① 生物界分為幾個時期
大約在66億年前,銀河系內發生過一次大爆炸,其碎片和散漫物質經過長時間的凝集,大約在46億年前形成了太陽系。作為太陽系一員的地球也在46億年前形成了。接著,冰冷的星雲物質釋放出大量的引力勢能,再轉化為動能、熱能,致使溫度升高,加上地球內部元素的放射性熱能也發生增溫作用,故初期的地球呈熔融狀態。高溫的地球在旋轉過程中其中的物質發生分異,重的元素下沉到中心凝聚為地核,較輕的物質構成地幔和地殼,逐漸出現了圈層結構。這個過程經過了漫長的時間,大約在38億年前出現原始地殼,這個時間與多數月球表面的岩石年齡一致。
生命的起源與演化是和宇宙的起源與演化密切相關的。生命的構成元素如碳、氫、氧、氮、磷、硫等是來自「大爆炸」後元素的演化。資料表明前生物階段的化學演化並不局限於地球,在宇宙空間中廣泛地存在著化學演化的產物。在星際演化中,某些生物單分子,如氨基酸、嘌呤、嘧啶等可能形成於星際塵埃或凝聚的星雲中,接著在行星表面的一定條件下產生了象多肽、多聚核苷酸等生物高分子。通過若干前生物演化的過渡形式最終在地球上形成了最原始的生物系統,即具有原始細胞結構的生命。至此,生物學的演化開始,直到今天地球上產生了無數復雜的生命形式。
38億年前,地球上形成了穩定的陸塊,各種證據表明液態的水圈是熱的,甚至是沸騰的。現生的一些極端嗜熱的古細菌和甲烷菌可能最接近於地球上最古老的生命形式,其代謝方式可能是化學無機自養。澳大利亞西部瓦拉伍那群中35億年前的微生物可能是地球上最早的生命證據。
原始地殼的出現,標志著地球由天文行星時代進入地質發展時代,具有原始細胞結構的生命也開始逐漸形成。但是在很長的時間內尚無較多的生物出現,一直到距今5.4億年前的寒武紀,帶殼的後生動物才大量出現,故把寒武紀以後的地質時代稱為顯生宙
太古代[前震旦紀(18億年前到45億年前)]和元古代[震旦紀(5億7千萬年前到18億年前)]
太古宙(Archean)是最古老的地史時期。從生物界看,這是原始生命出現及生物演化的初級階段,當時只有數量不多的原核生物,他們只留下了極少的化石記錄。從非生物界看,太古宙是一個地殼薄、地熱梯度陡、火山—岩漿活動強烈而頻繁、岩層普遍遭受變形與變質、大氣圈與水圈都缺少自由氧、形成一系列特殊沉積物的時期;也是一個硅鋁質地殼形成並不斷增長的時期,又是一個重要的成礦時期。
元古宙(Proterozoic)初期地表已出現了一些范圍較廣、厚度較大、相對穩定的大陸板塊。因此,在岩石圈構造方面元古代比太古代顯示了較為穩定的特點。早元古代晚期的大氣圈已含有自由氧,而且隨著植物的日益繁盛與光合作用的不斷加強,大氣圈的含氧量繼續增加。元古代的中晚期藻類植物已十分繁盛,明顯區別於太古代。
震旦紀(Sinian period)是元古代最後期一個獨特的地史階段。從生物的進化看,震旦系因含有無硬殼的後生動物化石,而與不含可靠動物化石的元古界有了重要的區別;但與富含具有殼體的動物化石的寒武紀相比,震旦系所含的化石不僅種類單調、數量很少而且分布十分有限。因此,還不能利用其中的動物化石進行有效的生物地層工作。震旦紀生物界最突出的特徵是後期出現了種類較多的無硬殼後生動物,末期又出現少量小型具有殼體的動物。高級藻類進一步繁盛,微體古植物出現了一些新類型,疊層石在震旦紀早期趨於繁盛,後期數量和種類都突然下降。再從岩石圈的構造狀況來看,震旦紀時地表上已經出現幾個大型的、相對穩定的大陸板塊,之上已經是典型的蓋層沉積,與古生界相似。因此,震旦紀可以被認為是元古代與古生代之間的一個過渡階段。
古生代開始
藻類和無脊椎動物時代
寒武紀(5億7千萬年前到5億1千萬年前 三葉蟲時代
寒武紀(Cambrian period)是古生代的第一個紀,開始於距今5.4億年,延續了4000萬年。寒武紀是生物界第一次大發展的時期,當時出現了豐富多樣且比較高級的海生無脊椎動物,保存了大量的化石,從而有可能研究當時生物界的狀況,並能夠利用生物地層學方法來劃分和對比地層,進而研究有機界和無機界比較完整的發展歷史。
比較著名的有早寒武世雲南的澄江動物群、加拿大中寒武世的布爾吉斯頁岩生物群。寒武紀的生物界以海生無脊椎動物和海生藻類為主。無脊椎動物的許多高級門類如節肢動物、棘皮動物、軟體動物、腕足動物、筆石動物等都有了代表。其中以節肢動物門中的三葉蟲綱最為重要,其次為腕足動物。此外,古杯類、古介形類、軟舌螺類、牙形刺、鸚鵡螺類等也相當重要。拋開牙形石不說,高等的脊索動物還有許多其他代表,如我國雲南澄江動物群中的華夏鰻、雲南魚、海口魚等,加拿大布爾吉斯頁岩中的皮開蟲,美國上寒武統的鴨鱗魚。
奧陶紀(5億1千萬年前到4億3千8百萬年前
原始的脊椎動物出現
奧陶紀(Ordovician period)是古生代的第二個紀,開始於距今5億年,延續了6500萬年。奧陶紀是地史上海侵最廣泛的時期之一。在板塊內部的地台區,海水廣布,表現為濱海淺海相碳酸鹽岩的普遍發育,在板塊邊緣的活動地槽區,為較深水環境,形成厚度很大的淺海、深海碎屑沉積和火山噴發沉積。奧陶紀末期曾發生過一次規模較大的冰期,其分布范圍包括非洲,特別是北非、南美的阿根廷、玻利維亞以及歐洲的西班牙和法國南部等地。
奧陶紀的生物界較寒武紀更為繁盛,海生無脊椎動物空前發展,其中以筆石、三葉蟲、鸚鵡螺類和腕足類最為重要,腔腸動物中的珊瑚、層孔蟲,棘皮動物中的海林檎、海百合,節肢動物中的介形蟲,苔蘚動物等也開始大量出現。
奧陶紀中期,在北美落基山脈地區出現了原始脊椎動物異甲魚類——星甲魚和顯褶魚,在南半球的澳大利亞也出現了異甲魚類。植物仍以海生藻類為主。
裸蕨植物和魚類時代
志留紀(4.38億年前到4.1億年前) 筆石的時代,陸生植物和有頜類出現
志留紀(Silurian period)是早古生代的最後一個紀。本紀始於距今4.35億年,延續了2500萬年。由於志留系在波羅的海哥德蘭島上發育較好,因此曾一度被稱為哥德蘭系。
志留系三分性質比較顯著。一般說來,早志留世到處形成海侵,中志留世海侵達到頂峰,晚志留世各地有不同程度的海退和陸地上升,表現了一個巨大的海侵旋迴。志留紀晚期,地殼運動強烈,古大西洋閉合,一些板塊間發生碰撞,導致一些地槽褶皺升起,古地理面貌巨變,大陸面積顯著擴大,生物界也發生了巨大的演變,這一切都標志著地殼歷史發展到了轉折時期。
志留紀的生物面貌與奧陶紀相比,有了進一步的發展和變化。海生無脊椎動物在志留紀時仍占重要地位,但各門類的種屬更替和內部組分都有所變化。如筆石動物保留了雙筆石類,新興的單筆石類也很繁盛;腕足動物內部的構造變得比較復雜,如五房貝目、石燕貝目、小嘴貝目得到了發展;軟體動物中頭足綱、鸚鵡螺類顯著減少,而雙殼綱、腹足綱則逐步發展;三葉蟲開始衰退,但蛛形目和介形目大量發展;節肢動物中的板足鱟,也稱「海蠍」在晚志留世海洋中廣泛分布;珊瑚綱進一步繁盛;棘皮動物中海林檎類大減,海百合類在志留紀大量出現。
脊椎動物中,無頜類進一步發展,有頜的盾皮魚類和棘魚類出現,這在脊椎動物的演化上是一重大事件,魚類開始征服水域,為泥盆紀魚類大發展創造了條件。
植物方面除了海生藻類仍然繁盛以外,晚志留世末期,陸生植物中的裸蕨植物首次出現,植物終於從水中開始向陸地發展,這是生物演化的又一重大事件。
志留紀:
生命在海洋中生,在海洋中發展壯大。在4億多年前的志留紀,水域中的生物千姿百態,熱鬧非凡,植物已發展到大海藻,動物發展到低等的脊椎動物魚類。而陸地上的生命卻十分罕見,幾乎到處是童山禿嶺,一片荒涼。 末期,由於地殼劇烈運動,地球表面普遍出現了海退現象,不少水域變成了陸地,有的海底崛起了高山。滄海巨變,對水中的生物產生了巨大的影響。
圓口類很象魚,但缺乏成對的胸、腹鰭、特別是嘴巴上沒有上下頜,所以又叫"無頜類"。古代的無頜類,都是些體外披著硬骨片的"甲胄魚"。古代的無頜類,從奧陶紀出現以後,在志留紀很繁盛。但因為無頜,生活方式落後,僅能以流入中內的水中夾雜的食物為食,所以在生存斗爭中,它們敵不過新興的有頜魚類而日趨衰落了。
