⑴ 地球上的一切生物最初是從哪裡來的
地球在宇宙中形成以後,開始是沒有生命的。經過了一段漫長的化學演化,就是說大氣中的有機元素氫、碳、氮、氧、硫、磷等在自然界各種能源(如閃電、紫外線、宇宙線、火山噴發等等)的作用下,合成有機分子(如甲烷、二氧化碳、一氧化碳、水、硫化氫、氨、磷酸等等)。這些有機分子進一步合成,變成生物單體(如氨基酸、糖、腺甙和核甙酸等)。這些生物單體進一步聚合作用變成生物聚合物。如蛋白質、多糖、核酸等。這一段過程叫做化學演化。蛋白質出現後,最簡單的生命也隨著誕生了。這是發生在距今大約36億多年前的一件大事。從此,地球上就開始有生命了。生命與非生命物質的最基本區別是:它能從環境中吸收自己生活過程中所需要的物質,排放出自己生活過程中不需要的物質。這種過程叫做新陳代謝,這是第一個區別。第二個區別是能繁殖後代。任何有生命的個體,不管他們的繁殖形式有如何的不同,他們都具有繁殖新個體的本領。第三個區別是有遺傳的能力。能把上一代生命個體的特性傳遞給下一代,使下一代的新個體能夠與上一代個體具有相同或者大致相同的特性。這個大致相同的現象最有意義,最值得我們注意。因為這說明它多少有一點與上一代不一樣的特點,這種與上一代不一樣的特點叫變異。這種變異的特性如果能夠適應環境而生存,它就會一代又一代地把這種變異的特性加強並成為新個體所固有的特徵。生物體不斷地變異,不斷地遺傳,年長月久,周而復始,具有新特徵的新個體也就不斷地出現,使生物體不斷地由簡單變復雜,構成了生物體的系統演化。
⑵ 如果我們是由地球生物演化而來的,那麼最早的地球生物來自哪裡
約50億年前的宇宙洪荒中,一大團星際分子雲聚集在我們現在的太陽系中,它們不斷互相吸引碰撞形成一個恆星育嬰室,太陽的雛形逐漸形成,它占據了約99.9%的質量。剩下的0.1%,形成了八大行星和數以億萬計的矮行星、小行星、衛星、彗星。而太陽系內廣泛存在的金銀銅鐵金屬,又告訴我們它們來源於劇烈的超新星爆炸,這意味著太陽本身就是百億年前涅槃重生而來的新一代恆星。
在地熱和閃電的作用下,小分子發生了化學反應,生成了大分子,大分子又繼續聚合成許許多多更大的分子……有一個大分子最終脫穎而出,具有了自我復制的能力。它在原始海洋里進行演化,最終形成了豐富多彩的生物世界。地球上的第一種生物,就是由它而來的。
⑶ 地球上最早出現的生物是什麼
最早出現的是單細胞生物,也就是原生生物。。
由化石得知,原生生物在15億年前即已存在,它是由原核生物演化來的。大部分的原生生物為單細胞,因此常被認為是最原始、最簡單的一群真核生物,是五界中在形態、解剖、生態和生活史上變異最大的一界。此界的界限不很明確,有些原生生物的演化分支很顯然的延伸入植物界、菌物界和動物界中。有些原生生物的細胞非常復雜,雖然只是單細胞的個體,但必需像植物體或動物體執行所有的新陳代謝。由此可知,真核生物的起源是生物演化史上的重要突破。
⑷ 地球上的最原始生物,從何而來
答: 地球上最原始的生物實際上就是RNA,這比任何原核細胞拉,真核細胞拉都要早, 總而言之來之於地球當時環境中的化學反應.
