導航:首頁 > 生物信息 > 生物數學內容有哪些

生物數學內容有哪些

發布時間:2022-05-22 21:13:32

Ⅰ 生物數學的研究內容

根據生命科學的需要,生物數學的內容分為以下幾個主要方面。 所謂生命現象數量化,就是以數量關系描述生命現象。數量化是利用數學工具研究生物學的前提。生物表現性狀的數值表示是數量化的一個方面。生物內在的或外表的,個體的或群體的,器官的或細胞的,直到分子水平的各種表現性狀,依據性狀本身的生物學意義,用適當的數值予以描述。數量化還表現在引進各種定量的生物學概念,並進行定量分析。如體現生物親緣關系的數值是相似性系數。各種相似性系數的計算方法以及在此基礎上的聚類運算構成數量分類學表徵分類的主要內容。遺傳力表示生物性狀遺傳給後代的能力,對它的計算以及圍繞這個概念的定量分析是研究遺傳規律的一個重要部分。多樣性,在生物地理學和生態學中是研究生物群落結構的一個抽象概念,它從種群組成的復雜和紊亂程度體現群落結構的特點。多樣性的定量表示方法基於信息理論。
數量化的實質就是要建立一個集合函數,以函數值來描述有關集合。傳統的集合概念認為一個元素屬於某集合,非此即彼、界限分明。可是生物界存在著大量界限不明確的、「軟」的模糊現象,如此「硬」的集合概念不能貼切地描述這些模糊現象,給生命現象的數量化帶來困難。1965年L.A.扎德提出模糊集合概念,模糊集合適合於描述生物學中許多「軟」的模糊現象,為生命現象的數量化提供了新的數學工具。以模糊集合為基礎的模糊數學已廣泛應用於生物數學。 為了研究的目的而建立,並能夠表現和描述真實世界某些現象、特徵和狀況的數學系統,稱為數學模型。數學模型能定量地描述生命物質運動的過程,一個復雜的生物學問題藉助數學模型能轉變成一個數學問題,通過對數學模型的邏輯推理、求解和運算,就能夠獲得客觀事物的有關結論,達到對生命現象進行研究的目的。
例如描述種群增長最簡單的模型是馬爾薩斯方程:(圖一)(常數r>0)式中N表示種群的數量;r是種群增長的相對速率。方程的解為(圖二)式中N0表示時間為t0時初始種群大小。這個模型簡單地描述種群按幾何級數增長的過程。從數學模型獲得的結果應該符合實際情況,否則對模型應進行修改,使之盡可能正確地表達生命物質運動的真實情況。模型的不斷完善是對生命現象認識逐漸深入的過程。上述模型的解,種群隨時間推後無限增大,這個結果顯然不合理。如果考慮有限生存條件的限制,改進之後的模型有費爾許爾斯特-珀爾方程,又稱Logistic方程 (圖三)。 (常數a,b>0)如果初始值取(圖四),方程的解(圖五)當t→∞,解的漸近值是a/b,它表示種群受生存條件限制不可能超過的極限。這個模型比較正確地表示種群增長的規律,具有廣泛用途。描述捕食與被捕食兩個種群相剋關系的數學模型是洛特卡-沃爾泰拉方程:(圖六)常數a1、a2、b1和b2>0)其中N1和N2分別表示被捕食和捕食種群的大小。方程的解是
a2lnN1+α1lnN2-b2N1-b1N2=C其中C為積分常數,由初始條件(初始兩個種群大小)確定。不同的初始條件得到相應的曲線簇,從曲線的形狀可以看出種群此起彼落周期性的變化(圖1)。對模型的進一步分析可知,如果捕食與被捕食種群以相同的比例減小,將有利於被捕食種群大量增長。這個結果從理論上說明了不適當地使用農葯,在毒殺害蟲的同時也殺死了害蟲的天敵,而常常導致害蟲更猖獗地發生。利用方程的解,還可算出種群變化的近似周期和振幅等十分有意義的結果。A.L.霍奇金和A.F.赫胥黎從生物膜上電離子的遷移闡明神經興奮傳導的機理。他們建立的模型屬於二階偏微分方程,稱霍奇金-赫胥黎方程(H-H方程): (圖七)
其中V表示神經纖維膜電位,R是軸向電阻率,α是軸突半徑,x表示神經纖維軸向距離。等式左邊代表膜電容產生的電流分量;右邊第一項代表神經纖維橫截面電流變化率;右邊其餘三項分別代表鉀、鈉和其他離子產生的電流分量。霍奇金曾以槍烏賊神經纖維為實驗材料,根據H-H方程計算得到的曲線與實驗結果吻合得很好(見生物膜離子通道)。
一種比H-H方程更一般的方程類型,稱為反應擴散方程。作為數學模型這一類方程在生物學中廣為應用,它與生理學、生態學、群體遺傳學、醫學中的流行病學和葯理學等研究有較密切的關系。 多元分析適應生物學等多元復雜問題的需要、在統計學中分化出來的一個分支領域。它是從統計學的角度進行綜合分析的數學方法。多元統計的各種矩陣運算體現多種生物實體與多個性狀指標的結合,在相互聯系的水平上,綜合統計出生命活動的特點和規律性。
系統論和控制論 以系統和控制的觀點,進行綜合分析的數學方法。
