A. 生物脫氮各階段的控制參數有哪些
生物脫氮是利用自然界氮的循環原理,採用人工方法予以控制,首先,污水中的含氮有機物轉化成氨氮,而後在好氧條件下,由硝化菌左右變成硝酸鹽氮,這階段稱為好氧硝化。隨後在缺氧條件下,由反硝化菌作用,並有外加碳源提供能量(比如乙酸鈉),使硝酸鹽氮變成氮氣逸出,這階段稱為缺氧反硝化。整個生物脫氮過程就是氮的分解還原反應,反應能量從有機物中獲取。在硝化和反硝化過程中,影響其脫氮效率的因素是溫度、溶解氧、PH值以及碳源,生物脫氮系統中,硝化菌增長速度較緩慢,所以,要有足夠的污泥泥齡。這里會產生很多危廢固廢,這些都是需要專門運輸和專門處置的,現在有很多產廢單位的信息或者處置單位的供需信息在危匯網上有的,要合理合法的處置,解決環保問題。反硝化菌的生長主要是在缺氧條件下進行,並且要用充裕的碳源提供能量,才可促使反硝化作用順利進行。
由此可見,生物脫氮系統中硝化與反硝化反應需要具備如下條件:
硝化階段:足夠的的溶解氧,DO值在2mg/L以上,合適的溫度,最好在20℃,不能低於10℃,,足夠長的污泥泥齡,合適的PH條件。
反硝化階段:硝酸鹽的存在,缺氧條件DO值在0.2mg/L左右,充足碳源(乙酸鈉做能源),合適的PH條件。
B. 為什麼生物硝化要求BOD5/TKN在2~3之間而生物脫氮卻要求BOD5/TKN大於4
生物脫氮要消耗有機碳源啊,生物硝化不需要消耗有機碳源,需要的是無機碳源。
C. 生物脫氮除磷處理化學工業污水有什麼要求嗎
SICOLAB整理採取生物脫氮除磷的污水應符合下列規定:
1 生物脫氮除磷時,系統中有毒害和抑制性物質的允許濃度宜通過試驗或按有關資料確定;
2 生物脫氮除磷時,污水BOD5與總氮之比宜大於4,BOD5與總磷之比宜大於17;
3 進水BOD5不能滿足脫氮除磷要求時,應外加碳源;
4 好氧段(池)剩餘鹼度宜大於70mg/L(以CaCO3計)。
二、採用缺氧/好氧(ANO)工藝脫氮時,反應池容積可採用下列方法計算:
1 採用污泥負荷法,好氧段(池)容積可按公式(3-1)計算,容積應滿足按BOD5負荷和總氮負荷計算的結果,缺氧段(池)容積可按好氧段(池)容積的1/3~1/4取值。
2 採用硝化反硝化動力學法計算:
1)好氧段(池)容積可按下列公式計算:
式中:Vn——缺氧段(池)容積(m³);
N0——生物反應系統進水總氮濃度(mg/L);
Ne——生物反應系統出水總氮濃度(mg/L);
Kde——脫氮速率{kg[N]/(kg[MLSS]·d)};
Kde(20)——20℃的脫氮速率,無數據時可取0.03{kg[N]/(kg[MLSS]·d)}~0.06{kg[N]/(kg[MLSS]·d)};
X——生物反應池內混合液懸浮固體平均濃度(g[MLSS]/L);
△Xv——排出生物反應系統的揮發性懸浮固體量(kg[VSS]/d)。
三、缺氧/好氧工藝主要設計參數宜根據試驗或相似污水運行數據確定,無數據時可按下列數據取值:
1 BOD5污泥負荷宜取0.05kg[BOD5]/(kg[MLSS]·d)~0.15kg[BOD5]/(kg[MLSS]·d);
2 總氮污泥負荷不宜大於0.05kg[TN]/(kg[MLSS]·d);
3 混合液懸浮固體平均濃度宜取2.5g[MLSS]/L~4.5g[MLSS]/L;
4 污泥齡宜取11d~23d;
5 污泥迴流比宜取50%~100%;
6 混合液迴流比宜取200%~400%;
7 污泥產率宜取0.3kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。
四、採用厭氧/缺氧/好氧工藝脫氮除磷時,反應池好氧段(池)、缺氧段(池)的容積可按本規范第2條的規定計算。厭氧段(池)的容積可按水力停留時間計算,水力停留時間宜為1h~2h。
五、厭氧/缺氧/好氧工藝主要設計參數宜根據試驗或相似污水運行數據確定,無數據時宜按下列數據取值:
1 BOD5污泥負荷宜取0.1kg[BOD5]/(kg[MLSS]·d)~0.2kg[BOD5]/(kg[MLSS]·d);
2 混合液懸浮固體平均濃度宜取2.5[MLSS]/L~4.5g[MLSS]/L;