地球生命的形成
在40億年前的地球水環境中,原子組合成分子,形成新的四力平衡體,而且地球在形成過程中,已聚合了極多的星際有機分子,這些分子組合成大分子,利用彼此的引力場和反引力場來尋找合適的組合對象。大分子、分子、原子三間也是依靠彼此形成的力場來尋找合適的組合對象,形成新的復雜四力平衡體,其中引力場起到遠距吸引作用(5-20個原子直徑),這也就限制了大分子在大范圍獲得所需的組合對象,因此大分子彼此組合成一種能移動的組織形式,即最原始的海洋微生物。能移動的大分子團主要採用定向釋放電磁力的方法,逐漸發展成能在水中游動的原始組織,因此它們能獲得大量所需的食物(四力平衡體),並在體內積存了一些分子,這些分子在原始微生物母體力場導引下,組合成與母體相似的新微生物,這些原始微生物實質上就是一些復雜大分子團形成的四力平衡體,這也是生物基因復制的雛形。
這些大分子團還不是現代意義上的蛋白質與核酸的聚合體,只是多種氨基酸、核苷、磷酸、碳水化合物及其它一些有機小分子的無序聚合體,當核苷和磷酸組成成核苷酸,並逐漸形成核苷酸鏈,這些核苷酸鏈形成的力場就對周邊的氨基酸形成力場束縛作用,進而組裝出肽鏈。或者先由多種氨基酸組合成肽鏈所形成的力場對周邊的核苷酸形成力場束縛作用,進而組裝出核苷酸鏈,隨著形成的肽鏈和核苷酸鏈越來越長,分子量越來越大,最終形成核酸和蛋白,核酸與蛋白的形成是彼此相互作用的產物,是同時產生的。
筆者認為,如果融合奧巴林的團聚體理論、福克斯的類蛋白微球理論和趙玉芬的「核酸與蛋白共同起源」理論,就能較清楚解釋地球有機生命的起源。
上述「大分子團」就相當於團聚體或類蛋白微球,只不過其中有機物成分更復雜一些,除了多種氨基酸外,還有構成核苷酸鏈的組件(核苷、磷酸)及一些如碳水化合物之類的有機分子。
有機生命的產生過程大致分為三步:先是原始地球簡單的無機化合物形成原始的有機物質(碳氫化合物及其最簡單的衍生物),二是在第一步基礎上,逐漸發展為復雜的有機化合物(糖、核苷酸、氨基酸)和它們的聚合物多糖、核酸和蛋白質,以及其它有機物質,三是隨著地球上自然條件的演變,上述物質進行復雜的相互作用,最後產生具有新陳代謝特徵、能生長、繁殖、遺傳、變異的原始的有機生物。
在各種「類太陽系」的類地行星上,其擁有的碳、氫、氧、氮、硫、磷等有機生物演化必需的化學元素都是相同的,地球有機生物的演化模式在其它類地行星上也適用,那些外星有機生物必然經歷從RNA到DNA,從單細胞到多細胞的演化過程。因為在36—40億年前的地球上,各種有機生物進化繁演模式之間進行著激烈地競爭,最終是最具適應力的RNA繁演模式勝出,這種模式從單一的源擴展到全球,其它有機生物繁演模式被淘汰。也就是說,地球上最初的有機生物繁演模式是最佳的,這種模式可以推廣到宇宙中其它類地行星上;當然,核苷酸和氨基酸的種類可能有所不同,而且由於類地行星環境各有不同,有機生物此後的演化之路是大相徑庭的,特別是在DNA的基因編碼與蛋白質種類上是豐富多彩、千奇百怪的。
各種生物DNA中都有很多不表達的、似乎無用的基因,但生物的進化是非常注意節約的,在生物體最重要的部位(DNA)卻有如此多的無用之物,這是不合常理的。筆者認為,這些「無用基因」實際上是「備用基因」-+,這些都是生物經過35億年進化的結晶,它伴隨著生物經歷了無數風雨(如生存環境、食物來源的變化),這是生物的最大財富,正是這些「備用基因」使生物具有極強的適應力,保留這些舊的基因編碼比重新建立要快速得多,使生物具有更強的適應力,也許當地球某些區域極度乾旱時,某些哺乳動物會重新演化出爬行動物的抗旱鱗片,也許在未來的水世界中,某些陸地動物會重新演化出鰓。在人類新生兒中,會出現一些反祖現象,如多毛、長尾巴,這是因為在胚胎的基因復制過程中出錯,將某段「備用基因」表達出來。
