『壹』 生物質能的前景如何
我國生物質發電發展超規劃預期 未來發展前景持續向好
2017年7月,《生物質發電「十三五」規劃布局方案》提出,到2020年我國31個省(區、市)符合國家可再生能源基金支持政策的生物質發電規模總計將達2334萬千瓦,其中農林生物質發電1312萬千瓦;垃圾焚燒發電1022萬千瓦。而截至2020年9月底,全國生物質發電累計裝機2617萬千瓦,其中垃圾燃燒發電裝機1350萬千瓦,均提前大幅超規劃預期。但農林生物質發電裝機為1180萬千瓦,離預期目標還有132萬千瓦的差距,雖然農林生物質發電裝機不及預期,但垃圾焚燒發電裝機發展迅速。
——更多數據參考前瞻產業研究院發布的《中國生物質能源行業市場前瞻與投資規劃深度分析報告》。
『貳』 生物質發電主要包括什麼
生物質發電主要包括農林廢棄物直接燃燒發電、農林廢棄物氣化發電、垃圾焚燒發電、垃圾填埋氣發電及沼氣發電等多種類型。
生物質發電由於生物質發電所需的能量是燃料燃燒所散發的能量,對於燃料的質量要求不高,許多被其他行業淘汰下來的劣質燃料也可以投入使用,因此生物質發電歷來就有變廢為寶的說法。生物質發電足夠穩定,不需要地區與環境的限制,只要能夠保證燃料的充足。
生物質發電廠就能夠按時按量發電。生物質發電的處境卻也不容樂觀。作為一個剛剛起步的行業,生物質發電並沒有能力完成自負盈虧。生物質發電在更多意義上屬於福利發電,這一屬性決定了它很難獨自完成資金的回籠,更多時候生物質發電的資金迴流靠的是政府的資金補貼。
生物質能發電特點
1、生物能發電的重要配套技術是生物質能的轉化技術,且轉化設備必須安全可靠、維修保養方便;利用當地生物資源發電的原料必須具有足夠的儲存量,以保證持續供應;所有發電設備的裝機容量一般較小,且多為獨立運行的方式。
2、利用當地生物質能資源就地發電、就地利用,不需外運燃料和遠距離輸電,適用於居住分散、人口稀少、用電負荷較小的農牧區及山區;生物質發電所用能源為可再生能源,污染小、清潔衛生,有利於環境保護。
『叄』 生物質能的現狀和發展前景論文
生物質資源以林業和農業廢棄物為主
我國生物質資源豐富,主要包括農業廢棄物、林業廢棄物、畜禽糞便、城市生活垃圾、有機廢水和廢渣等,每年可作為能源利用的生物質資源總量約相等於4.6億標准煤。其中農業廢棄物資源量約4億噸,折算成標煤量約2億噸;林業廢棄物資源量約3.5億噸,折算成標煤量約2億噸;其餘相關有機廢棄物約為6000萬噸標准煤。
——以上數據來源於前瞻產業研究院《中國生物質能發電產業市場前瞻與投資戰略規劃分析報告》。
『肆』 生物質直燃發電,混燃發電和氣化發電各自的優勢和劣勢是什麼
1生物質混燃發電與直燃發電、氣化發電的對比
常見的生物質發電技術有直燃發電、沼氣發電、甲醇發電、生物質燃氣發電技術等。目前,國內研究較多的是生物質直燃發電和生物質氣化發電技術,對生物質混燃發電技術的應用研究有限。基於我國小火電數量多而污染重的特點,以及農村生物質本身來源廣且數量大的特殊國情,本文先從技術和政策角度對生物質混燃發電技術進行討論,然後分析生物質混燃發電的經濟效益、環保效益和社會效益,後者更為重要。
1.1生物質直燃發電現狀
生物質發電主要是利用農業、林業廢棄物為原料,也可以將城市垃圾作為原料,採取直接燃燒的發電方式。如英國ELY秸稈直燃電站是目前世界上較大的秸稈直燃電廠,裝機容量為3.8萬kW,年耗秸稈約20萬t。古巴政府與聯合國發展組織等機構合作,預計投資1億美元興建以甘蔗渣為原料的環保電廠。我國直燃發電方面在南方地區有一定的規模。兩廣省份共有小型發電機組300餘台,總裝機容量800MW。生物質直接燃燒發電技術已比較成熟,由於生物質能源需要在大規模利用下才具有明顯的經濟效益,因而要求生物質資源集中、數量巨大、具有生產經濟性。