泥盆紀(4.1億年前到3.6億年前) 魚類的時代
泥盆紀(Devonian period)是晚古生代的第一個紀,開始於距今4.1億年,延續了約5500萬年。泥盆紀古地理面貌較早古生代有了巨大的改變。表現為陸地面積的擴大,陸相地層的發育,生物界的面貌也發生了巨大的變革。陸生植物、魚形動物空前發展,兩棲動物開始出現,無脊椎動物的成分也顯著改變。
腕足類在泥盆紀發展迅速,志留紀開始出現的石燕貝目成為泥盆紀的重要化石。此外,穿孔貝目、扭月貝目、無洞貝目和小嘴貝目在劃分和對比泥盆紀地層中也極為重要。
泡沫型和雙帶型四射珊瑚相當繁盛。早泥盆世以泡沫型為主,雙帶型珊瑚開始興起;中、晚泥盆世以雙帶型珊瑚佔主要地位。
鸚鵡螺類大大減少,菊石中的棱菊石類和海神石類繁盛起來。
正筆石類大部分絕滅,早泥盆世殘存少量單筆石科的代表。
竹節石類始於奧陶紀,泥盆紀一度達到最盛,泥盆紀末期絕滅。其中以薄殼型的塔節石類最繁盛,光殼節石類也十分重要。
牙形石演化到泥盆紀又進入一個發展高峰,這個時期以平台型分子大量出現為特徵。
昆蟲類化石最早也發現於泥盆紀。
泥盆紀是脊椎動物飛越發展的時期,魚類相當繁盛,各種類別的魚都有出現,故泥盆紀被稱為 「魚類的時代」。早泥盆世以無頜類為多,中、晚泥盆世盾皮魚相當繁盛,它們已具有原始的顎,偶鰭發育,成歪形尾。
早泥盆世裸蕨植物較為繁盛,有少量的石松類植物,多為形態簡單、個體不大的草本類型;中泥盆世裸蕨植物仍占優勢,但原始的石松植物更發達,出現了原始的楔葉植物和最原始的真蕨植物;晚泥盆世到來時,裸蕨植物瀕於滅亡,石松類繼續繁盛,節蕨類、原始楔葉植物獲得發展,新的真蕨類和種子蕨類開始出現。
進入 蕨類植物和兩棲動物的時代
石炭紀 兩棲動物的時代
石炭紀(Carboniferous period)開始於距今約3.55億年至2.95億年,延續了6000萬年。石炭紀時陸地面積不斷增加,陸生生物空前發展。當時氣候溫暖、濕潤、沼澤遍布,大陸上出現了大規模的森林,給煤的形成創造了有利條件。
石炭紀又是地殼運動非常活躍的時期,因而古地理的面貌有著極大的變化。這個時期氣候分異現象又十分明顯,北方古大陸為溫暖潮濕的聚煤區,岡瓦納大陸卻為寒冷的大陸冰川沉積環境。氣候分帶導致了動、植物地理分區的形成。
石炭紀的海生無脊椎動物與泥盆紀比較起來,有了顯著的變化。淺海底棲動物中仍以珊瑚、腕足類為主。早石炭世晚期的浮游和游泳的動物中,出現了新興的筳類,菊石類仍然繁盛,三葉蟲到石炭紀已經大部分絕滅,只剩下幾個屬種。
最早發現於泥盆紀的昆蟲類,在石炭紀得到進一步的繁盛,已知石炭、二疊紀的昆蟲就達1300種以上。陸生脊椎動物進一步繁盛,兩棲動物佔到了統治地位。早石炭世一開始,兩棲動物蓬勃發展,主要出現了堅頭類(也稱迷齒類),同時繁盛的還有殼椎類。
早石炭世的植物面貌與晚泥盆世相似,古蕨類植物延續生長,但只能適應於濱海低地的環境;晚石炭世植物進一步發展,除了節蕨類和石松類外,真蕨類和種子蕨類也開始迅速發展。裸子植物中的苛達樹是一種高大的喬木,成為造煤的重要材料之一。
二疊紀 重要的成煤期
二疊紀(Permian period)是古生代的最後一個紀,也是重要的成煤期。二疊紀開始於距今約2.95億年,延至2.5億年,共經歷了4500萬年。二疊紀的地殼運動比較活躍,古板塊間的相對運動加劇,世界范圍內的許多地槽封閉並陸續地形成褶皺山系,古板塊間逐漸拚接形成聯合古大陸(泛大陸)。陸地面積的進一步擴大,海洋范圍的縮小,自然地理環境的變化,促進了生物界的重要演化,預示著生物發展史上一個新時期的到來。
二疊紀是生物界的重要演化時期。海生無脊椎動物中主要門類仍是筳類、珊瑚、腕足類和菊石,但組成成分發生了重要變化。節肢動物的三葉蟲只剩下少數代表,腹足類和雙殼類有了新的發展。二疊紀末,四射珊瑚、橫板珊瑚、筳類、三葉蟲全都絕滅;腕足類大大減少,僅存少數類別。
脊椎動物在二疊紀發展到了一個新階段。魚類中的軟骨魚類和硬骨魚類等有了新發展,軟骨魚類中出現了許多新類型,軟骨硬鱗魚類迅速發展。兩棲類進一步繁盛。爬行動物中的杯龍類在二疊紀有了新發展;中龍類游泳於河流或湖泊中,以巴西和南非的中龍為代表;盤龍類見於石炭紀晚期和二疊紀早期;獸孔類則是二疊紀中、晚期和三疊紀的似哺乳爬行動物,世界各地皆有發現。
早二疊世的植物界面貌與晚二疊世相似,仍以節蕨、石松、真蕨、種子蕨類為主。晚二疊世出現了銀杏、蘇鐵、本內蘇鐵、松柏類等裸子植物,開始呈現中生帶的面貌。
古生代到此結束....中生代開始啦!!!
中生代是裸子植物和爬行動物的時代!
三疊紀 爬行動物和裸子植物的崛起
三疊紀(Triassic period)是中生代的第一個紀。始於距今2.5億年至2.03億年,延續了約5000萬年。海西運動以後,許多地槽轉化為山系,陸地面積擴大,地台區產生了一些內陸盆地。這種新的古地理條件導致沉積相及生物界的變化。從三疊紀起,陸相沉積在世界各地,尤其在中國及亞洲其它地區都有大量分布。古氣候方面,三疊紀初期繼承了二疊紀末期乾旱的特點;到中、晚期之後,氣候向濕熱過渡,由此出現了紅色岩層含煤沉積、旱生性植物向濕熱性植物發展的現象。植物地理區也同時發生了分異。
生物變革方面,陸生爬行動物比二疊紀有了明顯的發展。古老類型的代表(如無孔亞綱和下孔亞綱)基本絕滅,新類型大量出現,並有一部分轉移到海中生活。原始哺乳動物在三疊紀末期也出現了。由於陸地面積的擴大,淡水無脊椎動物發展很快,海生無脊椎動物的面貌也為之一新。菊石、雙殼類、有孔蟲成為劃分與對比地層的重要門類,而筳及四射珊瑚則完全絕滅。
爬行動物在三疊紀崛起,主要由槽齒類、恐龍類、似哺乳的爬行類組成。典型的早期槽齒類表現出許多原始的特點,且僅限於三疊紀,其總體結構是後來主要的爬行動物以至於鳥類的祖先模式;恐龍類最早出現於晚三疊世,有兩個主要類型:較古老的蜥臀類和較進化的鳥臀類。海生爬行類在三疊紀首次出現,由於適應水中生活,其體形呈流線式,四肢也變成槳形的鰭;似哺乳爬行動物亦稱獸孔類,四肢向腹面移動,因此更適於陸地行走。
原始的哺乳動物最早見於晚三疊世,屬始獸類,所見到的化石都是牙齒和頜骨的碎片。
三疊紀時,晚二疊世倖存的齒菊石類大量繁盛起來,中、晚三疊世的大部分菊石有發達的紋飾,有許多科是三疊紀所特有的。菊石的迅速演化為劃分和對比地層創造了極重要的條件。
雙殼類也有明顯變化,晚古生代的種類只有很少數繼續存在,產生了許多新種類,並且數量相當繁多。尤其在晚三疊世,一些種屬的結構類型變得復雜,個體也往往比較大。由於三疊紀的環境與古生代不同,非海相雙殼類逐漸繁盛起來。
裸子植物的蘇鐵、本內蘇鐵、尼爾桑、銀杏及松柏類自三疊紀起迅速發展起來。其中除本內蘇鐵目始於三疊紀外,其它各類植物均在晚古生代就開始有了發展,但並不佔重要地位。二疊紀的乾燥性氣候延續到了早、中三疊世,到了中三疊世晚期植物才開始逐漸繁盛。晚三疊世時,裸子植物真正成了大陸植物的主要統治者。
朱羅紀 爬行動物和裸子植物的時代
侏羅紀(Jurassic period)是中生代的第二個紀,始於距今2.03億年,結束於1.35億年,共經歷了6800萬年。
生物發展史上出現了一些重要事件,引人注意。如恐龍成為陸地的統治者,翼龍類和鳥類出現,哺乳動物開始發展等等。陸生的裸子植物發展到極盛期。淡水無脊椎動物的雙殼類、腹足類、葉肢介、介形蟲及昆蟲迅速發展。海生的菊石、雙殼類、箭石仍為重要成員,六射珊瑚從三疊紀到侏羅紀的變化很小。棘皮動物的海膽自侏羅紀開始佔領了重要地位。
侏羅紀時爬行動物迅速發展。槽齒類絕滅,海生的幻龍類也絕滅了。恐龍的進化類型——鳥臀類的四個主要類型中有兩個繁盛於侏羅紀,飛行的爬行動物第一次滑翔於天空之中。鳥類首次出現,這是動物生命史上的重要變革之一。恐龍的另一類型——蜥臀類在侏羅紀有兩類最為繁盛:一類是食肉的恐龍,另一類是笨重的植食恐龍。海生的爬行類中主要是魚龍及蛇頸龍,它們成為海洋環境中不可忽視的成員。
