① 微生物是怎樣降解污染物的從酶的角度解釋~
有些微生物可以利用這些有毒的有機物,通過酶的催化作用使其氧化為CO2和水,當然,也有些是將它變成無毒的就行了,如鉻元素,不同的化合價毒性不同,有些微生物就可以分泌酶到細胞外,將其氧化,降低毒性。
② 談談處理重金屬污染物的微生物方法和原理有哪些
2.1 生物化學法
生物化學法指通過微生物處理含重金屬廢水,將可溶性離子轉化為不溶性化合物而去除。硫酸鹽生物還原法是一種典型生物化學法,該法是在厭氧條件下硫酸鹽還原菌通過異化的硫酸鹽還原作用,將硫酸鹽還原成H2S,重金屬離子和H2S反應生成溶解度很低的金屬硫化物沉澱而被去除,同時H2SO4的還原作用可將SO2-4轉化為S2-而使廢水的pH值升高,從而形成重金屬的氫氧化物而沉澱。中國科學院成都生物研究所從電鍍污泥、廢水及下水道鐵管內分離篩選出35株菌株,從中獲得高效凈化Cr(VI)復合功能菌[3]。
袁建軍等[4]利用構建的高選擇型基因工程菌生物富集模擬電解廢水中的汞離子,發現電解廢水中其他組分的存在可以增大重組菌富集汞離子的作用速率,且該基因工程菌能在很寬的pH范圍內有效地富集汞。但高濃度的重金屬廢水對微生物毒性大,故此法有一定的局限性,不過,可以通過遺傳工程、馴化或構造出具有特殊功能的菌株,微生物處理重金屬廢水一定具有十分良好的應用前景。 2.2 生物絮凝法
生物絮凝法是利用微生物或微生物產生的具有絮凝能力的代謝物進行絮凝沉澱的一種除污方法。生物絮凝劑又稱第三代絮凝劑,是帶電荷的生物大分子,主要有蛋白質、黏多糖、纖維素和核糖等。目前普遍接受的絮凝機理是離子鍵、氫鍵結合學說。目前對於硅酸鹽細菌絮凝法的應用研究已有很多[5-6],有些已取得顯著成果[7]。運用基因工程技術,在菌體中表達金屬結合蛋白分離後,再固定到某些惰性載體表面,可獲得高富集容量絮凝劑。
Masaaki Terashima 等[8]利用轉基因技術使 E.coli表達麥芽糖結合蛋白(pmal)與人金屬硫蛋白(MT)的融合蛋白pmal-Ml並將純化的 pmal-MT 固定在Chitopeara 樹脂上,研究其對 Ca2+和 Ga2+的吸附特性,該固定了融合蛋白的樹脂具有較強的穩定性,並且其吸附能力較純樹脂提高十倍以上。 2.3生物吸附法
生物吸附是對於經過一系列生物化學作用使重金屬離子被微生物細胞吸附的概括理解, 這些作用包括絡合,螯合,離子交換,吸附等。活的微生物和死的微生物對重金屬離子都有較大的吸附能力,藻類中的某些種屬對於重金屬的吸附容量可達400Hg/kg(生物乾重),例如甲囊馬尾藻(Sargassummatans)。
吸附法分為物理吸附法和離子吸附法兩種,前者使用具有高度吸附能力的硅膠、活性碳、多孔玻璃、石英砂和纖維素等,吸附劑將生物細胞吸附到表面上使之固定化。這是一種最古老的方法,操作簡單,反應條件溫和,載體可反復利用,但結合不牢固,細胞易脫落。後者根據細胞在離解狀態下可因靜電引力(即離子鍵合作用)而固著於帶有異相電荷的離子交換劑上,如DEAE2纖維素、DEAE2Sephadex,CM2纖維素等。
Green使用藻類去除水的金,Tsezos,Mara2no使用真菌吸附水中的鈾,Ferguson和Breuer等利用泥炭蘚去除水中的Fe,Al,Pb,Cu,Cd,Zn等金屬離子。Barkley利用藻類吸附有機廢水中的Cd,Cu等金屬離子。MarkSpinti等把泥炭蘚固定在多孔的聚合碸基質中成功地應用於去除含Zn,Cd,Mg等金屬離子的酸性礦井水中,用聚合碸固定泥炭蘚製成的球狀小粒機械強度大,化學性能穩定,容易再生,不膨脹不收縮。生物吸附法以其獨特的優點近年來在含重金屬廢水處理領域引起了人們普遍的關注,進行了廣泛的研究,取得了可喜的成果。但生物吸附技術還只是處於經驗、實驗室階段,在實用化和工業化應用中還存在著諸多問題有待研究解決,還需通過進一步的研究和開發工作完善此項技術。