㈠ 試述細菌固氮作用機制和必要條件
生物固氮是固氮微生物特有的一種生理功能,這種功能是在固氮酶的催化作用下進行的。
固氮酶是一種能夠將分子氮還原成氨的酶。
固氮酶是由兩種蛋白質組成的:一種含有鐵,叫做鐵蛋白,另一種含有鐵和鉬,叫做鉬鐵蛋白。
只有鐵蛋白和鉬鐵蛋白同時存在,固氮酶才具有固氮的作用。
生物固氮過程可以用下面的反應式概括表示。
N2+6H++nMg-ATP+6e-(酶)→2NH3+nMg-ADP+nPi分析上面的反應式可以看出,分子氮的還原過程是在固氮酶的催化作用下進行的。
有三點需要說明:第一,ATP一定要與鎂(Mg)結合,形成Mg-ATP復合物後才能起作用;
第二,固氮酶具有底物多樣性的特點,除了能夠催化N2還原成NH3以外,還能催化乙炔還原成乙烯(固氮酶催化乙炔還原成乙烯的化學反應,常被科學家用來測定固氮酶的活性)等;
第三,生物固氮過程中實際上還需要黃素氧還蛋白或鐵氧還蛋白參與,這兩種物質作為電子載體能夠起到傳遞電子的作用。
鐵蛋白與Mg-ATP結合以後,被黃素氧還蛋白或鐵氧還蛋白還原,並與鉬鐵蛋白暫時結合以傳遞電子。
鐵蛋白每傳遞一個e-給鉬鐵蛋白,同時伴隨有兩個Mg-ATP的水解。
在這一催化反應中,鐵蛋白反復氧化和還原,只有這樣,e-和H+才能依次通過鐵蛋白和鉬鐵蛋白,最終傳遞給N2和乙炔,使它們分別還原成NH3和乙烯。
㈡ 生物固氮原理示意圖
生物固氮原理簡介 生物固氮是固氮微生物特有的一種生理功能,這種功能是在固氮酶的催化作用下進行的。固氮酶是一種能夠將分子氮還原成氨的酶。固氮酶是由兩種蛋白質組成的:一種含有鐵,叫做鐵蛋白,另一種含有鐵和鉬,叫做鉬鐵蛋白。只有鐵蛋白和鉬鐵蛋白同時存在,固氮酶才具有固氮的作用。生物固氮過程可以用下面的反應式概括表示。
N2 + 6H+ + nMg-ATP +6e-2NH3+nMg-ADP+nPi
分析上面的反應式可以看出,分子氮的還原過程是在固氮酶的催化作用下進行的。有三點需要說明:第一,ATP一定要與鎂(Mg)結合,形成Mg-ATP復合物後才能起作用;第二,固氮酶具有底物多樣性的特點,除了能夠催化N2還原成NH3以外,還能催化乙炔還原成乙烯(固氮酶催化乙炔還原成乙烯的化學反應,常被科學家用來測定固氮酶的活性)等;第三,生物固氮過程中實際上還需要黃素氧還蛋白或鐵氧還蛋白參與,這兩種物質作為電子載體能夠起到傳遞電子的作用。
鐵蛋白與Mg-ATP結合以後,被黃素氧還蛋白或鐵氧還蛋白還原,並與鉬鐵蛋白暫時結合以傳遞電子。鐵蛋白每傳遞一個e-給鉬鐵蛋白, 同時伴隨有兩個Mg-ATP的水解。在這一催化反應中,鐵蛋白反復氧化和還原,只有這樣,e-和H+才能依次通過鐵蛋白和鉬鐵蛋白,最終傳遞給N2和乙炔,使它們分別還原成NH3和乙烯。
固氮微生物的類型 固氮生物都屬於個體微小的原核生物,所以,固氮生物又叫做固氮微生物。根據固氮微生物的固氮特點以及與植物的關系,可以將它們分為自生固氮微生物、共生固氮微生物和聯合固氮微生物三類。
自生固氮微生物在土壤或培養基中生活時,可以自行固定空氣中的分子態氮,對植物沒有依存關系。常見的自生固氮微生物包括以圓褐固氮菌為代表的好氧性自生固氮菌、以梭菌為代表的厭氧性自生固氮菌,以及以魚腥藻、念珠藻和顫藻為代表的具有異形胞的固氮藍藻(異形胞內含有固氮酶,可以進行生物固氮)。