三疊紀晚期出現的一部分最原始的哺乳動物在侏羅紀晚期已瀕於絕滅。早侏羅世新產生了哺乳動物的另一些早期類型——多瘤齒獸類,它被認為是植食的類型,至新生代早期絕滅。而中侏羅世出現的古獸類一般被認為是有袋類和有胎盤哺乳動物的祖先。
軟骨硬鱗魚類在侏羅紀已開始衰退,被全骨魚代替。發現於三疊紀的最早的真骨魚類到了侏羅紀晚期才有了較大發展,數量增多,但種類較少。
侏羅紀的菊石更為進化,主要表現在縫合線的復雜化上,殼飾和殼形也日趨多樣化,可能是菊石為適應不同海洋環境及多種生活方式所致。侏羅紀的海相雙殼類很豐富,非海相雙殼類也迅速發展起來,它們在陸相地層的劃分與對比上起了重要作用。
侏羅紀是裸子植物的極盛期。蘇鐵類和銀杏類的發展達到了高峰,松柏類也佔到很重要的地位。
白堊紀 爬行動物和裸子植物由極盛走向衰滅
白堊紀(Cretaceus period)是中生代的最後一個紀,始於距今1.35億年,結束於距今6500萬年,其間經歷了7000萬年。無論是無機界還是有機界在白堊紀都經歷了重要變革。
劇烈的地殼運動和海陸變遷,導致了白堊紀生物界的巨大變化,中生代許多盛行和占優勢的門類(如裸子植物、爬行動物、菊石和箭石等)後期相繼衰落和絕滅,新興的被子植物、鳥類、哺乳動物及腹足類、雙殼類等都有所發展,預示著新的生物演化階段——新生代的來臨。
爬行類從晚侏羅世至早白堊世達到極盛,繼續佔領著海、陸、空。鳥類繼續進化,其特徵不斷接近現代鳥類。哺乳類略有發展,出現了有袋類和原始有胎盤的真獸類。魚類已完全的以真骨魚類為主。
白堊紀的海生無脊椎動物最重要的門類仍為菊石綱,菊石在殼體大小、殼形、殼飾和縫合線類型上遠較侏羅紀多樣。海生的雙殼類、六射珊瑚、有孔蟲等也比較繁盛。淡水無脊椎動物以軟體動物的雙殼類、腹足類和節肢動物的介形類、葉肢介類為主。
早白堊世仍以裸子植物中的蘇鐵類、本內蘇鐵類、銀杏類和松柏類為主,真蕨類仍然繁盛。從早白堊世晚期興起的被子植物到晚白堊世得到迅速發展,逐漸取代了裸子植物而居統治地位。
中生代(三疊紀-侏羅紀-白堊紀):[/b2]地球歷史的中生代,被稱為"裸子植物時代"。但是,在真正的陸生植物--裸子植物--興盛的時候,真正的陸生脊椎動物--爬行動物--也發展起來了。因此,從動物的角度來看,中生代雙可稱為"爬行動物時代"。 爬行動物到中生代成了當時最繁榮昌盛的脊椎動物,它們形態各異,各成系統,霸佔一方,到處是"龍"的天下。向海洋發展的,如魚龍;向天空發展的,如飛龍;向陸地發展的,如各式各樣的恐龍。 2億多年前的三迭紀早期以後,有些陸生爬行動物又返回海洋,先後形成了各具特色的魚龍、蛇頸龍等,其中,一些還是當時海洋中顯赫一時的大動物。 爬行類由爬行到飛行的種類也不少,如喙嘴龍,翼手龍等。上天不容易,由爬行到飛行不是一下子形成的,而是經過了漫長的歲月,是一代代有利於飛行的變異積累的結果。
新生代開始啦!!它是被子植物和哺乳動物的時代!!
第三紀 被子植物的時代
中生代(三疊紀-侏羅紀-白堊紀): 地球歷史的中生代,被稱為"裸子植物時代"。但是,在真正的陸生植物--裸子植物--興盛的時候,真正的陸生脊椎動物--爬行動物--也發展起來了。因此,從動物的角度來看,中生代雙可稱為"爬行動物時代"。 爬行動物到中生代成了當時最繁榮昌盛的脊椎動物,它們形態各異,各成系統,霸佔一方,到處是"龍"的天下。向海洋發展的,如魚龍;向天空發展的,如飛龍;向陸地發展的,如各式各樣的恐龍。 2億多年前的三迭紀早期以後,有些陸生爬行動物又返回海洋,先後形成了各具特色的魚龍、蛇頸龍等,其中,一些還是當時海洋中顯赫一時的大動物。 爬行類由爬行到飛行的種類也不少,如喙嘴龍,翼手龍等。上天不容易,由爬行到飛行不是一下子形成的,而是經過了漫長的歲月,是一代代有利於飛行的變異積累的結果。
第四紀 勞動創造了人類
第四紀(Quaternary period)是地球歷史的最新階段,始於距今175萬年。第四紀包括更新世和全新世兩個階段,二者的分界以地球上最近一次冰期結束、氣候轉暖為標志,大約在距今1萬年前後。
第四紀生物界的面貌已很接近於現代。哺乳動物的進化在此階段最為明顯,而人類的出現與進化則更是第四紀最重要的事件之一。
哺乳動物在第四紀期間的進化主要表現在屬種而不是大的類別更新上。第四紀前一階段——更新世早期哺乳類仍以偶蹄類、長鼻類與新食肉類等的繁盛、發展為特徵,與第三紀的區別在於出現了真象、真馬、真牛。更新世晚期哺乳動物的一些類別和不少屬種相繼衰亡或滅絕。到了第四紀的後一階段——全新世,哺乳動物的面貌已和現代基本一致。
大量的化石資料證明人類是由古猿進化而來的。古猿與最早的人之間的根本區別在於人能製造工具,特別是製造石器。從製造工具開始的勞動使人類根本區別於其它一切動物,勞動創造了人類。另一個主要特點是人能直立行走。從古猿開始向人的方向發展的時間,一般認為至少在1000?萬年以前。
第四紀的海生無脊椎動物仍以雙殼類、腹足類、小型有孔蟲、六射珊瑚等佔主要地位。陸生無脊椎動物仍以雙殼類、腹足類、介形類為主。其它脊椎動物中真骨魚類和鳥類繼續繁盛,兩棲類和爬行類變化不大。
高等陸生植物的面貌在第四紀中期以後已與現代基本一致。由於冰期和間冰期的交替變化,逐漸形成今天的寒帶、溫帶、亞熱帶和熱帶植物群。微體和超微的浮游鈣藻對海相地層的劃分與對比仍十分重要。
新生代:7千萬年以來的新生代,是被子植物大展宏圖的時期,哺乳動物之所以能在新生代里大發展,其中就有大量發展起來的被子植物作雄厚的物質基礎。 最早的有胎盤哺乳動物是食蟲類。它們大都是些以昆蟲為食的小動物,現代的刺蝟是它們的後裔。它們在不同的自然環境里曾先後幾次"趨異"進化,發展成20多個不同的類群,形成了有胎盤哺乳動物的大繁榮。
新生代詳細劃分(單位:百萬年)
第三紀古新世 65―53
始新世 53—36.5
漸新世 36.5―23
中新世 23―5.3
上新世 5.3―1.8
第四紀更新世 1.8―0.01
全新世 0.01―現代
地球上的地殼發展階段
1
太古代―元古代
地殼薄弱活動;海洋沉積占絕對優勢;末期形成一些古地塊。
2
震旦紀
海洋沉積占優勢;古地台形成。
3
寒武紀―奧陶紀―志留紀
加里東運動, 海洋沉積仍占優勢;末期,加里東地槽褶皺隆起。
4
泥盆紀―石炭紀―二迭紀
海西運動,陸相對擴大;末期許多地槽隆起,北大陸聯合,南大陸開始解體。
5
三迭紀―侏羅紀―白堊紀
燕山運動,南大陸解體,北大陸普遍活動;環太平洋地槽內帶隆起成山。
6
第三紀古新世、始新世、漸新世、中新世、上新世
喜馬拉雅造山運動,古地台、古褶皺普遍活動;古地中海帶及環太平洋外帶,隆起成山。
7
第四紀更新世、全新世―新構造期
差異升降顯著,冰川廣布。
地球上的動物界發展階段
1太古代
最低等原始生物產生
2寒武紀―奧陶紀―志留紀
海生無脊椎動物時代
3泥盆紀
魚時代
4石炭紀―二迭紀
兩棲動物時代
5三迭紀―侏羅紀―白堊紀
爬行動物時代
6第三紀
哺乳動物時代
7第四紀
人類時代
地球上的植物界發展階段
1太古代
最低等原始生物產生
2震旦紀―寒武紀―奧陶紀早期
海生藻類時代
3奧陶紀早期―石炭紀―二迭紀早期
陸生孢子植物時代
4二迭紀早期―三迭紀―侏羅紀―白堊紀中期
裸子植物時代
5白堊紀中期―第三紀―第四紀
被子植物時代
地球上的部分生物盛行期
1地球天文時期
2太古代 前震旦紀
藻類、海棉
3元古代: 震旦紀
藻類、海棉
4古生代: 寒武紀
藻類、海棉、腕足動物、海林檎、三葉蟲、
奧陶紀:藻類、海棉、珊瑚、腕足動物、海林檎、海百合、海蕾、海星、三葉蟲、
志留紀:藻類、海棉、珊瑚、腕足動物、海百合、海蕾、海星、三葉蟲、鸚鵡螺、
泥盆紀:藻類、海棉、珊瑚、腕足動物、海林檎、海百合、海蕾、海星、三葉蟲、鱗木、鸚鵡螺、
石炭紀:藻類、海棉、珊瑚、腕足動物、海林檎、海百合、海蕾、海星、三葉蟲、沙魚、鱗木、鸚鵡螺、
二迭紀:藻類、海棉、珊瑚、海百合、三葉蟲、沙魚、鱗木、鸚鵡螺
5中生代
② 地球上分為許多時期,比如白堊,寒武等,請幫我一一列出這些時期並附上時間和主要生物.
