數,其數值一般通過計數獲得,如魚、貝的懷卵量等。離散型變數的觀測值稱為離散型數據(discretedata),也稱為計數數據(countdata)。如果變數的取值,在一定的范圍內是一個相對穩定的數值,那麼這種變數稱為常量(constant)。例如,在一個小的時空范圍內,重力加速度是一個常量。常量的取值是一個常數,具有相對穩定性。
Ⅱ 生物統計學什麼是多重比較多重比較有哪些方法
多重比較法是指多個等方差正態總體均值的比較方法。經過方差分析法可以說明各總體均值間的差異是否顯著,即只能說明均值不全相等,但不能具體說明哪幾個均值之間有顯著差異。
多重比較法包括:
1、圖基法
這種方法的基礎是學生化的極差分布( studentized range distribution)。令r為從均值為μ、方差為σ2的正態分布中得到的一些獨立觀察的極差(即最大值減最小值),令v為誤差的自由度數目(多重比較中為N-G)。
2、謝弗法
謝弗法( Scheffé's method) 又稱S多重比較法,也為多重比較構建一個100(1 -α) %的聯立置信區間( Scheffé,1953,1959)。
(2)生物統計學知識有哪些擴展閱讀:
圖基法和謝弗法的比較
1、謝弗法可應用於樣本量不等時的多重比較,而原始的圖基法只適用於樣本量相同時的比較。
2、在比較簡單成對差異( simple pairwise differences)時,圖基法最具效力,給出更窄的置信區間,雖然它對於廣義比對( general contrasts) 也可適用。
3、與此相比,對於涉及廣義比對的比較,謝弗法更具效力,給出更窄的置信區間。
4、如果F檢驗顯著,那麼謝弗法將從所有可能的比對(contrasts)中至少檢測出一對比對是統計顯著的。
5、謝弗法應用起來更為方便,因為F分布表比圖基法中使用的學生化極差分布更容易得到。
6、正態性假定和同方差性假定對於圖基法比對於謝弗法更加重要。
參考資料來源:網路-多重比較法
Ⅲ 生物綜合考研科目
生物綜合考研科目是研究生生物學專業中的一門綜合課程,主要包括生物化學、細胞生物學、遺傳學、分子生物學、生物統計學等多個學科內容。該科目是考研生物學專業的重要組成部分,是考物皮研生物學專業學生必須掌握的知識點之一。生物綜合考研科目的考試內容十啟團分廣泛,需要考生掌握很多基本概念、實驗方法和實驗技能。其中,生物化學是生物學的基礎學科之一,主要包括生物大分子的結構與功能、酶學、代謝途徑等內容。細胞生物學是研究生物細胞結構、功能和分子機理的學科,主要包括細胞膜、細胞器的結構罩旁差與功能、細胞分裂等內容。遺傳學是研究遺傳變異和遺傳規律的學科,主要包括基因的結構與功能、DNA復制、遺傳變異、基因表達和調控等內容。分子生物學是研究生物分子結構和功能的學科,主要包括DNA和RNA的結構、轉錄和翻譯等內容。生物統計學則是研究生物統計方法和數據處理的學科,主要包括生物統計學基礎、生物數據分析方法等內容。
對於考研生物學專業學生而言,生物綜合考研科目的掌握是非常重要的,因為它對於後續學習和研究工作都有很大的幫助。考生在備考過程中需要注重基礎知識的學習和強化,同時也要注重實踐能力和分析思維的培養。只有全面掌握和熟練應用生物學相關知識,才能在考試中取得好成績,也才能在生物學研究領域中取得更好的成就。