共生固氮微生物只有和植物互利共生時,才能固定空氣中的分子態氮。共生固氮微生物可以分為兩類:一類是與豆科植物互利共生的根瘤菌,以及與榿木屬、楊梅屬和沙棘屬等非豆科植物共生的弗蘭克氏放線菌;另一類是與紅萍(又叫做滿江紅)等水生蕨類植物或羅漢松等裸子植物共生的藍藻。由藍藻和某些真菌形成的地衣也屬於這一類。
有些固氮微生物如固氮螺菌、雀稗固氮菌等,能夠生活在玉米、雀稗、水稻和甘蔗等植物根內的皮層細胞之間。這些固氮微生物和共生的植物之間具有一定的專一性,但是不形成根瘤那樣的特殊結構。這些微生物還能夠自行固氮,它們的固氮特點介於自生固氮和共生固氮之間,這種固氮形式叫做聯合固氮。
豆科植物的根瘤 根瘤菌屬中有十幾種根瘤菌,這些根瘤菌與豆科植物具有特殊的互利共生關系,也就是一種根瘤菌只能在一種或若干種豆科植物的根上形成根瘤。根據每種根瘤菌只能在特定的一種或若干種豆科植物上結瘤的現象,人們把根瘤菌及其豆科寄主分成不同的族,這些族也叫做互接種族。一種豆科植物的根瘤菌只能使同一個互接種族內的其他豆科植物結瘤。形成互接種族的原因是,豆科植物的根毛能夠分泌一類特殊的蛋白質,根瘤菌細胞的表面存在著多糖物質,只有同族豆科植物根毛分泌的蛋白質與同族根瘤菌細胞表面的多糖物質才能產生特異性結合。
常見的互接種族及所含的豆科植物有:
苜蓿族:包括苜蓿屬和草木犀屬植物;
三葉草族:只有三葉草屬一個屬;
豌豆族:包括豌豆屬、蠶豆屬、山黧豆屬、兵豆屬和鷹嘴豆屬植物;
四季豆族:包括四季豆屬中四季豆等植物;
大豆族:只有大豆屬一個屬;
豇豆族:包括豇豆、花生、綠豆、赤豆等植物;
紫雲英族:只有黃芪屬一個屬(包括紫雲英、沙打旺等)。
當豆科植物的根系在土壤中生長時,會刺激同一互接種族的根瘤菌在根系附近大量繁殖。豆科植物對根瘤菌的這種影響,在土壤中可以達到2~3 cm的距離。這樣,根系附近的、與該種豆科植物同族的根瘤菌就會不斷地繁殖並聚集到根毛的頂端。聚集在根毛頂端的根瘤菌分泌一種纖維素酶,將根毛頂端的細胞壁溶解掉。隨後,根瘤菌從根毛頂端侵入到根的內部,並形成感染絲(感染絲是指根瘤菌排列成行,外麵包有一層黏液狀的物質)。根瘤菌就這樣不斷地進入根內,並且大量繁殖。在根瘤菌侵入的刺激下,根細胞分泌一種纖維素,將感染絲包圍起來,形成一條分支或不分支的纖維素鞘,這樣的結構叫做侵入線(圖2-4)。侵入線不斷地向內延伸,一直到達根的內皮層。根的內皮層處的薄壁細胞受到根瘤菌分泌物的刺激,不斷進行細胞分裂,從而使該處的組織膨大,最終形成根瘤。
氮循環簡介 氮素在自然界中有多種存在形式,其中,數量最多的是大氣中的氮氣,總量約3.9×1015 t。除了少數原核生物以外,其他所有的生物都不能直接利用氮氣。目前,陸地上生物體內儲存的有機氮的總量達1.1×1010~1.4×1010 t。這部分氮素的數量盡管不算多,但是能夠迅速地再循環,從而可以反復地供植物吸收利用。存在於土壤中的有機氮總量約為3.0×1011 t,這部分氮素可以逐年分解成無機態氮供植物吸收利用。海洋中的有機氮約為5.0×1011 t,這部分氮素可以被海洋生物循環利用。