太古代
太古代離我們久遠,是地質發展史中最古老的時期,延續時間長達15億年,是地球演化史中具有明確地質記錄的最初階段。由於年代久遠,太古代的保存下來的地質紀錄非常破碎、零散。但是,太古代又是地球演化的關鍵時期,地球的岩石圈、水圈、大氣圈和生命的形成都發生在這一重要而又漫長的時期,大約39億年前,地球形成最初的永久地殼,至35億年前大氣圈、海水開始形成。
在太古代的最初期,地球上尚無生命出現。生命元素,如C,H,O,N等在強烈的宇宙射線、雷電轟擊下首先形成簡單有機分子,後發展為復雜有機分子,再形成准生命的凝聚體,進而由凝聚體進化成原始生命。在距今約33億年前,形成了地球上最古老的沉積岩,大氣圈中已含有一定的二氧化碳,並出現了最早的、與生物活動相關的疊層石;到 31億年前,地球上開始出現比較原始的藻類和細菌。在29億年前,地球上出現了大量藍綠藻形成疊層石,這表明這一時期地球上已經出現了游離氧以及行光合作用的原核生物。
經過了天文期以後,地球便正式成為太陽系的成員。大約又經過22億年,地球發展便進入到地質時期——太古代。這段從46億年~38億年的地質時期有哪些特點?
(1)薄而活動的原始地殼:根據資料分析,原始地殼的部分可能更接近於上地幔。硅鋁質和硅鎂質尚未進行較完全的分異,因此太古代時期的地殼是很薄的,也沒有現在這樣堅固復雜。由於地球內部放射性物質衰變反映較為強烈,地殼深處的融熔岩漿,不時從地殼深處,沿斷裂湧出,形成岩漿岩和火山噴發。當時到處可見火山噴發的壯觀景象。因此我們現在從太古代地層中,普遍可見火山岩系。
(2)深淺多變的廣闊海洋中散布少數孤島:當時地球的表面,還是海洋佔有絕對優勢,陸地面積相對較少,海洋中散布著孤零的海島,地殼處於十分活躍狀態,海洋也因強烈的升降運動,而變得深淺多變。陸地上也有多次岩漿噴發和侵入,使上面局部地區固結硬化,使地殼慢慢向穩定方向發展,因此太古代晚期形成了穩定基底地塊——「陸核」。陸核出現,標志地球有了真正的地殼。
(3)富有CO2,缺少氧氣的水體和大氣圈:太古代地球表面,雖然已經形成了岩石圈、水圈和大氣圈。但那時的地殼表面,大部分被海水覆蓋,由於大量火山噴發,放出大量的CO2,同時又沒有植物進行光合作用,海水和大氣中含有大量的CO2,而缺少氧氣。大氣中的CO2隨著降水,又進入到海洋,因此海洋中HCO3-濃度增大。岩漿活動和火山噴發的同時,帶來大量的鐵質,有可能被具有較強的溶解能力的降水和地表水溶解後帶入海洋。含HCO3-高濃度海水同時具有較大的溶解能力和搬運能力,因此可將低價鐵源源不斷地搬運至深海區,這就是為什麼太古代鐵礦石佔世界總儲量60%,礦石質量好,並且在深海中也能富集成礦的原因。
(4)太古代的地層:太古代的地層,都是一些經過變質的岩石,例如片麻岩、變粒岩、混合岩等深變質的岩石。我國太古代地層只分布在秦嶺、淮河以北地區。出產鞍山式鐵礦的鞍山、呂梁山、泰山、太行山等地均有太古代地層。
太古代(Archeozoic Era,Archeozoic)最古的地質時代。一般指距今46億年前地球形成到25億年前原核生物(包括細菌和藍藻)普遍出現這段地質時期。「太古代」一詞1872年由美國地質學家達納(J.D.Dana)所創用。當時形成的地層叫「太古界」,代表符號為「Ar」。主要由片麻岩、花崗岩等組成,富含金、銀、鐵等礦產,構成各大陸地殼的核心。主要分布在澳大利亞、非洲、南美的東北部、加拿大、芬蘭、斯堪的那維亞等地;我國遼東半島、山東半島和山西等地,亦有太古代地層露出。1970~1980年,一批科學家連續報道了在澳大利亞西部諾恩·波爾(NorthPole)地區35億年前的瓦拉烏納群(Warrawoonagroup)地層中,發現了一些絲狀微化石。這是迄今在太古代地層中發現的、比較可信的最早化石記錄。
元古代
元古代早期火山活動仍相當頻繁,生物界仍處於緩慢,低水平進化階段,生物主要是疊層石以及其中分離得到的生物成因有機碳和球狀、絲狀藍藻化石,由於這些光合生物的發展,大氣圈已有更多的氧氣。
在19億年前,大陸地殼不斷增厚,開始發育有蓋層沉積,地球表面始終保持著一種十分有利於生命發展的環境。藍藻和細菌繼續發展,到距今13億年前,已有最低等的真核生物—綠藻出現。在元古代晚期,蓋層沉積繼續增厚,火山活動大為減弱,並出現廣泛的冰川,從此地球具有明顯的分帶性氣候環境,為生物發展的多樣性提供了自然條件,著名的後生動物群—澳大利亞埃迪卡拉動物群就出現這個時期。
古生代
古生代(Paleozoic era)——地質年代的第3個代(第1、2個代分別是太古代和元古代)。約開始於5.7億年前,結束於2.3億年前。古生代共有6個紀(Period),一般分為早、晚古生代。早古生代包括寒武紀(Cambrian 5.4億年前)、奧陶紀(Ordovician 5億年前)和志留紀(Silurian 4.35億年前),晚古生代包括泥盆紀(Devonian 4.05億年前)、石炭紀(Carboniferous 3.55億年前)和二疊紀(Permian 2.95億年前)。動物群以海生無脊椎動物中的三葉蟲、軟體動物和棘皮動物最繁盛。在奧陶紀、志留紀、泥盆紀、石炭紀,相繼出現低等魚類、古兩棲類和古爬行類動物。魚類在泥盆紀達於全盛。石炭紀和二疊紀昆蟲和兩棲類繁盛。古植物在古生代早期以海生藻類為主,至志留紀末期,原始植物開始登上陸地。泥盆紀以裸蕨植物為主。石炭紀和二疊紀時,蕨類植物特別繁盛,形成茂密的森林,是重要的成煤期。
地質年代名稱。顯生宙(Phanerozoic Eon)的第一個代,距今約5.7億年至2.3億年前,占顯生宙時期的2/3。包括早古生代的寒武紀、奧陶紀、志留紀和晚古生代的泥盆紀、石炭紀、二疊紀。早古生代是海生無脊椎動物的發展時代,如寒武紀的節肢動物三葉蟲、奧陶紀的筆石和頭足類、泥盆紀的珊瑚類和腕足類等。最早的脊椎動物無顎魚也在奧陶紀出現。植物以水生菌藻類為主,志留紀末期出現裸蕨植物。在晚古生代,脊椎動物開始在陸地生活。魚類在泥盆紀大量繁衍,並向原始兩棲類演化。石炭紀和二疊紀時,兩棲類和爬行類已佔主要地位。植物也進入依靠孢子繁殖的蕨類大發展時期,石炭紀和二疊紀因有蕨類森林而成為地質歷史上的重要成煤期。古生代的地殼運動和氣候變化深刻影響自然環境的發展。早古生代的地殼運動在歐洲稱加里東運動,在美洲稱太康運動,在中國又稱廣西運動。此時古北美、古歐洲、古亞洲、岡瓦納古陸及古太平洋、古地中海都已形成。晚古生代地殼運動在歐洲稱海西(華力西)運動,在北美稱阿勒蓋尼運動,在中國又稱天山運動。經過古生代地殼運動,世界許多巨大的褶皺山系出現,南方的岡瓦納古陸和北方的勞亞古陸聯合在一起,形成泛古陸(聯合古陸)。晚古生代在岡瓦納古陸發生了大規模的冰川作用,大冰蓋分布於古南緯60°以內的今南非、阿根廷等地,該冰川作用期即地質歷史上的石炭—二疊紀大冰期。古生代的地層總稱古生界。
古生代(Paleozoic era)——地質年代的第3個代(第1、2個代分別是太古代和元古代)。約開始於5.7億年前,結束於2.3億年前。古生代共有6個紀(Period),一般分為早、晚古生代。早古生代包括寒武紀(Cambrian 5.4億年前)、奧陶紀(Ordovician 5億年前)和志留紀(Silurian 4.35億年前),晚古生代包括泥盆紀(Devonian 4.05億年前)、石炭紀(Carboniferous 3.55億年前)和二疊紀(Permian 2.95億年前)。
太古代(Archeozoic Era,Archeozoic)最古的地質時代。一般指距今46億年前地球形成到25億年前原核生物(包括細菌和藍藻)普遍出現這段地質時期。