例如有一個生態系統,包括水、一個水生植物種群和一個草食動物種群,研究物質磷在系統中的變化過程。水、水生植物和草食動物含有磷的數量是系統的基本變數,分別以x1、x2和x3表示,稱為狀態變數;以u表示磷從流水中帶進系統的速率,稱為輸入量;分別以y1和y2表示磷從水中流失和草食動物帶出系統的速率,稱為輸出量。系統內部磷的變化關系見圖2。考慮每個狀態變數的變化,得到描述該系統的方程,稱為狀態方程:(圖八)其中Ci(i=1,2,…,6)是一組參數。當參數值、輸入、輸出以及初始狀態給定以後,物質磷在系統中的變化可由方程完全確定。對方程進行分析或者利用電腦求解,就可以認識磷在系統中變化的規律。
實際情況遠比這個虛構的例子復雜。一個系統可以是多輸入、多輸出,狀態變數的個數可大到幾十,甚至上百,它顯示生命活動異常復雜的情形。
可控系統的最優控制是控制理論的中心問題。所謂最優控制,就是從實際需要出發設計適當的性能指標,在一定的約束條件下選取輸入u(t),使性能指標取最小值。尋求生物系統最優控制的方法常常採用龐特里雅金最小值原理和貝爾曼的動態規劃,有關農業、林業、醫學和環境問題的最優控制可望獲得解決。 概率與統計方法的應用還表現在隨機數學模型的研究中。原來數學模型可分為確定模型和隨機模型兩大類。如果模型中的變數由模型完全確定。
這里舉出一種離散的隨機數學模型,稱為馬爾科夫鏈。考慮具有兩個等位基因A與α的群體,如果相應的基因頻率分別是p和q,三種基因型AA,Aa和aa在群體中的分配比率構成向量【PHQ】(P+H+Q=1)。在一定的假設條件下,按馬爾科夫鏈的數學模型,描述該群本隨機交配的遺傳過程。經過第一代隨機交配,基因型分配比率將從向量【PHQ】轉變為(圖九) 等式左邊的矩陣是轉移矩陣,不難驗證該馬爾科夫鏈是正則的,不動點向量就是【p22pqq2】。 這個結果說明基因頻率的不變性,也就是群體遺傳學中的哈迪-魏因貝格定律:隨機交配的群體在沒有外界遷入、定向選擇、基因突變和遺傳漂變的條件下,基因頻率保持不變。
馬爾科夫鏈數學模型不僅對遺傳學重要,如果使狀態變數代表不同的意義,它還能適用於更廣泛的生物學問題,如生態、環境和醫學等。下面是一個流行病學的例子。討論某地區某種傳染病的流行,分4個狀態:敏感者、患病者、免疫者和死亡。建立的馬爾科夫鏈數學模型可以由轉移圖的形式表示(圖3)。這是一個吸收馬爾科夫鏈,利用這個模型可以分析疾病流行的規律。 不連續性是一切物質存在的基本屬性。首先物質和能量兩個最基本的概念是不連續的;再看生命現象,物種、個體、細胞、基因等等都是生命活動不連續的最小單位,不連續性表現尤其突出。因此,不連續的數學方法在生物數學中佔有重要地位。再舉單一種群增長的生態模型討論。若考慮個體生活年齡,按年齡單位將個體分屬於不同年齡組。令Nit代表在時刻t,年齡為i的個體數;Pi表示年齡在i能活到i+1的存活率;Fi表示年齡在i的增殖率。則新增殖的個體數(圖十),其中m代表該群體年齡可能達到的上界。於是種群變化的規律可以用下面的矩陣運算表示,(圖十一) 這就是著名的萊斯利模型。這個模型是離散的,它不僅表示種群增長的速度,而且還顯示出年齡分布狀況,從年齡分布的結構上展示整個種群變化的規律。因而遠遠勝過前面所舉單一種群增長連續模型。
描述生命現象的離散模型有兩態和多態之分。馬爾科夫鏈和萊斯利模型都屬於多態;兩態的模型應生物學的二元表現狀態而產生。如神經興奮沿著神經細胞的軸突,經過突觸在閥的控制下傳給另一個神經細胞,興奮波的通過與否就是一個二元表現狀態。1943年W.S.麥卡洛克和W.皮茨在布爾代數的基礎上,首次給出描述神經傳遞現象的離散模型。此模型不斷改進,並藉助電腦加以實現,已做到模擬許多較復雜的神經功能,成為探索人類大腦思維奧秘的一個重要手段(見人工智慧)。
不連續數學方法還表現在對連續方法的補充。微積分學的基本理論指出,函數的可微性蘊涵著連續性。因此以微分運算為基礎的數學模型都是連續的。這些模型只能適用於連續變化范圍,對於連續函數出現不連續點或奇點(包括導函數不連續點)情形,將無能為力。而恰恰在這些破壞了連續性的區域,卻常常是生物學需要研究的課題。
60年代末,法國數學家R.托姆從拓撲學提出一種幾何模型,能夠描繪多維不連續現象,他的理論稱為突變論。
繼R.托姆之後,躍變論不斷地發展。例如E.C.塞曼又提出初級波和二級波的新理論。
上述各種生物數學方法的應用,對生物學產生重大影響。20世紀50年代以來,生物學突飛猛進地發展,多種學科向生物學滲透,從不同角度展現生命物質運動的矛盾,數學以定量的形式把這些矛盾的實質體現出來。從而能夠使用數學工具進行分析;能夠輸入電腦進行精確的運算;還能把來自各方面的因素聯系在一起,通過綜合分析闡明生命活動的機制。生物數學在農業、林業、醫學、環境科學、社會科學和人口控制等方面的應用,已經成為人類從事生產實踐的手段。
當今的生物數學仍處於探索和發展階段。生物數學的許多方法和理論還很不完善,它的應用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強的。許多更復雜的生物學問題至今未能找到相應的數學方法進行研究。因此,生物數學還要從生物學的需要和特點,探求新方法、新手段和新的理論體系,還有待發展和完善。