1.2生物質氣化發電現狀
生物質氣化發電是指生物質經熱化學轉化在氣化爐中氣化生成可燃氣體,經過凈化後驅動內燃機或小型燃氣輪機發電。小型氣化發電採用氣化-內燃機(或燃氣輪機)發電工藝,大規模的氣化-燃氣輪機聯合循環發電系統作為先進的生物質氣化發電技術,能耗比常規系統低,總體效率高於40%,但關鍵技術仍未成熟,尚處在示範和研究階段。在氣化發電技術方面,廣州能源研究所在江蘇鎮江市丹徒經濟技術開發區進行了4MW級生物質氣化燃氣-蒸汽整體聯合循環發電示範項目的設計研究,並取得了一定成果。
1.3生物質混燃發電現狀
生物質混燃發電技術在挪威、瑞典、芬蘭和美國已得到應用。早在2003年美國生物質發電裝機容量約達970萬kW,占可再生能源發電裝機容量的10%,發電量約佔全國總發電量的1%。其中生物質混燃發電在美國生物質發電中的比重較大,混燒生物質燃料的份額大多佔到3%~12%,預計還有更多的發電廠將可能採用此項技術。英國Fiddlersferry電廠的4台500MW機組,直接混燃壓制的廢木顆粒燃料、橄欖核等生物質,混燃比例為鍋爐總輸入熱量的20%,每天消耗生物質約1500t,可使SO2排量下降10%,CO2排放量每年減少100萬t。在我國生物質混燃發電技術應用不多,與發達國家相比還相距較遠。但是該項技術可以減少CO2的凈排放量,符合低碳經濟的發展要求、符合削減溫室氣體的需要,具有很大的發展潛力。
在我國農村,農戶土地分散導致秸稈收集難度較大,收集運輸成本限制著秸稈的收集半徑,加上秸稈種類復雜,若建立純燃燒秸稈的電廠,難以保證原料的經濟供應。摻燒生物質不失為一種更現實的解決方案,即把部分生物質和煤混燃,減少一部分耗煤。與生物質直燃發電相比,生物質混燃發電具有投資小、建設周期短、對原料價格易於控制等優勢。從技術上看,混燒比純燒具有更多的優越性:可以用秸稈等生物質替代一部分煤來發電,不必新建單位投資大、發電效率低的純「秸稈」電廠。何張陳將混燃案例與氣化案例作了比較,發現氣化案例的發電成本要比混燃案例高,而且對生物質價格變化更敏感。興化中科估計的單位裝機容量投資約為豐縣鑫源投資的11.3倍,約為寶應協鑫的1.4倍。混燃還可以提高秸稈等生物質的利用效率、緩解腐蝕問題、減少污染、簡化基礎設施。
2生物質混燃發電技術解析
由於我國小火電廠數量多並且污染大,與其廢棄關閉,不如因地制宜的對一些小型燃煤電廠設備略加改造,利用生物質能發電。典型的生物質能發電廠設備規模小,裝機容量<30MW;但是利用生物質混燃發電既可發揮現有煤粉燃燒發電的高效率,實現生物質的大量高效利用,而且對現役小型火電廠改造無需大量資金投資,凸顯出生物質混燃發電的優越性,特別是生物質氣化混燒發電通用性較強,對原有電站的影響比直接混燒發電對原有電站的影響小些。生物質鍋爐按燃燒方式有層燃爐、流化床鍋爐、懸浮燃燒鍋爐等方案可供選擇,對現役火電廠實施混燃技術改造,鍋爐本體結構不需大的變化(主要改造鍋爐燃燒設備)。改造主要涉及在已有燃料系統中進行生物質摻混,有以下3方式。
(1)在給煤機上游與煤混合,再一起制粉後噴入爐膛燃燒。
(2)採用專門的破碎裝置進行生物質的切割或粉碎,然後在燃燒器上游混入煤粉氣流中,或通過專設的生物質燃燒器噴入爐膛燃燒。
