1. 基因的表達是什麼
基因表達(gene expression)是指細胞在生命過程中,把儲存在DNA順序中遺傳信息經過轉錄和翻譯,轉變成具有生物活性的蛋白質分子。生物體內的各種功能蛋白質和酶都是同相應的結構基因編碼的。差別基因表達(differentialgeneexpression)指細胞分化過程中,奢侈基因按一定順序表達,表達的基因數約占基因總數的5%~10%。
也就是說,某些特定奢侈基因表達的結果生成一種類型的分化細胞,另一組奢侈基因表達的結果導致出現另一類型的分化細胞,這就是基因的差別表達。其本質是開放某些基因,關閉某些基因,導致細胞的分化。
基因表達簡介:
基因表達產物通常是蛋白質,但是非蛋白質編碼基因如轉移RNA(tRNA)或小核RNA(snRNA)基因的表達產物是功能性RNA。所有已知的生命,無論是真核生物(包括多細胞生物)、原核生物(細菌和古細菌)或病毒,都利用基因表達來合成生命的大分子。
基因表達可以通過對其中的幾個步驟,包括轉錄,RNA剪接,翻譯和翻譯後修飾,進行調控來實現對基因表達的調控。基因調控賦予細胞對結構和功能的控制,基因調控是細胞分化、形態發生以及任何生物的多功能性和適應性的基礎。基因調控也可以作為進化改變的底物,因為控制基因表達的時間、位模燃置和量可以對基因在細胞或多細旦敬虛胞稿銀生物中的功能(作用)產生深遠的影響。
在遺傳學中,基因表達是基因型產生表型的最基本水平。存儲在DNA中的遺傳密碼通過基因表達得到「翻譯」,並且基因表達的特性產生生物體的表型。因此,基因表達的調節對於生物體的發育至關重要。
2. 什麼是基因表達
基因表達是指基因指導下的蛋白質合成過程。生物體生命活動中並不是所有的基因都同時表達,代謝過程中所需要的各種酶和鬧閉蛋白質的基因以及構成細胞化學成分的各種編碼基因,正常情況下是經常表達的,而與生物發育過程有關的基因則要在特定的反應式表達。
基因表達的用運
利用基因晶元研究乾旱脅迫下玉米基因表達。
玉米是全球第一大作物、中國第二大作物,而乾旱是影響其產量的重要限制因素。開花期是玉米需水臨界期,對干逗晌旱脅迫反應最敏感,此時逢乾旱會使產量下降幅度最大。
張教授的課題組以開花期玉米為材料,分別對其進行短期和長期的乾旱脅迫,採用全基因組晶元研究了頂葉中基因的表達情況。
(2)是什麼生物基因表達的過程擴展閱讀:
基因表達的意義:
有助於肺癌的早期診斷
眾所周知,吸煙是肺癌的風險因子,因此吸煙者被認為是肺癌的高風險人群。吸煙者的正常上皮細胞的基因表達模型是否可用於肺癌存在狀態的一種生物標志呢?Avrum Spira和同事進行了這一研究。在預測患者是否會向癌症發展時,他們研究的生物標志的准確率達到90%。
對病毒種類檢測
基因表達調控的指揮系統有很多種,不同生物使用不同的信號來指揮基因調控。原核生物和真核生物之間存在著相當大差異。
原核生物中,營養狀況、環境因素對基因表達起著十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、發育階段等是基因表達調山彎鋒控的主要手段,營養和環境因素的影響則為次要因素。
參考資料來源:網路-基因表達
網路-基因表現
3. 什麼是基因的表達過程
基因的表達過程簡單說就是轉錄和翻譯過程。
轉錄是以DNA分子的一條鏈為模板合成mRNA的過程;
翻譯是以mRNA為模板合成多肽和蛋白質的過程。 下面的有點長,請耐心的看:
轉錄過程:轉錄後要進行加工,轉錄後的加工包括:在RNA聚合酶的催化下,以DNA為模板合成mRNA的過程稱為轉錄(transcription)。在雙鏈DNA中,作為轉錄模板的鏈稱為模板鏈(template strand)或反義鏈(antisensestrand);而不作為轉錄模板的鏈稱為編碼鏈(coding strand)或有義鏈(sense strand),編碼鏈與模板鏈互補,它與轉錄產物的差異僅在於DNA中的胸腺嘧啶(T)變為RNA中的尿嘧啶(U)。在含許多基因的DNA雙鏈中,每個基因的模板鏈並不總是在同一條鏈上,亦即可作為某些基因模板鏈的一條鏈,同時也可以是另外一些基因的編碼鏈。
剪接