生物進化的原動力就是為了維持自身的復雜四力平衡,不斷地從外界獲取所需的四力平衡體(能量、營養)。在競爭中,大分子團比小分子團有競爭力,因為前者的力場強,單細胞生物又比大分子團有競爭力,多細胞生物比單細胞生物有競爭力;能先敵發現的生物更有競爭力,因此進化出眼睛,有鋒利牙齒或爪子的生物更有競爭力,體積大的生物更有競爭力,因為他們在搏鬥中產生的電磁力大。隨體積增大,它們發展出一種通訊機制,使體內的大小分子團能充分協同,因此進化出神經系統和原始的腦;能學會捕食技巧的生物更有競爭力,因此進化出更大容量的腦。復雜的競爭環境促成生物進化。
地球生物圈就是幾百億種四力平衡體互相競爭、互相協同的統一體。地球微生物之所以進化出植物和動物兩大類不同的四力平衡體,是因植物和動物奪取的是不同類型的小四力平衡體,兩者是互補的,即食草動物奪取的是植物的四力平衡體,食肉動物奪取的是食草動物的四力平衡體,而微生物奪取的是植物、動物的四力平衡體,植物則吸收經微生物分解後的四力平衡體,這就構成一種循環,三者都有生存的空間。動物、植物、微生物實質上就是一種聚合了幾萬――幾億億個大分子團的「集成四力平衡體」,這種聯合的目的就是為了更好地奪取外界的四力平衡體,這是生物進化的原動力。生物體就象一種聯合作戰的分子集團軍,各種分子各司其職,部分分子聚合成接收可見光的眼睛,用於尋找有用的四力平衡體(食物),部分分子聚合成能定向釋放電磁力的肌肉,用於捕獲食物,部分分子聚合成神經細胞,用於聯絡機體內各種協同作戰的分子兵團(組織、器官),部分分子聚合成消化系統,將捕獲的各種「集成四力平衡體」(動物、植物),分解成可供體內分子使用的小分子(氨基酸、糖等)。生物體獲得的各種四力平衡體也由各種分子合理分配。
在行星上只要有液態水存在,加上碳、氮、磷等元素,就能形成有機分子,並進一步聚合成最原始的生物,而宇宙大部分恆星的最終產物正是上述化學元素,星際中飛舞著極多的生命種子—「有機分子」,另外一小部分大質量恆星最終產生的是金屬類重元素,也是生物進化所必需,宇宙及生命的演化是經過設計的,這就是宇宙程序。
宇宙就是一種超級的信息處理交換系統,在運行奇子級、引力子級、粒子級、原子級、分子級、生物級程序的過程中,各種信息編碼(引力子、反引力子、粒子、原子、分子)進行著非常頻繁的交換和處理,在協同和自組織中演化出紛紜復雜的宇宙萬物,生物體可說是這種信息處理交換系統的一種小集成,它們頻繁地輸入宇宙中的各種粒子、原子、分子、引力子、反引力子,經復雜處理後,轉換成對自身有用的信息編碼(如各種生化反應),獲得有用能量,維持生物級程序的運行,並將無用的編碼通過各種渠道排泄出來(肺、皮膚、排泄口)。生物進化是生物基因程序通過與外界的粒子級、原子級、分子級、引力子級程序的信息交換來實現的,當自然環境發生變化,即上述宇宙程序的協同運行環境發生變化,生物基因程序通過接收上述程序的信息編碼(粒子、原子、分子、引力子、反引力子),使部分生物基因發生變異,修改生物基因程序,以適應新的自然環境,即新的宇宙程序協同運行環境,形成生物的進化。
自然界中的自組織、協同現象,本質上就是眾多四力平衡體從競爭(混沌)中逐漸建立秩序的過程。
自然界的有些混沌現象是因地球引力場使地球自轉,而使地球上的流體(如水、空氣)呈現螺旋形運動。分子、原子、粒子世界出現的混沌現象是因微觀物質中的各種引力場和反引力場的相互干擾造成的。
經濟學、社會學領域的混沌現象,是因地球上的每一種物質如動物(人)、植物、微生物、礦物、水、空氣都是四力平衡體,這種混沌現象與生物體內的混沌現象是類同的,將人比作生物體內的每種分子,將城鎮比作細胞、器官、組織,將道路比如血管,將政府比作中樞神經系統,將地球的自然資源比作生物體所需的能量和營養,差別在於每個人都擁有獨立思考的大腦,而生物體內的分子卻沒有,所以社會的運行不及生物體有序。
⑸ 地球上最早的生物是從哪來的