(3)將生物質在生物質氣化爐中氣化,產生的燃氣直接通到鍋爐中與煤混合燃燒。本文主要以第2種和第3種為研究對象。
技術上,生物質和煤混燃關鍵是生物質燃料的選擇和積灰問題。燃料的選擇可以通過管理手段並輔以摻混設備加以解決。下面主要討論積灰問題。
生物質和煤混燃的可行性,在一定程度上受積灰的影響很大。不同燃料的積灰特性與多種因素相關,如灰的含量、飛灰的粒徑分布、灰的組成和灰的流動性。積灰是必須考慮的重要因素,因為積灰對鍋爐運行、鍋爐效率、換熱器表面的腐蝕和灰的最終利用都有重要影響。與煤相比,生物質(如秸稈)和煤混燃時,兩種原料之間的相互作用會改變積灰的組成、降低顆粒的收集效率和灰的沉降速率。生物質灰中鹼性成分(特別是鹼金屬K)含量也比較高,且主要以活性成分存在,從火焰中易揮發出來凝結在受熱面上形成結渣和積灰,實際商業應用中生物質摻混比*高為15%,當摻比較小時,一般不會發生受熱麵灰污問題。國際和國內的經驗均表明,生物質混燃發電在技術上沒有大的障礙,技術上是完全可行的。
『伍』 垃圾電廠和生物質電廠哪一個更有發展前途
生物質電廠和垃圾電廠目前都比較熱門。尤其垃圾電廠如果市政垃圾補助到位,效益還是比較明顯。
而生物質電廠國家也有相關補貼政策和地方虧損補貼,大概0.35元每度電。補貼力度有增大趨勢。
但是兩者目前也都存在很多問題。
其中垃圾電廠面臨的最大問題就是環保。目前這種鍋爐焚燒垃圾,環保是否真正過關。仍然是不得而知的。日本等已經出現拆毀垃圾焚燒電廠。國內的垃圾焚燒技術應該不會超過日本。所以環保問題不能迴避。
生物質發電面臨的最大問題應該是燃料問題。比較國情不同,燃料特殊,面臨零散的農戶收購燃料。前期的收購模式需要進一步發展,才能成熟。
解決了燃料問題,應該說電廠技術問題已經不是問題了。
『陸』 新能源有哪些各種新能源的優缺點是什麼
新能源的各種形式都是直接或者間接地來自於太陽或地球內部伸出所產生的熱能。包括了太陽能、風能、生物質能、地熱能、核聚變能、水能和海洋能以及由可再生能源衍生出來的生物燃料和氫所產生的能量。也可以說,新能源包括各種可再生能源和核能。相對於傳統能源,新能源普遍具有污染少、儲量大的特點,對於解決當今世界嚴重的環境污染問題和資源(特別是化石能源)枯竭問題具有重要意義。同時,由於很多新能源分布均勻,對於解決由能源引發的戰爭也有著重要意義。
據世界斷言,石油,煤礦等資源將加速減少。核能、太陽能即將成為主要能源。
聯合國開發計劃署(UNDP)把新能源分為以下三大類:大中型水電;新可再生能源,包括小水電(Small-hydro)、太陽能(Solar)、風能(Wind)、現代生物質能(Modern biomass)、地熱能(Geothermal)、海洋能(Ocean)(潮汐能);傳統生物質能(Traditional biomass)。
一般地說,常規能源是指技術上比較成熟且已被大規模利用的能源,而新能源通常是指尚未大規模利用、正在積極研究開發的能源。因此,煤、石油、天然氣以及大中型水電都被看作常規能源,而把太陽能、風能、現代生物質能、地熱能、海洋能以及核能、氫能等作為新能源。隨著技術的進步和可持續發展觀念的樹立,過去一直被視作垃圾的工業與生活有機廢棄物被重新認識,作為一種能源資源化利用的物質而受到深入的研究和開發利用,因此,廢棄物的資源化利用也可看作是新能源技術的一種形式。