一個基因的外顯子和內含子都轉錄在一條原始轉錄物RNA分子中,稱為前mRNA(pre-mRNA),又稱核內異質RNA(heterogenuous nuclear RNA,huRNA)。因此前mRNA分子既有外顯子序列又有內含子序列,另外還包括編碼區前面及後面非翻譯序列。這些內含子序列必須除去而把外顯子序列連接起來,才能產生成熟的有功能的mRNA分子,這個過程稱為RNA剪接(RNa splicing)。剪切發生在外顯子的3』末端的GT和內含子3』末端與下一個外顯子交界的AG處。
加帽
幾乎全部的真核 mRNA 端都具「帽子」結構。雖然真核生物的mRNA的轉錄以嘌呤核苷酸三磷酸(pppAG或pppG)領頭,但在5』端的一個核苷酸總是7-甲基鳥核苷三磷酸(m7GpppAGpNp)。mRNA 5』端的這種結構稱為帽子(cap)。不同真核生物的mRNA具有不同的帽子。
mRNA的帽結構功能:①能被核糖體小亞基識別,促使mRNA和核糖體的結合;②m7Gppp結構能有效地封閉RNA 5』末端,以保護mRNA免疫5』核酸外切酶的降解,增強mRNA的穩定性。
加尾
大多數真核生物的mRNA 3』末端都有由100~200個A組成的Poly(A)尾巴。Poly(A)尾不是由DNA編碼的,而是轉錄後的前mRNA以ATP為前體,由RNA末端腺苷酸轉移酶,即Poly(A)聚合酶催化聚合到3』末端。加尾並非加在轉錄終止的3』末端,而是在轉錄產物的3』末端,由一個特異性酶識別切點上遊方向13~20鹼基的加尾識別信號AAUAAA以及切點下游的保守順序GUGUGUG,把切點下游的一段切除,然後再由Poly(A)聚合酶催化,加上Poly(A)尾巴,如果這一識別信號發生突變,則切除作用和多聚腺苷酸化作用均顯著降低。mRNA Poly(A)尾的功能是:①可能有助mRNA從核到細胞質轉運;②避免在細胞中受到核酶降解,增強mRNA的穩定性。
2翻譯過程編輯
以mRNA作為模板,tRNA作為運載工具,在有關酶、輔助因子和能量的作用下將活化的氨基酸在核糖體(亦稱核蛋白體)上裝配為蛋白質多肽鏈的過程,稱為翻譯(translation),這一過程大致可分為3個階段:
基因表達調控
(1)肽鏈的起始:在許多起始因子的作用下,首先是核糖體的小亞基和mRNA上的起始密碼子結合,然後甲醯甲硫氨醯tRNA(tRNA fMet)結合上去,構成起始復合物。通過tRNA的反密碼子UAC,識別mRNA上的起始密碼子AUG,並相互配對,隨後核糖體大亞基結合到小亞基上去,形成穩定的復合體,從而完成了起始的作用。
肽鏈延長
核糖體上有兩個結合點——P位和A位,可以同時結合兩個氨醯tRNA。當核糖體沿著mRNA從5』→3』移動時,便依次讀出密碼子。首先是tRNAfMet結合在P位,隨後第二個氨醯tRNA進入A位。此時,在肽基轉移酶的催化下,P位和A位上的2個氨基酸之間形成肽鍵。第一個tRNA失去了所攜帶的氨基酸而從P位脫落,P位空載。A位上的氨醯tRNA在移位酶和GTP的作用下,移到P位,A位則空載。核糖體沿mRNA 5』端向3』端移動一個密碼子的距離。第三個氨醯tRNA進入A位,與P位上氨基酸再形成肽鍵,並接受P位上的肽鏈,P位上tRNA釋放,A位上肽鏈又移到P位,如此反復進行,肽鏈不斷延長,直到mRNA的終止密碼出現時,沒有一個氨醯tRNA
真核基因表達
可與它結合,於是肽鏈延長終止。
肽鏈終止
終止信號是mRNA上的終止密碼子(UAA、UAG或UGA)。當核糖體沿著mRNA移動時,多肽鏈不斷延長,到A位上出現終止信號後,就不再有任何氨醯tRNA接上去,多肽鏈的合成就進入終止階段。在釋放因子的作用下,肽醯tRNA的的酯鍵分開,於是完整的多肽鏈和核糖體的大亞基便釋放出來,然後小亞基也脫離mRNA。
譯後加工
(postranslational processing):從核糖體上釋放出來的多肽需要進一步加工修飾才能形成具有生物活性的蛋白質。翻譯後的肽鏈加工包括肽鏈切斷,某些氨基酸的羥基化、磷酸化、乙醯化、糖基化等。真核生物在新生手肽鏈翻譯後將甲硫氨酸裂解掉。有一類基因的翻譯產物前體含有多種氨基酸順序,可以切斷為不同的蛋白質或肽,稱為多蛋白質(polyprotein)。例如胰島素(insulin)是先合成86個氨基酸的初級翻譯產物,稱為胰島素原(proinsulin),胰島素原包括A、B、C三段,經過加工,切去其中無活性的C肽段,並在A肽和B肽之間形成二硫鍵,這樣才得到由51個氨基酸組成的有活性的胰島素。