構成氮循環的主要環節是:生物體內有機氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。
植物吸收土壤中的銨鹽和硝酸鹽,進而將這些無機氮同化成植物體內的蛋白質等有機氮。動物直接或間接以植物為食物,將植物體內的有機氮同化成動物體內的有機氮。這一過程叫做生物體內有機氮的合成。動植物的遺體、排出物和殘落物中的有機氮被微生物分解後形成氨,這一過程叫做氨化作用。在有氧的條件下,土壤中的氨或銨鹽在硝化細菌的作用下最終氧化成硝酸鹽,這一過程叫做硝化作用。氨化作用和硝化作用產生的無機氮,都能被植物吸收利用。在氧氣不足的條件下,土壤中的硝酸鹽被反硝化細菌等多種微生物還原成亞硝酸鹽,並且進一步還原成分子態氮,分子態氮則返回到大氣中,這一過程叫做反硝化作用。
大氣中的分子態氮被還原成氨,這一過程叫做固氮作用。沒有固氮作用,大氣中的分子態氮就不能被植物吸收利用。地球上固氮作用的途徑有三種:生物固氮、工業固氮(用高溫、高壓和化學催化的方法,將氮轉化成氨)和高能固氮(如閃電等高空瞬間放電所產生的高能,可以使空氣中的氮與水中的氫結合,形成氨和硝酸,氨和硝酸則由雨水帶到地面)。據科學家估算,每年生物固氮的總量佔地球上固氮總量的90%左右,可見,生物固氮在地球的氮循環中具有十分重要的作用。
根瘤菌菌劑的自製和使用 根瘤菌菌劑可以購買,也可以自製。下面介紹兩種簡易的自製方法。
①干根瘤法。豆科作物處於開花期時,根瘤菌的繁殖和固氮能力最旺盛。這時,選擇生長健壯的植株,小心地連根挖起(盡量不要損傷根瘤)。挑選根瘤呈粉紅色的、個大、數多的植株,剪去枝葉和細根後,掛在通風背陰處備用。也可以在收獲豆科作物時進行選留,只是拌種時的用量應比盛花期留取的要多一些。第二年播種前,將根瘤取下,放在罐內搗碎,加上無菌水或冷開水攪拌均勻後,就可以拌種了。一般每公頃的豆種用75~150株的根瘤即可。
②鮮根瘤法。預先在苗圃中種植同種豆科作物。大田播種時,從苗圃內生長健壯的豆科植株上選取個大和呈粉紅色的新鮮根瘤,放在罐內搗碎,加上無菌水或冷開水攪拌均勻後就可以拌種了。這種方法只需要少量新鮮根瘤(每公頃的豆種可用75~150個根瘤)。
使用根瘤菌菌劑時應注意以下幾點。第一,根瘤菌對不同種甚至不同品種的豆科作物都有選擇性。所以,所用的根瘤菌菌劑一定要和豆科作物屬於同一互接種族,否則就沒有增產效果。第二,太陽光中的紫外線對根瘤菌具有較強的殺傷力,所以,干鮮根瘤、自製或購買的根瘤菌菌劑以及拌好的豆種,一定要放在陰涼處,避免陽光直射。第三,拌種要均勻,不要擦傷種皮。第四,拌種時,不能同時拌入農葯。第五,拌種時,每公頃的豆種如果加入75~150 g鉬酸銨,會有更好的增產效果。多年種植某種豆科作物的農田,如果繼續種植這種豆科作物,也應接種根瘤菌。這是因為土壤中原有根瘤菌的結瘤能力和固氮能力往往下降,即使能夠結瘤,固氮能力也不高。
需要指出的是,根瘤菌的固氮能力,不僅取決於根瘤菌菌種的質量(人工培育的根瘤菌的固氮能力,一般比野生的根瘤菌的固氮能力高幾倍),而且取決於土壤條件和栽培措施。因此,人們不僅要進行根瘤菌拌種,而且要加強農田管理並適時適量地施用磷、鉀肥料和微量元素肥料(如硼肥、鉬肥、鐵肥等),只有這樣才能更好地發揮根瘤菌的固氮能力。