新近才被人類開發利用、有待於進一步研究發展的能量資源稱為新能源,相對於常規能源而言,在不同的歷史時期和科技水平情況下,新能源有不同的內容。當今社會,新能源通常指核能、太陽能、風能、地熱能、氫氣等。
按類別可分為:太陽能 風力發電 生物質能 生物柴油 燃料乙醇 新能源汽車 燃料電池 氫能 垃圾發電 建築節能 地熱能 二甲醚 可燃冰等。
太陽能
太陽能一般指太陽光的輻射能量。太陽能的主要利用形式有太陽能的光熱轉換、光電轉換以及光化學轉換三種主要方式
廣義上的太陽能是地球上許多能量的來源,如風能,化學能,水的勢能等由太陽能導致或轉化成的能量形式。
利用太陽能的方法主要有:太陽電能池,通過光電轉換把太陽光中包含的能量轉化為電能;太陽能熱水器,利用太陽光的熱量加熱水,並利用熱水發電等。
太陽能可分為3種:
1.太陽能光伏 光伏板組件是一種暴露在陽光下便會產生直流電的發電裝置,由幾乎全部以半導體物料(例如硅)製成的薄身固體光伏電池組成。由於沒有活動的部分,故可以長時間操作而不會導致任何損耗。簡單的光伏電池可為手錶及計算機提供能源,較復雜的光伏系統可為房屋照明,並為電網供電。 光伏板組件可以製成不同形狀,而組件又可連接,以產生更多電力。近年,天台及建築物表面均會使用光伏板組件,甚至被用作窗戶、天窗或遮蔽裝置的一部分,這些光伏設施通常被稱為附設於建築物的光伏系統。
2.太陽熱能 現代的太陽熱能科技將陽光聚合,並運用其能量產生熱水、蒸氣和電力。除了運用適當的科技來收集太陽能外,建築物亦可利用太陽的光和熱能,方法是在設計時加入合適的裝備,例如巨型的向南窗戶或使用能吸收及慢慢釋放太陽熱力的建築材料。
3.太陽光合能:植物利用太陽光進行光合作用,合成有機物。因此,可以人為模擬植物光合作用,大量合成人類需要的有機物,提高太陽能利用效率。
核能
核能是通過轉化其質量從原子核釋放的能量,符合阿爾伯特·愛因斯坦的方程E=mc^2;,其中E=能量,m=質量,c=光速常量。核能的釋放主要有三種形式:
A.核裂變能
所謂核裂變能是通過一些重原子核(如鈾-235、鈾-238、鈈-239等)的裂變釋放出的能量
B.核聚變能
由兩個或兩個以上氫原子核(如氫的同位素—氘和氚)結合成一個較重的原子核,同時發生質量虧損釋放出巨大能量的反應叫做核聚變反應,其釋放出的能量稱為核聚變能。
C.核衰變
核衰變是一種自然的慢得多的裂變形式,因其能量釋放緩慢而難以加以利用
核能的利用存在的主要問題:
(1)資源利用率低
(2)反應後產生的核廢料成為危害生物圈的潛在因素,其最終處理技術尚未完全解決
(3)反應堆的安全問題尚需不斷監控及改進
(4)核不擴散要求的約束,即核電站反應堆中生成的鈈-239受控制
(5)核電建設投資費用仍然比常規能源發電高,投資風險較大
海洋能
海洋能指蘊藏於海水中的各種可再生能源,包括潮汐能、波浪能、海流能、海水溫差能、海水鹽度差能等。這些能源都具有可再生性和不污染環境等優點,是一項亟待開發利用的具有戰略意義的新能源。
波浪發電,據科學家推算,地球上波浪蘊藏的電能高達90萬億度。目前,海上導航浮標和燈塔已經用上了波浪發電機發出的電來照明。大型波浪發電機組也已問世。我國在也對波浪發電進行研究和試驗,並製成了供航標燈使用的發電裝置。將來的世界,每一個海洋里都會有屬於我們中國的波能發電廠。波能將會為我國的電業作出很大貢獻。
潮汐發電,據世界動力會議估計,到2020年,全世界潮汐發電量將達到1000-3000億千瓦。世界上最大的潮汐發電站是法國北部英吉利海峽上的朗斯河口電站,發電能力24萬千瓦,已經工作了30多年。中國在浙江省建造了江廈潮汐電站,總容量達到3000千瓦。