Ⅱ 生物包括什麼內容

按兩界說就是植物界、動物界。

如果按三界說就是植物界、動物界、原生生物界。

如果按四界說就是植物界、動物界、原生生物界、原核生物界。

如果按五界說就是植物界、動物界、原生生物界、原核生物界、真菌界。

六界說就是植物界、動物界、原生生物界、原核生物界、真菌界、和非胞生物界(病毒)。

微生物是包括細菌、病毒、真菌以及一些小型的原生動物等在內的一大類生物群體,它個體微小,卻與人類生活密切相關。微生物在自然界中可謂「無處不在,無處不有」,涵蓋了有益有害的眾多種類,廣泛涉及健康、醫葯、工農業、環保等諸多領域。

(2)生物數學內容有哪些擴展閱讀:

除病毒外,細胞是生物體結構和功能的基本單位。

細胞是生命系統結構層次的基石,離開細胞,就沒有神奇的生命樂章,更沒有地球上那瑰麗的生命畫卷。

從生物圈到細胞,生命系統層層相依,又有各自特定的組成、結構和功能。

無論是動物細胞,還是植物細胞,他們都有細胞膜、細胞核、細胞質這三種結構。

【細胞的邊界保衛- 細胞膜】

細胞作為一個基本的生命系統,它的邊界就是細胞膜。

細胞質與細胞器:真核細胞與原核細胞均含有核糖體。原核細胞僅含有一種細胞器,而真核細胞則含有其他細胞器。

如:內質網、高爾基體(在動物細胞中與細胞分泌物有關,在植物細胞中主要與細胞壁形成有關)、線粒體、葉綠體、溶酶體、質體(葉綠體屬於質體中的有色體,還包括白色體)、微體、液泡、細胞骨架(微管、微絲、肌動蛋白絲)及中心體(只存在於低級植物細胞和動物細胞中,與細胞的有絲分裂有關)。