自生固氮菌菌劑的使用 我國推廣使用的自生固氮菌菌劑,主要由圓褐固氮菌和棕色固氮菌製成。這些自生固氮菌菌劑,對於小麥、水稻、棉花和玉米等農作物都有一定的增產效果。施用方式主要有基施(和農家肥拌勻後,以基肥的形式施用)、追施(和潮濕的肥土混合均勻,堆放三五天並拌入一些稀糞水後,澆在農作物的根部並覆蓋土壤)和拌種(注意要在陰涼處拌種,拌種時不能拌入農葯,並且在陰涼處晾乾後再播種)。
多年的生產實踐表明,農田中使用自生固氮菌菌劑的增產效果不很穩定。為此,目前科學家對於自生固氮菌的增產作用還有爭論,有的認為是自生固氮菌的固氮作用起到了增產作用,有的則認為主要是自生固氮菌分泌的生長素起到了增產作用。可以肯定的是,單純施用自生固氮菌菌劑不能滿足農作物對氮素營養的全部需要,自生固氮菌菌劑的施用只能是提供農作物氮素營養和促進農作物生長的一種補充措施。
㈢ 植物固氮需要什麼條件通常在什麼環境下發生
生物固氮作用
生物固氮作用(biological nitrogen fixatio):大氣中的氮被原還為氨的過程。生物固氮只發生在少數的細菌和藻類中。
估計全球每年生物固氮作用所固定的氮(N2)約達17500萬噸,其中耕地土壤約有4400萬噸,超過了每年施入土壤4000萬噸肥料氮素(工業固氮)的量(Burris,1977)。因此,生物固氮作用有很大潛力。
固氮微生物種類:到1982年固氮微生物達70多個屬,大多數是原核微生物(細、放、藍細菌),也有真菌。根據固氮微生物與高等植物以及其他生物關系,分為二個類型。
1.自生固氮微生物——在土壤中或培養基中,獨自生活時能固定了氨態氮。在進行固氮作用時對植物或其它生物沒有明顯的依存關系。
有好氣性、厭氣性、兼厭氣性有化能自養異養,光能自養、異養型生固氮微生物。
2.共生固氮微生物――二種微生物緊密地生長在一起時,由固氮的共生菌進行分子態氮的還原作用。
自生固氮微生物生物固氮作用的條件:
1、防氧保護系統(好氣性固定微生物需具備之);
2、能量和電子供體,以及傳遞電子的電子載體系統;
3、固氮酶催化系統;
4、氨、氨基酸同化成蛋白質系統;
共生固氮微生物生物固氮作用的條件則更復雜。
---------------------------------
生物固氮系統
具有生物固氮能力的僅限於原核生物,即細菌和藍綠藻。有些固氮微生物,如藍綠藻自生於陸地或水域生態系統中,其他則群生於寄生植物的根際,其中對高等植物最為重要的有與豆科植物或結瘤的非豆科植物共生的固氮微生物。在陸地生態系統中主要有三種固氮體系,即共生固氮、聯合固氮和自生固氮體系。三種固氮體系中,能源和固氮能力都存在明顯差異。共生體系由於固氮微生物直接從寄主植物獲得碳水化合物作為固氮能源,其固氮能力最強。豆科(Leguminosae)植物近2000個種中約有15%具有共生固氮系統,其中近300種豆科植物中有90%與根瘤菌共生形成根瘤。如大豆、蠶豆、三葉草、苜蓿與根瘤菌的共生,是農業中最重要的共生體系。在森林和林地中有8個科23個屬的植物與固氮微生物形成共生體系。如赤楊屬(Alnus)和薊木屬(Ceanothus)與放線菌之間形成結瘤共生體系。這些非豆科植物是缺氮土壤的先鋒植物。