風能
風能是太陽輻射下流動所形成的。風能與其他能源相比,具有明顯的優勢,它蘊藏量大,是水能的10倍,分布廣泛,永不枯竭,對交通不便、遠離主幹電網的島嶼及邊遠地區尤為重要。
風力發電,是當代人利用風能最常見的形式,自19世紀末,丹麥研製成風力發電機以來,人們認識到石油等能源會枯竭,才重視風能的發展,利用風來做其它的事情。
1977年,聯邦德國在著名的風谷--石勒蘇益格-荷爾斯泰因州的布隆坡特爾建造了一個世界上最大的發電風車。該風車高150米,每個漿葉長40米,重18噸,用玻璃鋼製成。到1994年,全世界的風力發電機裝機容量已達到300萬千瓦左右,每年發電約50億千瓦時。
生物質能
生物質能來源於生物質,也是太陽能以化學能形式貯存於生物中的一種能量形式,它直接或間接地來源於植物的光合作用。生物質能是貯存的太陽能,更是一種唯一可再生的碳源,可轉化成常規的固態、液態或氣態的燃料。地球上的生物質能資源較為豐富,而且是一種無害的能源。地球每年經光合作用產生的物質有1730億噸,其中蘊含的能量相當於全世界能源消耗總量的10-20倍,但目前的利用率不到3%。
生物質能利用現狀
2006年底全國已經建設農村戶用沼氣池1870萬口,生活污水凈化沼氣池14萬處,畜禽養殖場和工業廢水沼氣工程2,000多處,年產沼氣約90億立方米,為近8000萬農村人口提供了優質生活燃料。
中國已經開發出多種固定床和流化床氣化爐,以秸稈、木屑、稻殼、樹枝為原料生產燃氣。2006年用於木材和農副產品烘乾的有800多台,村鎮級秸稈氣化集中供氣系統近600處,年生產生物質燃氣2,000萬立方米。
地熱能
地球內部熱源可來自重力分異、潮汐摩擦、化學反應和放射性元素衰變釋放的能量等。放射性熱能是地球主要熱源。我國地熱資源豐富,分布廣泛,已有5500處地熱點,地熱田45個,地熱資源總量約320萬兆瓦。
氫能
在眾多新能源中,氫能以其重量輕、無污染、熱值高、應用面廣等獨特優點脫穎而出,將成為21世紀最理想的新能源。氫能可應用於航天航空、汽車的燃料,等高熱行業。
海洋滲透能
如果有兩種鹽溶液,一種溶液中鹽的濃度高,一種溶液的濃度低,那麼把兩種溶液放在一起並用一種滲透膜隔離後,會產生滲透壓,水會從濃度低的溶液流向濃度高的溶液。江河裡流動的是淡水,而海洋中存在的是鹹水,兩者也存在一定的濃度差。在江河的入海口,淡水的水壓比海水的水壓高,如果在入海口放置一個渦輪發電機,淡水和海水之間的滲透壓就可以推動渦輪機來發電。
海洋滲透能是一種十分環保的綠色能源,它既不產生垃圾,也沒有二氧化碳的排放,更不依賴天氣的狀況,可以說是取之不盡,用之不竭。而在鹽分濃度更大的水域里,滲透發電廠的發電效能會更好,比如地中海、死海、我國鹽城市的大鹽湖、美國的大鹽湖。當然發電廠附近必須有淡水的供給。據挪威能源集團的負責人巴德·米克爾森估計,利用海洋滲透能發電,全球范圍內年度發電量可以達到16000億度。
水能
水能是一種可再生能源,是清潔能源,是指水體的動能、勢能和壓力能等能量資源。廣義的水能資源包括河流水能、潮汐水能、波浪能、海流能等能量資源;狹義的水能資源指河流的水能資源。是常規能源,一次能源。水不僅可以直接被人類利用,它還是能量的載體。太陽能驅動地球上水循環,使之持續進行。地表水的流動是重要的一環,在落差大、流量大的地區,水能資源豐富。隨著礦物燃料的日漸減少,水能是非常重要且前景廣闊的替代資源。目前世界上水力發電還處於起步階段。河流、潮汐、波浪以及涌浪等水運動均可以用來發電。