地球上的第一個生物,許多人認為是病毒一類的非常簡單的生物,他只是有核酸和蛋白質外殼組正的物質。 而組成他的是基礎的生物大分子,它是由自然界中的無機分子在一定的條件下偶然形成生物小分子,進而發展而來的,從此地球上有了生命,下面是詳細的介紹: 神秘的生命起源 那是在大約50億年前,宇宙中一團彌漫的緩緩轉動的氣體塵埃雲形成了原始太陽系。到了47億年前,原始太陽系裡一些氣體塵埃雲又凝聚形成了最初的地球。剛剛誕生的地球十分寒冷、荒涼,沒有結構復雜的物質,當然也不會有生命。生命是隨著原始大氣的誕生開始孕育的。 在早期太陽系裡,一些處於原始狀態的天體頻繁和幼小的地球相撞,這一方面增大了地球體積,另一方面運動的能量轉化為熱能貯存在了地球內部。撞擊不斷地發生,地球內部蓄積了大量熱能。地球的平均溫度高達攝氏幾千度,內部的金屬和礦物變成了融融的熾熱岩漿。岩漿在地球內部劇烈運動著,不時沖出地球表面形成火山爆發。在原始地球上,火山爆發十分頻繁。隨著火山爆發,地球內 部一些氣體被源源不斷地釋放出來,形成了原始大氣。不過,這時的地球上仍然沒有生物分子。 在以後的歲月里,由於日積月累,原始大氣中的水蒸氣越來越多,地球表面溫度開始降低。當降低到水的沸點以下時,水蒸氣就化作傾盆大雨降落到了地面上。傾盆大雨不分晝夜地下著,形成了最初的海洋,這為生命的誕生准備了搖籃。 那時地球表面的溫度仍然很高,到了大約36億年前,海水的溫度已降為80℃左右,然而在此之前,原始生命就已悄悄孕育了。 生命的誕生與原始大氣十分有緣。據推測,原始大氣的主要成份是一氧化碳、二氧化碳、甲烷、水蒸氣、氨氣。這些簡單的氣體分子要想成為生物分子,就必須變得足夠復雜。合成復雜物質是需要消耗能量的。 值得慶幸的是,在原始地球上有各種形式的能量可供利用。首先,原始大氣沒有臭氧層,陽光中的紫外線可以毫無顧忌地進入大氣,這為地球帶來了能量。其次,原始大氣中會出現閃電,閃電是一種能量釋放現象。再次,原始地球上火山活動頻繁,火山噴發可以釋放大量熱量。 簡單的氣體分子在吸收了能量之後,它們會變得異常地活潑,進而產生化學反應,形成復雜的(生命)物質。美國的科學家米勒是第一位模擬原始地球的大氣的條件,成功地合成出復雜(生命)物質的科學家。 第二集 生命怎樣誕生 米勒設計了一套玻璃儀器裝置。球形的玻璃容器里模擬的是原始地球的大氣,主要有氫氣、甲烷和氨氣。在實驗過程中,需要把燒瓶里的水煮沸,這模擬的是原始海洋里的蒸發現象。球形的電火花室里外接有高頻線圈,使電極可以連續火花放電,這模擬的是原始地球大氣中的放電現象。放電進行了一周,讓米勒驚喜的是,實驗中產生了多種氨基酸。 氨基酸和核苷酸是動植物體內普遍存在和最最重要的兩種生物小分子,它們是建造生命大廈的磚塊和石頭。 由不是生物體基本結構單元的無機小分子演變為生物小分子,這無疑是生命進化過程中至關重要的一步,但是呢,由於生物小分子畢竟過於簡單,只有它們演變成更為復雜的生物大分子之後,才能導致生命的誕生。 在原始地球上,自然合成的氨基酸和核苷酸隨雨水匯集到湖泊海洋里。礦物粘土把這些生物小分子吸附到自己周圍,在銅、鋅、鈉、鎂等金屬離子催化下,許多氨基酸分子通過脫去水分子而連接在一起,形成更為復雜的分子,也就是蛋白質分子。同樣,許多核苷酸分子可以通過脫去水分子而連接在一起,形成更為復雜的分子,也就是核酸分子。 核酸是生物的遺傳物質,生物體生長、繁殖、行為和新陳代謝的信息就包含在核酸分子里核苷酸的排列順序中,可以說,每一種核苷酸排列順序都是一篇記錄著生命信息的文章,書寫的文字就是核苷酸。核酸是生命的信息分子,對於生命是絕對重要的。然而核酸的功能卻是通過蛋白質來實現的,就連核酸本身的復制都需要蛋白質參與。 