3 污泥齡宜取10d~20d;
4 污泥迴流比宜取20%~100%;
5 混合液迴流比宜大於或等於200%;
6 污泥產率宜取0.3kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。
六、厭氧/缺氧/好氧工藝脫氮除磷時,可根據進水水質和處理要求,經技術經濟分析比較後,選擇各種改進型的工藝。
七、生物除磷的剩餘污泥宜採用機械濃縮。
D. 環保工程師專業知識:生物脫氮
1.生物脫氮的基本原理
廢水生物脫氮利用自然界氮素循環的原理,在水處理構築物中營造出適宜於不同微生物種群生長的環境,通過人工措施,提高生物硝化反硝化速率,達到廢水中氮素去除的目的,一般由三種作用組成:氨化作用、硝化作用和反硝化作用。
⑴氨化作用
未經處理的城市污水中的有機氮主要有蛋白質、氨基酸、尿素、胺類、氰化物和硝基化合物等。有機氮化合物在好氧菌和氨化菌的作用下被分解轉化為氨態氮。
⑵硝化反應
生物硝化反應是亞硝化菌、硝化菌將氨氮氧化成亞硝酸鹽氮和硝酸鹽氮,是由一群自養型好氧微生物通過兩個過程完成的:第一步先由亞硝酸菌將氨氮轉化為亞硝酸鹽,稱為亞硝化反應,第二步由硝酸菌將亞硝酸鹽氧化成硝酸鹽。
⑶反硝化反應
生物反硝化反應是在缺氧狀態下,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成氣態氮或氮氧化物的過程,它是一群異氧型微生物通過同化作用和異化作用來完成的。異化作用就是將亞硝酸鹽和硝酸鹽還原成氮氣和氮的氧化物等氣體物質,主要是氮氣。而同化作用是反硝化菌將亞硝酸鹽和硝酸鹽還原成氨氮供新細胞合成之用。
2.生物硝化過程的主要影響因素
影響生物硝化過程的環境因素主要有基質濃度、溫度、溶解氧濃度、pH值、以及抑制物質的含量等。
⑴碳氮比
對於硝化過程,碳氮比影響活性污泥中硝化細菌所佔的比例,過高的碳氮比將降低污泥中硝化細菌的比例。
⑵溫度
溫度不但影響硝化菌的比增長速率,而且影響硝化菌的活性,亞硝化菌最佳的生長溫度為35℃,硝化菌的.最佳生長溫度為 35~42℃。生物硝化反應的最佳溫度范圍為20~30℃,15℃以下硝化反應速率下降,5℃時反應基本停止。反硝化適宜的溫度范圍為20~40℃,15℃以下反硝化反應速率下降。
⑶溶解氧
硝化反應必須在好氧條件下進行,所以溶解氧的濃度也會影響硝化反應速率,一般建議硝化反應中溶解氧的質量濃度大於 2mg/L。
⑷pH值
在硝化反應中,每氧化1g氨氮需要7.14g鹼度(以碳酸鈣計),如果不補充鹼度,就會使pH值下降。硝化菌對pH值的變化十分明顯,硝化反應的最佳pH值范圍為7.5~8.5,當pH值低於7時,硝化速率明顯降低,低於6和高於10.6時,硝化反應將停止進行。
⑸抑制物質
許多物質會抑制活性污泥過程中的硝化作用,例如:過高濃度的氨氮、重金屬、有毒物質以及有機物。對硝化反應的抑製作用主要有兩個方面:一是干擾細胞的新陳代謝,二是破壞細菌最初的氧化能力。
⑹泥齡
硝化過程的泥齡一般為硝化菌最小世代時間的2倍以上,生物脫氮過程泥齡宜為12~25d。
3.生物脫氮的典型工藝
生物脫氮的典型工藝主要有Sp工藝、氧化溝工藝和厭氧/好氧工藝(即A/O工藝)等,下面介紹一下A/O工藝。
⑴工藝流程
污水先進入缺氧池,再進入好氧池,同時將好氧池的混合液與部分二沉池的沉泥一起迴流到缺氧池,確保缺氧池和好氧池中有足夠數量的微生物,同時由於進水中存在大量的含碳有機物,而迴流的好氧池混合液中含有硝酸鹽氮,這樣就保證了缺氧池中反硝化過程的順利進行,提高了氮的去除效果。
⑵工藝特點
①流程簡單、構築物少,基建費用低;②反硝化池不需外加碳源,降低了運行費用;③好氧池在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步的去除,提高出水的水質,而缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。
⑶影響因素
主要有水力停留時間、BOD5濃度、溫度、pH值、溶解氧、有機碳源及混合液迴流比等。