豆科植物根上的根瘤是由於根瘤菌侵入根部後形成的,根瘤是固氮的場所。根瘤菌侵入寄主的過程很復雜。在根瘤菌入侵寄主根毛或表皮細胞之前,土壤中的根瘤菌是一種不能運動的小球菌(圖5-19)。由於植物根分泌物(氨基酸、維生素)的影響,這些小球菌產生鞭毛,具有移動侵入寄主的能力。根瘤菌在根表面分泌某種未知物質(分子)使根毛彎曲。這種物質的分泌受到根釋放成分(如類黃酮)的促進。此後,根瘤菌分泌酶溶解根毛細胞壁,根瘤菌隨即由此處侵入根毛,根毛形成侵染絲(infectionthread)。根瘤菌在侵染絲中大量繁殖隨侵染絲進入皮層。根瘤菌被釋放到皮層細胞質中,刺激細胞的分裂和生長形成根瘤(root nole)(圖5-19)。根瘤中大部分為含有根瘤菌的四倍體細胞,只有少部分為未被侵染的二倍體細胞。成熟根瘤中的根瘤菌失去鞭毛而成為不能移動的類菌體(bacteriod),一個典型的根瘤細胞中通常含有數千個類菌體,這些類菌體在細胞內聚成一個個小群體,每個小群體有數個類菌體組成(大豆根瘤中為4~6個)。每群體外面有一層膜包著,此膜稱為類菌體外周膜(peribacteroid membrane),在此膜與類菌體之間的空間稱為類菌體外周空間(peribacteriodspace)。在類菌體外周膜以外的細胞質中存在著豆血紅蛋白(leghemoglobin)。此蛋白含有紅色的血紅素基團(hemegroup)。據認為豆血紅蛋白的作用是為類菌體在嚴格控制的條件下供應氧。因為類菌體的呼吸作用需要氧,但過多的氧則會抑制催化氮素固定的固氮酶的活性。
根瘤中的固氮作用只在類菌體內進行。寄主植物向類菌體供給碳水化合物,主要形式是蔗糖。類菌體利用這些糖進行呼吸作用,產生電子和ATP,將N2還原成NH4+。
2.固氮的生物化學與生理學
生物固氮的總反應式如下:
N2+8e+16MgATP+16H2O→2NH3+H2+16MgADP+16Pi+8H+
催化此反應的酶是固氮酶。固氮酶是多功能的氧化還原酶,除了還原N2以外,還能還原多種類型的底物,如乙炔、氰化物、氧化亞氮、聯氨、疊氮化物和H+等。用氣相色譜儀能很容易測定乙炔還原成乙烯的產生量,這為研究固氮酶活性提供了極為簡單的方法。該法對生物固氮研究取得重大進展發揮了作用。
固氮酶由鐵鉬蛋白(Fe-Moprotein)和鐵蛋白(Fe-protein)組成。這兩個蛋白單獨存在時都不呈現固氮酶活性,只有兩者聚合構成復合體時才有催化氮還原的功能。鐵鉬蛋白由分子量分別為51kD和60kD的2個α亞基和2個β亞基組成的四聚體(α2β2),分子量約為220~245kD。每分子鐵鉬蛋白含有兩個鉬原子,28個鐵原子。鐵蛋白的分子量在59~73kD之間,由兩個分子量同為30kD的亞基組成(γ2)。鐵蛋白含有4個鐵原子。在氮還原為NH4+的過程中,固氮酶中的Fe和Mo都發生氧化還原反應,如圖5-20所示。類菌體利用碳水化合物進行呼吸作用產生NADH或NADPH和ATP。已經查明,固氮的天然電子傳遞體(供體)有鐵氧還蛋白、黃素氧還蛋白等。固氮生物體內存在著ATP和二價的金屬離子(如Mg2+)是固氮不可缺少的條件。只有在Mg2+的作用下,ATP才可以與Fe蛋白結合,而且必需有Fe-Mo蛋白的參與才發生ATP水解反應。Fe蛋白將電子傳遞給Fe-Mo蛋白的同時伴隨著ATP水解產生ADP。Fe-Mo蛋白最後將電子傳遞給N2和質子,產生2分子NH3和1分子H2。