太古代離我們久遠,是地質發展史中最古老的時期,延續時間長達15億年,是地球演化史中具有明確地質記錄的最初階段。由於年代久遠,太古代的保存下來的地質紀錄非常破碎、零散。但是,太古代又是地球演化的關鍵時期,地球的岩石圈、水圈、大氣圈和生命的形成都發生在這一重要而又漫長的時期,大約39億年前,地球形成最初的永久地殼,至35億年前大氣圈、海水開始形成
元古代早期火山活動仍相當頻繁,生物界仍處於緩慢,低水平進化階段,生物主要是疊層石以及其中分離得到的生物成因有機碳和球狀、絲狀藍藻化石,由於這些光合生物的發展,大氣圈已有更多的氧氣。
在19億年前,大陸地殼不斷增厚,開始發育有蓋層沉積,地球表面始終保持著一種十分有利於生命發展的環境。藍藻和細菌繼續發展,到距今13億年前,已有最低等的真核生物—綠藻出現。在元古代晚期,蓋層沉積繼續增厚,火山活動大為減弱,並出現廣泛的冰川,從此地球具有明顯的分帶性氣候環境,為生物發展的多樣性提供了自然條件,著名的後生動物群—澳大利亞埃迪卡拉動物群就出現這個時期。
寒武紀是地質歷史劃分中屬顯生宙古生代的第一個紀,距今約5.4億至5.1億年,寒武紀是現代生物的開始階段,是地球上現代生命開始出現、發展的時期。寒武紀對我們來說是十分遙遠而陌生的,這個時期的地球大陸特徵完全不同於今天。 寒武紀常被稱為「三葉蟲的時代」,這是因為寒武紀岩石中保存有比其他類群豐富的礦化的三葉蟲硬殼。但澄江動物群告訴我們,現在地球上生活的多種多樣的動物門類在寒武紀開始不久就幾乎同時出現。
奧陶紀(Ordovician Period,Ordovician),地質年代名稱,是古生代的第二個紀,開始於距今5億年,延續了6500萬年。
志留紀(Silurian period)是早古生代的最後一個紀,也是古生代第三個紀。本紀始於距今4.35億年,延續了2500萬年。由於志留系在波羅的海哥德蘭島上發育較好,因此曾一度被稱為哥德蘭系。 志留紀可分早、中、晚三個世。志留系三分性質比較顯著。一般說來,早志留世到處形成海侵,中志留世海侵達到頂峰,晚志留世各地有不同程度的海退和陸地上升,表現了一個巨大的海侵旋迴。志留紀晚期,地殼運動強烈,古大西洋閉合,一些板塊間發生碰撞,導致一些地槽褶皺升起,古地理面貌巨變,大陸面積顯著擴大,生物界也發生了巨大的演變,這一切都標志著地殼歷史發展到了轉折時期。
泥盆紀,地質年代名稱,古生代的第四個紀,約開始於4.05億年前,結束於3.5億年前,持續約5000萬年。「泥盆紀分為早、中、晚3個世,地層相應地分為下、中、上3個統。
早期裸蕨繁茂,中期以後,蕨類和原始裸子植物出現。無脊椎動物除珊瑚、腕足類和層孔蟲(Stromatoporoidea,腔腸動物門,水螅蟲綱的一個目)等繼續繁盛外,還出現了原始的菊石(Ammonites,屬軟體動物門,頭足綱的一個亞綱)和昆蟲。脊椎動物中魚類(包括甲胄魚、盾皮魚、總鰭魚等)空前發展,故泥盆紀又有「魚類時代」之稱。晚期甲胄魚趨於絕滅,原始兩棲類(迷齒類(Labyrinthodontia)(亦稱堅頭類)開始出現
石炭紀(Carboniferous period)是古生代的第5個紀,開始於距今約3.55億年至2.95億年,延續了6000萬年。石炭紀時陸地面積不斷增加,陸生生物空前發展。當時氣候溫暖、濕潤,沼澤遍布。大陸上出現了大規模的森林,給煤的形成創造了有利條件。
二疊紀(Permian period)是古生代的最後一個紀,也是重要的成煤期。二疊紀分為早二疊世, 中二疊世和晚二疊世。二疊紀開始於距今約2.95億年,延至2.5億年,共經歷了4500萬年。二疊紀的地殼運動比較活躍,古板塊間的相對運動加劇,世界范圍內的許多地槽封閉並陸續地形成褶皺山系,古板塊間逐漸拚接形成聯合古大陸(泛大陸)。陸地面積的進一步擴大,海洋范圍的縮小,自然地理環境的變化,促進了生物界的重要演化,預示著生物發展史上一個新時期的到來。
中生代
中生代(Mesozoic Era;距今約2.5億年~距今約6500萬年)
顯生宙第二個代,晚於古生代,早於新生代。這一時期形成的地層稱中生界。中生代名稱是由英國地質學家J.菲利普斯於1841年首先提出來的,是表示這個時代的生物具有古生代和新生代之間的中間性質。自老至新中生代包括三疊紀、侏羅紀和白堊紀。
中生代時,爬行動物(恐龍類、色龍類、翼龍類等)空前繁盛,故有爬行動物時代之稱,或稱恐龍時代。中生代時出現鳥類和哺乳類動物。海生無脊椎動物以菊石類繁盛為特徵,故也稱菊石時代。淡水無脊椎動物,隨著陸地的不斷擴大,河湖遍布的有利條件,雙殼類、腹足類、葉肢介、介形蟲等大量發展,這些門類對陸相地層的劃分、對比非常重要。
中生代植物,以真蕨類和裸子植物最繁盛。到中生代末,被子植物取代了裸子植物而居重要地位。中生代末發生著名的生物絕滅事件,特別是恐龍類絕滅,菊石類全部絕滅。有人認為生物絕滅事件與地外小天體撞擊地球有關,但真正原因有待進一步研究確定。
古生代末期,聯合古陸的形成,使全球陸地面積擴大,陸相沉積分布廣泛。中生代中、晚期,聯合古陸逐漸解體和新大洋形成,至中生代末 ,形成歐亞 、北美 、南美、非洲、澳大利亞、南極洲和印度等獨立陸塊。並在其間相隔太平洋、大西洋、印度洋和北極海。
中生代中、晚期,各板塊漂移加速,在具有俯沖帶的洋、陸殼的接觸帶上俯沖、擠壓,導致著名的燕山運動(或稱太平洋運動),形成規模宏大的環太平洋岩漿岩帶、地體增生帶和多種內生金屬、非金屬礦帶。中生代氣候總體處於溫暖狀態,通常只有熱帶、亞熱帶和溫帶的差異。
新生代
新生代(距今6500萬年~今)Cenozoic Era
地質歷史上最新的一個代,顯生宙的第三個代。這一時期形成的地層稱新生界。新生代以哺乳動物和被子植物的高度繁盛為特徵,由於生物界逐漸呈現了現代的面貌,故名新生代(即現代生物的時代)。1760年,義大利博物學家G.阿爾杜伊諾在研究義大利北部地質時,把組成山系的地層分為3個系:第一系為結晶岩,第二系為含化石的成層岩石,第三系為半膠結的層狀岩石,常含海相貝殼。1829年,法國學者J.德努瓦耶研究巴黎盆地時,把第三系之上的鬆散沉積層稱為第四系。第一系、第二系的名稱已廢棄不用,第一系大致相當前寒武系,第二系相當於古生代和中生代的地層。新生代包括第三紀和第四紀,第三紀又可分為早第三紀和晚第三紀,紀可再劃分為幾個世(見表)。
新生代開始時,中生代占統治地位的爬行動物大部分絕滅,繁盛的裸子植物迅速衰退,為哺乳動物大發展和被子植物的極度繁盛所取代。因此,新生代稱為哺乳動物時代或被子植物時代。哺乳動物的進一步演化,適應於各種生態環境,分化為許多門類。到第三紀後期出現了最高等動物——原始人類。原始人類起源於亞洲或非洲。
極少數的一部分了
③ 地球上的生命最早起源於什麼時代
寒武紀時期
寒武紀時期,成千上萬種新生物在海底誕生。最早出現的是形狀像香檳酒杯一樣的動物和生活在管狀和角狀結構里的動物。隨後,長有硬殼的草食動物和最早的捕食動物出現。
這一時期的許多動物看上去很奇怪,因為它們沒有現生的近親。但另外的一些生物則是蠕蟲、有殼動物和脊椎動物的祖先。海洋中含氧量的增加可能是這一時期新的生命形式大量出現的一個原因。海洋中含氧量的增加可能是這一時期新的生命形式大量出現的一個原因。
(3)聯合生物出現在哪個時代擴展閱讀:
生命進化階段:
1、前生命的化學進化階段
澳大利亞和南非的太古宙化石證據和穩定同位素分析表明,地球上的生命和地球上最古老的岩石一樣古老,也就是說,在太古宙早期(35-38億年前),已經出現了細胞形式的生命。
如果生命前的化學進化發生在地球表面,那麼它只會發生在38億到40億年前。原因:地質學家,地殼,大約40億年前開始形成。