可以利用電解水分子和光以及化學分解水分子的方式,來分解到可燃燒的氫氣,它可作為新的,多用途的能源來替代現有的礦物質能源。水分子的分解過程簡而易行,投資少見效快。這給水能的綜合利用帶來了廣泛的前景,在地球上,水是一種到處可見的液態物質。通過水的分解裝置,制備出氫燃料,可用於汽車,航天航空,熱力發電等工業和民用方面,在較大的程度上,緩解了人類對礦物質資源的過分依賴。
新能源的發展現狀和趨勢
部分可再生能源利用技術已經取得了長足的發展,並在世界各地形成了一定的規模。目前,生物質能、太陽能、風能以及水力發電、地熱能等的利用技術已經得到了應用。
國際能源署(IEA)對2000~2030年國際電力的需求進行了研究,研究表明,來自可再生能源的發電總量年平均增長速度將最快。IEA的研究認為,在未來30年內非水利的可再生能源發電將比其他任何燃料的發電都要增長得快,年增長速度近6%在2000~2030年間其總發電量將增加5倍,到2030年,它將提供世界總電力的4.4%,其中生物質能將占其中的80%。
目前可再生能源在一次能源中的比例總體上偏低,一方面是與不同國家的重視程度與政策有關,另一方面與可再生能源技術的成本偏高有關,尤其是技術含量較高的太陽能、生物質能、風能等據IEA的預測研究,在未來30年可再生能源發電的成本將大幅度下降,從而增加它的競爭力。可再生能源利用的成本與多種因素有關,因而成本預測的結果具有一定的不確定性。但這些預測結果表明了可再生能源利用技術成本將呈不斷下降的趨勢。
我國政府高度重視可再生能源的研究與開發。國家經貿委制定了新能源和可再生能源產業發展的「十五」規劃,並制定頒布了《中華人民共和國可再生能源法》,重點發展太陽能光熱利用、風力發電、生物質能高效利用和地熱能的利用。近年來在國家的大力扶持下,我國在風力發電、海洋能潮汐發電以及太陽能利用等領域已經取得了很大的進展。
新能源(或稱可再生能源更貼切)主要有:太陽能、風能、地熱能、生物質能等。生物質能在經過了幾十年的探索後,國內外許多專家都表示這種能源方式不能大力發展,它不但會搶奪人類賴以生存的土地資源,更將會導致社會不健康發展;地熱能的開發和空調的使用具有同樣特性,如大規模開發必將導致區域地面表層土壤環境遭到破壞,必將引起再一次生態環境變化;而風能和太陽能對於地球來講是取之不盡、用之不竭的健康能源,他們必將成為今後替代能源主流。
太陽能發電具有布置簡便以及維護方便等特點,應用面較廣,現在全球裝機總容量已經開始追趕傳統風力發電,在德國甚至接近全國發電總量的5%-8%,隨之而來的問題令我們意想不到,太陽能發電的時間局限性導致了對電網的沖擊,如何解決這一問題成為能源界的一大困惑。
風力發電在19世紀末就開始登上歷史的舞台,在一百多年的發展中,一直是新能源領域的獨孤求敗,由於它造價相對低廉,成了各個國家爭相發展的新能源首選,然而,隨著大型風電場的不斷增多,佔用的土地也日益擴大,產生的社會矛盾日益突出,如何解決這一難題,成了我們又一困惑。
早在2001年,MUCE就為了開拓穩定的海島通信電源而開展一項研究,經過六年多研究和實踐,終於將一種成熟的新型應用方式MUCE風光互補系統向社會推廣,這種系統採用了我國自主研製的新型垂直軸風力發電機(H型)和太陽能發電進行10:3地結合,形成了相對穩定的電力輸出。在建築上、野外、通信基站、路燈、海島均進行了實際應用,獲得了大量可靠的使用數據。這一系統的研究成果將為我國乃至世界的新能源發展帶來了新的動力。