固氮酶對氧敏感,其催化反應需在厭氧下進行。除了專性厭氧的生物外,氧對其他固氮生物的固氮酶有損傷作用,但這些生物通過呼吸作用產生固氮必需的ATP又需要氧,所以高效率的固氮作用一般是在微氧下進行的。不同固氮生物避免氧對固氮酶傷害的機制各異。如具有異形胞的藍藻的固氮功能主要在異形胞中進行,這種細胞外有一層防氧進入的糖脂組成的外膜,缺少水光解放氧的PSⅡ,其中戊糖磷酸途徑的兩種酶活性較低,而超氧物歧化酶和脫氫酶活性都比較強,使異形胞保持了一個微氧環境。豆科植物的根瘤中類菌體有一層類菌體周膜,瘤內皮層內側細胞排列緊密並形成間隙,兩者對於保持類菌體的低氧環境十分重要。此外,根瘤細胞內的豆血紅蛋白也部分地控制著類菌體氧氣的需求。在非豆科植物共生固氮體系中,在與放線菌共生的瘤中有囊泡存在,這種囊泡可能與藍藻的異形胞一樣具有防氧功能。很明顯,共生體系中的根瘤本身就是一個良好的氧保護系統。
在類菌體內合成的NH3(很可能是NH4+)要從類菌體內運出來,才能參與寄主植物中的代謝。在含類菌體細胞的細胞質中,NH4+轉化成谷醯胺、谷氨酸、天冬醯胺和醯脲。這些物質由轉移細胞分泌到木質部,運輸到植物的其他部分。
由於生物固氮的重要性,有關控制生物固氮的環境與遺傳因素的研究受到重視。研究表明,凡是能增加植物光合作用能力的因素,如合適的水分、溫度、強光照和高CO2水平等都可以促進固氮作用。豆科植物與固氮生物的遺傳因素也影響固氮作用的速率和產量。例如其中一個遺傳因素是豆科植物的結瘤能力,它依賴於根瘤菌與寄主植物之間的由遺傳控制的識別過程。為提高結瘤能力,科學工作者正在進行改造根瘤菌基因以及選擇合適的寄主品種的研究工作。另外一個遺傳因素是固氮酶在還原N2的同時還原H+。由總反應式可見,固氮酶催化的反應中有1/4的電子用於還原H+產生H2。而H2被還原後逸出進入大氣,這個過程使能量白白浪費。不過,大多數根瘤菌和自生固氮細菌均含有氫化酶,該酶將H2氧化成H2O,這一過程推動由ADP和Pi合成ATP的反應。有研究表明,與具有較高氫化酶活性的根瘤菌共生的豆科植物(如大豆)的產量比與無氫化酶活性的根瘤共生的稍高。可能是前者減少了能量的浪費。基於這種認識,通過基因工程技術可能會獲得具有更高活性的氫化酶的根瘤菌並增加豆類產量。此外,用基因工程技術將固氮基因導入非豆科植物根,促使這些植物固氮的工作也獲得了一定的進展。
植物的不同生長階段會影響生物固氮作用。如大豆、花生、木豆,通過生物固氮固定的氮素中90%在生殖階段中進行,而10%在營養生長過程中進行。奇怪的是,幾種豆類的生物固氮提供的氮素僅為其一生所需總氮量的1/4至1/2,其餘主要在營養生長階段從土壤中吸收NO3-或NH4+。不過,多施氮肥並不能增產。原因是植物對氮肥吸收增加反而使生物固氮能力下降。硝酸鹽肥料的影響有幾個方面:抑制根瘤菌與根毛的接觸,中止侵染絲的形成;根瘤生長緩慢,抑制已成熟根瘤的固氮作用;當增施NO3-和NH4+時,加速根瘤的衰老。