2、生物學進化階段
地球上最早的細胞生命的誕生,即與外界分離的生物膜和由內膜分離的個體生命的初始形態,具有形態特徵,標志著生命前期和生命後期的化學演化完成。
生物進化始於最早的細胞生命的出現,持續了38億年,包括太古代(38億至25億年前)、元古代(25億至60億年前)和顯生宙(6億年前)。
3、文化進化與生物學進化並行和相互制約階段
在顯生宙晚期的幾千年中,地球上的人類進入了文明階段。從那時起,生物圈的進化就越來越受到人類活動的影響和控制。人類文化與生物進化相互作用、相互制約,是生命史最後階段的特徵。
④ 聯合古陸是在什麼時候分離的哪個時期
聯合古陸 ,又稱泛大陸,地質學概念,是推測的曾在地史時期存在的超級古大陸,也稱泛大陸。是德國氣象學家 A.L.魏格納於1912年首先命名的(見大陸漂移說)。圍繞聯合古陸的古大洋稱泛大洋。由於現在的太平洋是泛大洋的殘留海域,故又稱古太平洋。
古生代各大陸的聚合連接及其後的分解漂移情況,主要依據岩石構造組合、古地磁極移軌跡和古生物分布資料。但上述幾種資料的研究結果並非經常一致,因而各大陸塊的相互關系仍然是一種推測。
(4)聯合生物出現在哪個時代擴展閱讀
「聯合古陸」的北面一列陸地叫做「勞亞古大陸」,這里包括了北美洲、歐洲和亞洲的阿拉伯半島、印度次大陸等陸地地帶的一部分區域。
而這幅復原圖中「聯合古陸」的南部一系列的大陸陸地則叫做「岡瓦納古大陸」,這塊原始大陸上包括南美洲、非洲、南極洲以及澳洲大陸等原始陸地的地區,另外還加上來自印度次大陸與阿拉伯半島的部分陸地。
⑤ 地球上曾經有哪些時代比如說什麼生物出現在哪個紀
古生物學家告訴我們,大約在 36 億年前,第一個有生命的細胞產生.生命的起源和細胞的起源的研究不僅有生物學的意義,而且有科學的宇宙觀的意義.細胞的起源包含三個方面;①構成所有真核生物的真核細胞的起源;②與生命的起源相伴隨的原核細胞的起源;③最新發展的三界學說,即古核細胞的起源.生命的起源應當追溯到與生命有關的元素及化學分子的起源.因而,生命的起源過程應當從宇宙形成之初、通過所謂的「大爆炸」產生了碳、氫、氧、氮、磷、硫等構成生命的主要元素談起.大約在66億年前,銀河系內發生過一次大爆炸,其碎片和散漫物質經過長時間的凝集,大約在46億年前形成了太陽系.作為太陽系一員的地球也在46 億年前形成了.接著,冰冷的星雲物質釋放出大量的引力勢能,再轉化為動能、熱能,致使溫度升高,加上地球內部元素的放射性熱能也發生增溫作用,故初期的地球呈熔融狀態.高溫的地球在旋轉過程中其中的物質發生分異,重的元素下沉到中心凝聚為地核,較輕的物質構成地幔和地殼,逐漸出現了圈層結構.這個過程經過了漫長的時間,大約在38億年前出現原始地殼,這個時間與多數月球表面的岩石年齡一致.生命的起源與演化是和宇宙的起源與演化密切相關的.生命的構成元素如碳、氫、氧、氮、磷、硫等是來自「大爆炸」後元素的演化.資料表明前生物階段的化學演化並不局限於地球,在宇宙空間中廣泛地存在著化學演化的產物.在星際演化中,某些生物單分子,如氨基酸、嘌呤、嘧啶等可能形成於星際塵埃或凝聚的星雲中,接著在行星表面的一定條件下產生了象多肽、多聚核苷酸等生物高分子.通過若干前生物演化的過渡形式最終在地球上形成了最原始的生物系統,即具有原始細胞結構的生命.至此,生物學的演化開始,直到今天地球上產生了無數復雜的生命形式.38億年前,地球上形成了穩定的陸塊,各種證據表明液態的水圈是熱的,甚至是沸騰的.現生的一些極端嗜熱的古細菌和甲烷菌可能最接近於地球上最古老的生命形式,其代謝方式可能是化學無機自養.澳大利亞西部瓦拉伍那群中35億年前的微生物可能是地球上最早的生命證據.原始地殼的出現,標志著地球由天文行星時代進入地質發展時代,具有原始細胞結構的生命也開始逐漸形成.但是在很長的時間內尚無較多的生物出現,一直到距今5.4億年前的寒武紀,帶殼的後生動物才大量出現,故把寒武紀以後的地質時代稱為顯生宙 太古宙(Archean)是最古老的地史時期.從生物界看,這是原始生命出現及生物演化的初級階段,當時只有數量不多的原核生物,他們只留下了極少的化石記錄.從非生物界看,太古宙是一個地殼薄、地熱梯度陡、火山—岩漿活動強烈而頻繁、岩層普遍遭受變形與變質、大氣圈與水圈都缺少自由氧、形成一系列特殊沉積物的時期;也是一個硅鋁質地殼形成並不斷增長的時期,又是一個重要的成礦時期.元古宙(Proterozoic)初期地表已出現了一些范圍較廣、厚度較大、相對穩定的大陸板塊.因此,在岩石圈構造方面元古代比太古代顯示了較為穩定的特點.早元古代晚期的大氣圈已含有自由氧,而且隨著植物的日益繁盛與光合作用的不斷加強,大氣圈的含氧量繼續增加.元古代的中晚期藻類植物已十分繁盛,明顯區別於太古代.震旦紀(Sinian period)是元古代最後期一個獨特的地史階段.從生物的進化看,震旦系因含有無硬殼的後生動物化石,而與不含可靠動物化石的元古界有了重要的區別;但與富含具有殼體的動物化石的寒武紀相比,震旦系所含的化石不僅種類單調、數量很少而且分布十分有限.因此,還不能利用其中的動物化石進行有效的生物地層工作.震旦紀生物界最突出的特徵是後期出現了種類較多的無硬殼後生動物,末期又出現少量小型具有殼體的動物.高級藻類進一步繁盛,微體古植物出現了一些新類型,疊層石在震旦紀早期趨於繁盛,後期數量和種類都突然下降.再從岩石圈的構造狀況來看,震旦紀時地表上已經出現幾個大型的、相對穩定的大陸板塊,之上已經是典型的蓋層沉積,與古生界相似.因此,震旦紀可以被認為是元古代與古生代之間的一個過渡階段.1977年10月,科學家再南非34億年前的史瓦濟蘭系的古老沉積里發現了200多個古細胞化石,便將生命起源的時間定在34億年前.不久,科學家又在35億年的岩石層中驚詫地找到最原始的生物藍藻,綠藻化石,不得不將生命源頭繼續上溯.因為8億年前地球上就出現了真核生物,那時候是震旦紀.而只有地球上有了充足的氧氣之後,真核細胞才可能出現.而在此之前都是厭氧的原核生物
⑥ 科學家有沒有研究,地球上第一次出現生物是什麼時期
早期厭氧型藻類以及厭氧細菌,地球的形成約在45億年前,大約10億年後地球的環境才適宜孕育生命。從外太空中墜落的隕石為我們帶來了磷,硫等生命組成必備元素,隨著時間的推移這些物質的不斷碰撞與組合形成了DNA,生命的起源正式開始。
早期的地球氧含量極低,所以最開始出現的一些生物都是厭氧型的。生物進化至寒武紀時期,生物種類如雨後春筍一般訊然增多,海洋生命形式進化歷程出於黃金時期,海洋生物的生命結構變得極為復雜,這就是地球歷史上第一次寒武紀生命大爆發。
(6)聯合生物出現在哪個時代擴展閱讀:
到奧陶紀末,地球上的海洋已經冷卻到百分之八十五,生命再次減速。直到泥盆紀早期,地球開始西方體育,退去土地形成,蕨類植物,光合作用產生大量的氧氣,中間開始一些土地生物,珊瑚昆蟲和兩棲類動物,在石炭系遲到,75%的物種大滅絕物種滅絕,但無可否認,泥盆紀是地球的海洋變成陸地生活的里程碑。
在二疊紀末,由於太陽的影響,地球的氣候發生了變化,陸地面積增加,但大多數動物未能適應,導致90%的海洋動物和70%的陸地動物大規模滅絕。到三疊紀末期,地球上的生命開始休息,地球上的生命變得更加多樣化。
但到那個時期結束時,由於地球地貌的急劇變化和海平面的上升,海洋生物再次遭到大量毀滅,但大多數的大滅絕是海洋生物,陸地生物沒有受到太大的影響。隨著時間的推移,恐龍的崛起逐漸統治了地球,生物圈正式進入了叢林時代。
⑦ 列舉古生物 產生於什麼時期 屬於什麼科