新型垂直軸風力發電機(H型)突破了傳統的水平軸風力發電機啟動風速高、噪音大、抗風能力差、受風向影響等缺點,採取了完全不同的設計理論,採用了新型結構和材料,達到微風啟動、無噪音、抗12級以上台風、不受風向影響等性能,可大量用於別墅、多層及高層建築、路燈等中小型應用場合。以它為主建立的風光互補發電系統,具有電力輸出穩定、經濟性高、對環境影響小等優點,也解決了太陽能發展中對電網沖擊等影響。
隨著能源危機日益臨近,新能源已經成為今後世界上的主要能源之一。其中太陽能已經逐漸走入我們尋常的生活,風力發電偶爾可以看到或聽到,可是它們作為新能源如何在實際中去應用?新能源的發展究竟會是怎樣的格局?這些問題將是我們在今後很長時間里需要探索的。
新能源的環境意義和能源安全戰略意義
我國能源需求的急劇增長打破了我國長期以來自給自足的能源供應格局,自1993年起我國成為石油凈進口國,且石油進口量逐年增加,使得我國接入世界能源市場的競爭。由於我國化石能源尤其是石油和天然氣生產量的相對不足,未來我國能源供給對國際市場的依賴程度將越來越高。
國際貿易存在著很多的不確定因素,國際能源價格有可能隨著國際和平環境的改善而趨於穩定,但也有可能隨著國際局勢的動盪而波動。今後國際石油市場的不穩定以及油價波動都將嚴重影響我國的石油供給,對經濟社會造成很大的沖擊。大力發展可再生能源可相對減少我國能源需求中化石能源的比例和對進口能源的以來程度,提高我國能源、經濟安全。
此外,可再生能源與化石能源相比最直接的好處就是其環境污染少。
未來的幾種新能源
波能:即海洋波浪能。這是一種取之不盡,用之不竭的無污染可再生能源。據推測,地球上海洋波浪蘊藏的電能高達9×104TW。近年來,在各國的新能源開發計劃中,波能的利用已佔有一席之地。盡管波能發電成本較高,需要進一步完善,但目前的進展已表明了這種新能源潛在的商業價值。日本的一座海洋波能發電廠已運行8年,電廠的發電成本雖高於其它發電方式,但對於邊遠島嶼來說,可節省電力傳輸等投資費用。目前,美、英、印度等國家已建成幾十座波能發電站,且均運行良好。
可燃冰:這是一種甲烷與水結合在一起的固體化合物,它的外型與冰相似,故稱「可燃冰」。可燃冰在低溫高壓下呈穩定狀態,冰融化所釋放的可燃氣體相當於原來固體化合物體積的100倍。據測算,可燃冰的蘊藏量比地球上的煤、石油和天然氣的總和還多。
煤層氣:煤在形成過程中由於溫度及壓力增加,在產生變質作用的同時也釋放出可燃性氣體。從泥炭到褐煤,每噸煤產生68m3氣;從泥炭到肥煤,每噸煤產生130m3氣;從泥炭到無煙煤每噸煤產生400m3氣。科學家估計,地球上煤層氣可達2000Tm3。
微生物:世界上有不少國家盛產甘蔗、甜菜、木薯等,利用微生物發酵,可製成酒精,酒精具有燃燒完全、效率高、無污染等特點,用其稀釋汽油可得到「乙醇汽油」,而且製作酒精的原料豐富,成本低廉。據報道,巴西已改裝「乙醇汽油」或酒精為燃料的汽車達幾十萬輛,減輕了大氣污染。此外,利用微生物可製取氫氣,以開辟能源的新途徑。
第四代核能源:當今,世界科學家已研製出利用正反物質的核聚變,來製造出無任何污染的新型核能源。正反物質的原子在相遇的瞬間,灰飛煙滅,此時,會產生高當量的沖擊波以及光輻射能。這種強大的光輻射能可轉化為熱能,如果能夠控制正反物質的核反應強度,來作為人類的新型能源,那將是人類能源史上的一場偉大的能源革命。