原始地球的湖泊海洋里出現了核酸和蛋白質以後,也許有人認為生命從此就誕生了,因為自然界中一些病毒就是由核酸和蛋白質組成的,而類病毒就更是簡單得可憐,只是一個核酸分子,這個核酸分子能侵入植物細胞並使植物得病,馬鈴薯紡錘狀塊莖病就是這種類病毒感染的結果。 病毒和類病毒只能在活細胞內生存繁殖,至於是不是一種生命形式,目前還存在爭議。 生物為了適應環境,在進化過程中,它必須從簡單到復雜、從低級到高級這樣一個過程當中進行演化,而一個簡單的分子,在傳宗接代過程中是無能為力把其它物質聚集在自己周圍的,它必須形成具有一定結構的復雜形態的實體。 在原始海洋里,隨著時間推移,自然合成的生物大分子濃度越來越高,最終形成了具有一定形態結構的分子實體,並進一步進化為最原始的生命。
⑹ 地球上最早的生物是什麼起源地是哪裡現有最早生物的化石是什麼生物的
現在人類只能通過古生物化石,來研究推測地球上生命的起源以及發展;通常認為,地球上生命的出現始於海洋,當然,也有認為地球上最早的生命源於外太空,但總的是由水生到陸生、由低級向高級進化。目前報道發現最早的古生物化石是在澳大利亞發現的,距今34億年的瓦拉翁納群中的絲狀細菌化石,被認為是最古老的生物化石,當然,這不能說明地球上生命的起源就在澳大利亞。
⑺ 地球上的第一個生物是怎樣來的
最早出現的是生命之源--蛋白質。以後才有單細胞生命。 最早的是微生物菌母。 5億年前的陸地上,到處是光禿禿的山脈和大地,除了石頭就是沙子,沒有任何生命,也沒有生命賴以生存的土壤。直到4億2千5百萬年前,海藻才在地球大氣中積累了足夠的氧,形成臭氧層來保護暴露在陽光下的生命,生物才可能浮出水面。地球上最早的生命出現在45億年前。這時的生命是像細菌一樣的東西,它只有一個細胞,今天地球上所有的動植物都是由細胞組成的。 在以後漫長的歲月中,這種單細胞的小生命遍布海洋,孤獨地生活了大約20億年。這時的地球上空曠、寂寞,空氣是有毒的,根本無法呼吸。大氣中沒有氧氣,也沒有保護生命的臭氧層,直射地面的強烈紫外線輻射只要一個小時就可以殺死絕大多數生命。大約7億年前,單細胞生物又演變成多細胞生物,就像今天的植物一樣,它們靠光合作用吸收二氧化碳,放出氧氣。這種只能在顯微鏡下才能看清的小生命,用了漫長的時間,讓地球大氣中充滿了氧氣。這樣,最早的地球生命就從簡單的單細胞生物進化成一些更復雜的生命。這是生命的重大突破。 據某些專家推測,地衣是最早上岸的生命,正是由於地衣分解岩石,再加上自然的分化為後來登陸的生物打下一片天地,因為沒有土壤,任何其他陸地生命都是無法生存的。生命在進化過程中,前仆後繼地經營出了我們賴以生存的環境。生命第一次從海洋爬上陸地後,就不斷地開發新的棲息地,直至布滿地球上的每一個角落。在南極零下23攝氏度的嚴寒冰層中,有自在生活的藻類和真菌;在海底火山附近達到沸點的開水中,也有安詳生活的生命。已知生活在世界最低處的動物是一種像蟲子一樣的海洋生物;在珠穆朗瑪峰海拔6千米以上的地方也有生命存在。 古老而浩盪的息粒,是地球古期最為單一的生命形式,生存期短促,約有半小時的時間,它們的游離性全憑著外力。暗灰色的息粒雖瞬生瞬死,但總量奇多,鋪天蓋地,充斥著廣袤的地表。息粒時代,是地球嬰兒般簡單,並且純潔的時代。 肉眼難視的息粒放大來看,是一個水泡樣的單胞原體,在它身體邊緣有若干纖毛,能緩慢地扇動。它們始生於距今47億2千萬年前,蓬勃生發,持續了約一百萬年之久,在後四十餘萬年趨減至無。 繼息粒之後,地球迎來了第二批絢麗的生命之花——微生物菌母。 這是地球真正意義上的生命——微生物菌母,在息粒減滅期大量湧出,它們稱雄於天下的時間,約三十萬年。
⑻ 地球上最早的生物是什麼
地球上最早的生物應當是名為藍藻的類群,它們進化出能夠進行光合作用的特性。它們在海底形成巨大薄層,有時也會形成被稱作疊層石的層狀堆積,它們屬於最早的化石,能夠追溯到大約35億年前。在元古宙初期,地球上的生命仍局限於海洋之內。但由於藻類及部分細菌不斷的光合作用,製造了大量的氧氣,開始出現一些具有真正細胞核的真核生物,例如原始海綿和類水母生物。