在生物演化史上稱為「海洋藻類時代」和「海洋無脊椎動物時代」。起始於距今6億年,延續了約1.7億年。
植物仍以海生藻類為主,但很難保存為完好的化石。由於植物進化速度遠較動物緩慢,早古生代植物界一直停留在藻類階段。藻類的大量繁育不僅為海洋無脊椎動物提供了豐富的食物資源,而且通過葉綠素光合作用,放出氧氣,為海洋無脊椎動物的發展,准備了有利的生活環境。
繼元古宙末期埃迪卡拉後生裸露動物群之後,於早期,出現了地史上最早具鈣質硬殼的小殼動物群,包括軟舌螺、單板類、腹足類、腕足類等。這與當時海水富含鈣質有關。由於發生了礦化事件,使得寒武紀保存的化石突然增多。這一時期稱為「非三葉蟲時代」。進入三葉蟲時代後,在中國雲南發現了距今5.7億年的澄江動物群,主要由水母、三葉蟲、金臂蟲、非三葉蟲節肢動物、蠕形動物、海綿、無鉸腕足類、軟舌螺和藻類等組成,是目前世界上保存最早的軟體的多門類動物群,這一動物群的發現還表明後生動物在寒武紀開始前已經歷了一段分化、輻射的歷史過程。隨後,腔腸動物、古杯類、軟體動物(雙殼、腹足、頭足)、棘皮動物、牙形刺、筆石等相繼出現。其中以三葉蟲演化迅速、生態分異明顯,分布遍及全球整個海域,在動物界中占絕對優勢,因而稱寒武紀為「三葉蟲時代」。古杯類是地史上最早的造礁動物,生活於早寒武世,中寒武世早期絕滅,是生物史上第一個完全絕滅的造礁動物門類。
是自然環境有利於海洋無脊椎動物繼續發展的時代,層孔蟲、苔蘚蟲等先後出現,筆石、腕足類、鸚鵡螺等顯著分異。樹形筆石繼續發展,一部分固著在海底生活,而大部分遠運洋漂浮生活,遍及全球海域。到早奧陶世中期,正筆石類興起、演化迅速,是奧陶紀的重要分帶化石。腕足類出現了分異的第一個高峰期,在數量上占重要地位。鸚鵡螺開始出現於晚寒武世,到奧陶紀分異明顯,種類繁多,個體較大,是營游泳生活的兇猛食肉動物。珊瑚最早出現於寒武紀,至中、晚奧陶世大量繁育,同層孔蟲、苔蘚蟲等一起,是溫暖淺海的重要造礁動物。海洋無脊椎動物新類群的出現和多樣化,加劇了淺海陸棚區的生存競爭。
延續時間較短,生物界來源於奧陶紀,但有新的發展。其中最重要的生物事件是,三葉蟲顯著衰退,筆石向簡化方向演變,單筆石興起並大量發展。珊瑚以床板珊瑚和日射珊瑚為主,出現了特有的鏈珊瑚。腕足類出現了內部構造更為復雜的五房貝和展翼狀外殼的石燕貝。鸚鵡螺顯著減少但仍有代表。節肢動物中形體最大的板足鱟類最早出現於奧陶紀,到志留紀大量繁育,志留紀末,由於受加里東運動的影響,海水逐漸退去。部分生物為了適應新的生活環境,由海洋向陸地生活轉變。
向陸地生活轉變和發展
沼澤野蜓化石
由於志留紀末期大規模海退,陸地面積逐漸擴大,從濱海淺灘綠藻植物演化而來的陸生裸蕨植物最早出現於晚志留世,到早泥盆世開始大量生活在濱海沼澤低地,中泥盆世後期出現根、莖和葉分化的原始石松類和有節類,到晚泥盆世在自然選擇的作用下,裸蕨迅速絕滅了。一般稱志留紀末到中泥盆世為「裸蕨植物時代」。到石炭、二疊紀陸生植物進一步發展,出現了石松、節蕨、真蕨和原始裸子植物的種子蕨和科達類,這一時期被稱為「蕨類植物時代」。從晚石炭世到二疊紀各類植物極度繁茂,由於適應不同的氣候條件,逐漸形成明顯的植物地理分區。
陸生植物發展之後,與植物存在著密切關系的昆蟲大量繁育,它們相互依存,相互制約,平行發展。最早的昆蟲類是最原始的無翅類型,最早的無翅類化石出現於。出現了現知最早的有翅昆蟲,當時最繁盛的昆蟲是現已絕滅的古網翅類。昆蟲區系發生顯著的變化,直翅類明顯縮小,許多現代類型開始出現。
魚類的出現和發展
中華原白鱘化石
魚類包括有頜類和無頜類。無頜類包括頭甲魚形類和鰭甲魚形類。頭甲魚形類包括現生的七鰓鰻和盲鰻以及古生代有甲胄的種類;鰭甲魚形類包括已絕滅的異甲魚和花麟魚。無頜類最早的類群是異甲類。發現於北美落基山區中奧陶統的異甲魚,是脊椎動物最早的化石代表。晚志留世出現了從無頜類分化出來的最早具頜的棘魚類和盾皮魚類。有了上下頜,就不僅是被動攝食微小有機物,而可主動追捕大的食物了。硬骨魚類包括總鰭魚類、肺魚類和輻鰭魚類,最早出現於晚志留世晚期,與棘魚類有共同的祖先。盾皮魚類最早出現於晚志留世,一直生存到早石炭世,以泥盆紀最繁盛。軟骨魚類出現於早泥盆世晚期,可能與盾皮魚類有共同的祖先。泥盆紀時魚類極為繁盛,故被稱為「魚類時代」。硬骨魚類在現代魚類中占絕對優勢,被稱為「水中的主人」。從侏羅紀起,軟骨魚類出現了,如鯊魚和鰩,還有生活在深海里的銀鮫。
⑧ 最早的生物是在什麼時候出現的
地球上動物最早出現的時間不早於5.8億年
附: 《科學》發表南古所專家的合作論文
美國《科學》雜志的網路版「科學快訊」於2月24日發表了由一個中美聯合研究小組根據宜昌三峽地區的岩石樣品測得的一組同位素年齡和系統的碳同位素數據,對寒武紀大爆發之前的全球性冰期、海水化學成份異常變化、多細胞動物起源與演化過程等科學問題提出了新的解釋。 這些科學家們認為,地球歷史上規模最大的一次冰期以非常快的速度在各個大陸幾乎同時於6億3千5百萬年前結束,在5億8千萬年前又發生一次小冰期,而後地球上才出現原始的動物。多細胞生物,特別是動物的出現和繁盛是5億5千萬年之前全球一次規模巨大的海水成份異常事件的直接原因,生物加速繁盛致使大氣層氧含量的急劇增加為隨後的寒武紀生命大爆發奠定了基礎。
據悉,這個研究研究小組由中國科學院南京地質古生物研究所與美國麻省理工學院的專家組成。論文的第二作者朱茂炎博士指出,探索生命與環境演變的相互關系是人類求知和生存所面臨的最基本科學問題之一。發生在距今7. 5億到5.3億年這一段地質時期的環境和生命演化是倍受地球和生命科學家關注的熱門科學話題。因為這一時期是地球歷史上一段非常關鍵的轉折發展時期,科學界稱之為隱生宙和顯生宙的轉換時期,也就是說地球從沒有可見生命的荒蕪狀態向環境適宜、生物繁茂的現代藍色星球狀態轉變的關鍵階段。在此期間萌發了復雜的多細胞生物以及動物,隨後又發生了動物多樣性的快速增加,即常說的「寒武紀大爆發」。在動物出現之前,地球環境極端寒冷,至少發生了3次大的冰期。其中規模最大的一次冰川居然延伸到了赤道地區,這是地球上空前絕後的極端氣候異常。同時,地質記錄表明這一時期內全球海水化學成份發生異常變化的頻率高、規模大。階段性規模巨大的冰期與多細胞生物的出現和異常的海水化學條件變化等環境地質事件之間可能存在著必然的內在聯系,這也就是近些年來科學界廣泛關注的「雪球假說」。然而,科學界關於這段時間內冰期的次數和持續時間、動物起源模式和精確年代、海水成份和大氣氧的變化等環境地質事件的發生過程存在著很大爭議。原因在於目前科學界的研究結果來自世界各地不同岩石地層,已經發現的各種事件在地質時間坐標上的先後關系一直不清楚。因此,可靠且精確的同位素年齡測定是尋找地球上發生在距今7. 5億到5.3億年這一段地質時期的環境和生命演化相互關系正確答案的最基本科學依據。
地質年齡可以通過測定放射性同位素的母元素和子元素在礦物中的含量計算出來,這是由於放射性同位素的衰變半周期是固定不變的。目前,科學界根據研究目的和研究對象的不同,可以採用不同的同位素定年方法。地質時期火山噴發產生的火山灰中含有一種非常穩定的礦物「鋯石」(ZrSiO4)是精確測定地質年齡最好的材料。研究人員可以通過測定其中鈾同位素238U和鉛同位素206Pb 的含量來計算鋯石形成的年齡,也就是火山灰的年齡(* 238U衰變到206Pb的半周期為45億年)。美國麻省理工學院的熱離子質譜實驗室一直以來是國際上公認開展這一測年研究的實驗室。
碳在自然界物質循環過程中的變化影響著地球環境的變化,因為碳是溫室氣體二氧化碳的兩種組成元素之一,而二氧化碳在大氣中含量的變化是地球氣候發生改變的關鍵。研究自然界中碳的循環規律是揭示地球環境因子變化的重要方法。大家知道,碳是生命物質最基本元素之一,生命活動是碳元素在自然界進行循環最重要的影響因素。由於生命有機物質中碳元素中「輕碳」(12C同位素)比「重碳」(13C同位素)含量高,因此科學家們可以通過研究岩石中碳的同位素組成比例的變化來了解地質時期生命活動與碳循環的關系,從而揭示大氣和海洋環境因子的變化過程。
那麼,為什麼選擇華南作為研究地區呢?因為華南具備這一地質時期完整的地質記錄,擁有典型的冰期地層,地質學家稱之為南沱冰磧雜礫岩,也具有生物化石豐富的各種地層。目前已發現了含有最早動物化石的「甕安生物群」,代表寒武紀大爆發的 「澄江動物群」,以及富含大型多細胞藻類的「廟河生物群」、具有大型動物遺跡和弱骨骼化動物化石的「高家山生物群」和「小殼動物群」等等國際著名的化石產地。因而華南地區是全球開展這一時期生命演化和環境變化的關鍵地區之一。然而,無論是華南地區冰期地層,還是這些化石群包括最早的動物化石的年齡都缺乏依據,同時環境變化事件(包括碳同位素變化)與冰期和生物群之間的時間先後順序也不確定。以致確定其地質年齡成為分清冰期的期次、生物和環境演化過程的關鍵。
據朱博士說,並非所有火山灰樣品中的鋯石都可以用來測定年齡,有的鋯石是來自更老的地層,其年齡不能代表火山噴發的時間。幸運的是研究小組終於在宜昌三峽地區的2個地質剖面上,在3個層位的火山灰中發現大量同生的鋯石,用於測定年齡的鋯石晶體長度一般只有80~150微米左右。熱離子質譜分析的結果獲得高精度的年齡。首先,覆蓋在南沱冰磧雜礫岩之上的碳酸鹽岩石中部的火山灰年齡值為6.352億年。這一年齡與發現於南非納米比亞北部同期冰磧雜礫岩頂部的年齡非常接近(6.355億年)。由於當時華南地區處於低緯度,與納米比亞分別處於南北半球,兩者相隔甚遠,但是兩個年齡的比較表明:華南地區的南沱冰期在全球各大陸上是同時的,證明了南沱冰期是地球歷史上最大的一次冰期;這一規模巨大的冰期是在6.35億年前在全球各地同時快速結束的;覆蓋在世界各地南沱冰期雜礫岩之上的碳酸鹽岩(常稱之為「帽碳酸岩」)是由大氣中CO2濃度急劇增加而引起溫室效應的環境下海洋中快速的碳酸鹽岩沉積物,這種溫室效應正是快速結束冰期的直接原因。
第二,新的岩石同位素研究揭示了「廟河生物群」 之下發生了一次規模巨大的碳同位素負異常事件,而「廟河生物群」之上的一層火山灰5.51億年的年齡值徹底改變了人們以往對這一階段生物和環境變化過程的認識。過去認為「廟河生物群」 之下碳同位素負異常事件與南沱冰期之後的發生於5.8億年前又一次冰期相關。新的年齡表明:這次碳同位素巨大負異常事件是全球性事件,與其它大陸(北美、澳大利亞和非洲等地)類似的碳同位素負異常事件是同時的,與全球冰期無關,而是5.51億年之前多細胞生物,特別是動物的出現和繁盛所引起的。多細胞生物的興起與繁盛使大量的有機碳得以庫存,生物的加速繁盛致使大氣層氧含量的急劇增加,又使庫存的大量有機碳得以氧化進入大氣和海水參與新的碳循環,輕碳(12C同位素)在海水中急劇增加,以致在5.55億年左右全球海水中發生了一次規模巨大的碳同位素負異常事件,同時生物繁盛帶來充裕的大氣氧為隨後的寒武紀生命大爆發奠定了基礎。
令人驚訝的是,研究結果得出一個非常重要的科學結論:地球上動物最早出現的時間不早於5.8億年。因為發現含有動物最早化石的「甕安生物群」介於6.35億年到5.51億年之間的岩石地層中,「甕安生物群」之下的地層具有一個明顯的「岩溶喀斯特」面,它代表了一次大的海平面下降事件,推測是由南沱冰期之後又一次冰期所引起的。這個冰期就是5.8億年前在加拿大紐芬蘭和歐洲等地區的有典型地質記錄的一次冰期。這一結論不僅得到了用其它方法做出的綜合地層時代對比結果想吻合。如果這一結論可靠,那麼地球上動物最早出現於南沱大冰期之後的一次冰期結束之後,表明華南代表最早動物化石記錄的「甕安生物群」與當時地球其它地區大量繁盛的「埃迪卡拉生物群」差不多是同時的,改變了「甕安生物群」早於「埃迪卡拉生物群」認識。這樣一來,動物起源和早期演化的模式和過程將需要在新的時間坐標上重新認識。
朱博士表示,地質年代測定的精度和密度愈高,對不同地質環境和生物演化事件之間關系的認識就愈高。這次他們發表的年齡才僅僅確認了發生於距今7. 5億到5.3億年這一關鍵地質時期一系列重要環境和生物演變事件其中的幾個年齡,這一時期還有許多重要事件需要用不同的研究方法去揭示,事件的年齡和時間先後需要等待確定,例如:這一階段3次冰期每次冰期持續時間和它們之間的間隔時間還未確定,動物首次出現時間的確定還是通過與其它地區的年齡對比所獲得的等等問題。同時新的年齡將促使地質家家對地球歷史上這一關鍵轉折階段內的時間劃分重新提出方案,因此相關的研究還將繼續。
中國科學院
⑨ 地球上生命大爆發發生在什麼時代
1.寒武紀物種大爆發
在始於5.42億年前,結束於5.1億年前的寒武紀,地球生命進化進入一個繁榮昌盛的時期,在幾百萬年內,曾經空盪盪的海洋突然間充滿了許多新的生命形式,許多生物紛紛出現在地球海洋的舞台上。這就是化石紀錄中揭示的第一次物種大爆發事件——「寒武紀物種大爆發」。
2.奧陶紀物種大爆發
近年來,地球生物進化史上曾一度鮮為人知的大事件——「奧陶紀物種大爆發」(又稱「第二次物種大爆發」)引起了科學界的濃厚興趣。古生物學家斷言,這一事件對於地球生物進化的重大意義絲毫不遜於「寒武紀物種大爆發」。
5.1億年前,也就是奧陶紀之初,地球生命如星火燎原般重新加速進化。最先是一些海藻類開始大量繁殖,為濾食性生物提供了大量的食物,疊層石生物再次被排擠出生命進化的舞台,海綿則成為珊瑚礁的主要建造者,珊瑚也加入其列。
科學界普遍認為,地球生命演化史經歷過五次大規模的生物滅絕,雖然具體原因眾說紛紜,但可以肯定都與環境突然變化有密切關系。但每一次物種大規模滅絕後,都會有新的物種出現。
第一次生物大滅絕發生在距今4.4億年前的奧陶紀末期,導致大約80%的物種滅絕。
第二次生物大滅絕發生在距今約3.65億年前泥盆紀的後期,海洋生物遭受了滅頂之災。
泥盆紀是魚類的時代泥盆紀是地球生物界發生巨大變革的時期,由海洋向陸地大規模進軍是這一時期最突出、最重要的生物演化事件。
第三次也是最嚴重的一次生物大滅絕發生在距今約2.5億年的二疊紀末期,導致超過95%的地球生物滅絕。
在二疊紀晚期,全球發生了地質歷史中規模最大、影響最為深遠的生物集群滅絕事件。繁盛於古生代早期的三葉蟲、四射珊瑚、橫板珊瑚、蜓類有孔蟲以及海百合等全部絕滅,腕足動物、菊石、棘皮動物、苔蘚蟲等也遭受嚴重的打擊。二疊紀時兩棲動物大量繁榮,常見的有迷齒類的蠑螈;爬行動物繼續發展,代表分子有中龍等;哺乳動物的先驅——溫血爬行動物獸孔類開始發展。
第四次生物滅絕發生在距今2億年前的三疊紀晚期,爬行類動物遭遇重創。
三疊紀(Triassic period)是爬行動物和裸子植物的崛起,是中生代的第一個紀。它位於二疊紀(Permian)和侏羅紀(Jurassic)之間。
最後一次大滅絕,也就是第五次,發生在距今6300萬年前的白堊紀-第三紀,科學家認是小行星撞擊地球所致,恐龍從地球上消失,哺乳動物出現。
近年來在國際科學界展開了熱烈的爭論。頗為流行的「地外事件」學說認為,地球上一些地方,白堊-第三系界線上的粘土岩中銥元素異常高含量,是宇宙中一顆巨大的流星碰撞地球產生的類似核冬天效應的結果。
亞歷桑納州大學動物學家及地球化學家保羅·馬丁也認為,地球正處於自5萬年前所開始的第六次物種大滅絕中,只不過此次物種滅絕速度較緩慢,目前也不清楚是否會象過去的物種滅絕那麼嚴重。