(8)地球最開始的生物是從哪裡開始的擴展閱讀:
地球上最古老的生命遺跡被發現在格陵蘭島的古老岩石中,距今大約38.5億年。我們無從知曉生命在地球上的最初形態,關於這個問題一直存在諸多觀點和假設。一種可能是,最初的有機小分子或許出現在海底熱泉附近,那裡具有足夠的熱量以及合適的化學物質,能為生命進化提供必要的需求。
沼澤地區則有利於兩棲動物生存,原水褐螈身長2.5米,擅長游泳,屬於兩棲石炭蜥類,是介於兩棲動物與爬行動物的種類。該時期也進化出了最早的爬行動物——油頁岩蜥(Petrolacosaurus),它體形矮小,外形與蜥蜴相似,常將卵產到遠離水源的地方。到晚石炭紀時,還出現了小型合弓綱爬行動物蛇齒龍,體長2公尺到3.6公尺。
⑼ 地球上最早的生物是從哪來的
這個問題在初中八年級生物學中又講到:
核酸是當今地球上所有生物的遺傳物質,它攜帶著生命信息,又能自我復制.核酸有兩種:一種是核糖核酸,又叫RNA,在RNA病毒和類病毒中,RNA攜帶著全部生命信息;另一種是脫氧核糖核酸,又叫DNA,它是目前絕大多數生物的遺傳物質. 種種跡象表明,原始地球上首先出現的復雜分子可能是RNA,為什麼這樣說呢? 首先,RNA分子比較簡單,只有一條鏈,DNA分子卻很復雜,有兩條鏈,按照進化規律,簡單的分子總是最先出現.其次,DNA分子自我復制時離不開酶,酶的本質是蛋白質,在原始地球上,在蛋白質沒有產生以前,DNA分子是無法完成自我復制的,然而有些RNA分子本身就有酶的活性,在原始地球條件下,即使沒有蛋白質,RNA也可以完成自我復制. 在生命起源中,RNA先發生的學說能夠被科學界更多的學者所接受,但是要想真正地證明RNA是最早發生的遺傳物質,還存在很多的問題,最大的問題是,要想在模擬原始的條件下合成RNA非常困難. 長期以來,人們總以為只有核酸才是遺傳物質,近年來生物學家發現,瘋牛病、瘋羊病的病原體是朊病毒,朊病毒的本質是蛋白質,可以自我復制,這啟發人們,蛋白質也可以作為遺傳物質. 其實,和核酸一樣,蛋白質的分子結構十分規則,而且也有螺旋結構.科學家長期研究後發現,蛋白質完全具備遺傳物質的條件,能夠貯藏、復制和傳遞生命信息. 我們知道,蛋白質是由氨基酸組成的,通過氨基酸和氨基酸配對,可以把遺傳信息傳遞給下一代. 通過實驗,劉次全研究員提出了氨基酸的配對模型,並且在此基礎上,繪出了一張很有特色的遺傳密碼表. 在原始地球上,最早能夠進行自我復制的分子可能是蛋白質,那時的蛋白質既能貯存或傳遞遺傳信息,又能執行特定的生物學功能. 對於原始生命來說,蛋白質的這種性質是十分經濟的,後來隨著生命進化,蛋白質貯存或傳遞遺傳信息的功能交給了RNA,然而RNA不夠穩定,隨著生命繼續進化,又出現了DNA,DNA是後來才出現的遺傳物質. DNA作為遺傳物質的好處是:第一,DNA的某些部位與RNA相比,少了氧原子,氧原子是非常活潑的,這樣DNA更加穩定,能夠更好地保存生命信息,第二, RNA是單鏈,如果受到損傷,生命的信息勢必丟失,DNA則是雙鏈,一條鏈發生損傷後,可以根據另一條鏈進行修復,生命信息不易丟失. 因而,今天地球上的生命選擇了DNA作為遺傳物質,這也是生物在自然界中長期進化的結果 不過在還沒有發現地外生物之前還不能確定地球的生物到底是偶然產生還是必然產生。
⑽ 地球上的生物是怎麼來的
地球上的第一個生物,許多人認為是病毒一類的非常簡單的生物,他只是有核酸和蛋白質外殼組正的物質。
值得慶幸的是,在原始地球上有各種形式的能量可供利用。首先,原始大氣沒有臭氧層,陽光中的紫外線可以毫無顧忌地進入大氣,這為地球帶來了能量。其次,原始大氣中會出現閃電,閃電是一種能量釋放現象。再次,原始地球上火山活動頻繁,火山噴發可以釋放大量熱量。