【細胞的調控中心- 細胞核】

細胞核是遺傳信息庫,是細胞新陳代謝和遺傳的控制中心。真核細胞具有成形的細胞核。原核細胞沒有成形的細胞核,一般為裸露的DNA分子,叫擬核或質粒。

Ⅲ 生物學講什麼除了生物。

生物學即生命科學(life science/biology),概括地說,生物是研究生命現象和生命活動規律的科學。作為繼物理、化學之後又一高速發展的學科,正朝著宏觀和微觀兩個方向發展。宏觀觀方面已經發展到全球生態系統的研究;微觀方面則向著分子方向發展。生物學與眾多科學結合形成了種類繁多的邊緣科學,呈輻射狀發展.
生物學從最開始就有2個學派,一個叫博物學派,一個是實驗學派。博物學派以生態學為代表,實驗學派以遺傳學和分子生物學為代表。
20世紀40年代以來,生物學吸收了數學、物理學和化學的成就,逐漸發展成一門精確的、定量的、深入到分子層次的科學。
生物學家根據生物的發展歷史、形態結構特徵、營養方式以及它們在生態系統中的作用等,將生物分成若干界。現在比較通行的認識是將地球上的生物界劃分為五界:細菌、藍菌等原核生物是原核生物界;單細胞的真核生物是原生生物界;光和自養的植物界;吸收異養的真菌界;吞食異養的動物界。

病毒是一種非細胞生命形態,它由一個核酸長鏈和蛋白質外殼構成,病毒沒有自己的代謝機構,沒有酶系統。因此病毒離開了宿主細胞,就成了沒有任何生命活動、也不能獨立自我繁殖的化學物質。一旦進入宿主細胞後,它就可以利用細胞中的物質和能量以及復制、轉錄和轉譯的能力,按照它自己的核酸所包含的遺傳信息產生和它一樣的新一代病毒。

病毒基因同其他生物的基因一樣,也可以發生突變和重組,因此也是可以演化的。因為病毒沒有獨立的代謝機構,不能獨立的繁殖,因此被認為是一種不完整的生命形態。近年來發現了比病毒還要簡單的類病毒,它是小的RNA分子,沒有蛋白質外殼,但它可以在動物身上造成疾病。這些不完整的生命形態的存在說明無生命與有生命之間沒有不可逾越的鴻溝。

原核細胞和真核細胞是細胞的兩大基本形態,它們反映了細胞進化的兩個階段。把具有細胞形態的生物劃分原核生物和真核生物,是現代生物學的一大進展。原核細胞的主要特徵是沒有線粒體、質體等模細胞器,染色體只是一個環狀的DNA分子,不含組蛋白及其它蛋白質,沒有核膜。原和生物主要是細菌。

真核細胞是結構更為復雜的細胞。它有線粒體等膜細胞器,有包以雙層膜的細胞核把核內的遺傳物質與細胞質分開。DNA是長鏈分子,獄卒蛋白以及其他蛋白合成染色體。這核細胞可以進行有絲分裂和減數分裂,分裂的結果是復制的染色體均等地分配到子細胞中。原生生物是最原始的真核生物。

植物是以光和自養為主要營養方式的真核生物。典型植物細胞都含有液泡核以纖維素為主要成分的細胞壁。細胞質中由進行光合作用的細胞器—葉綠體。植物的光合作用都是以水為電子供體的,光合自養是植物的主要營養方式,少數的高等植物是寄生的,還有更少數的植物能夠捕捉小昆蟲,進行異養吸收。

植物從單細胞綠藻到被子植物是沿著適應光合作用的的方向發展的。高等植物中發生了植物的根(固定和吸收器官)、莖(支持器官)、葉(光和器官)的分化。葉柄和眾多分支的莖支持片狀的葉向四面展開,以獲得最大的光照和吸收面積,細胞也逐漸分化成專門用於光合作用、輸導和覆蓋等各種組織。大多數植物的通過有性生殖,形成配子體和孢子體世代交替的生活史。植物是生態系統中最主要的生產者,也是地球上氧氣的主要來源。

真菌是以吸收為主要營養方式的真核生物。真菌有細胞壁,細胞壁含有幾丁質,也含有纖維素。幾丁質是一種含氨基葡萄糖的多糖,是昆蟲等動物骨骼的主要成分,植物細胞不含幾丁質。真菌沒有質體和光合色素。真菌的繁殖能力很強,繁殖方式多樣,主要是以無性或有性生殖產生的各種孢子作為繁殖單位。真菌分布非常廣泛,在生態系統中,真菌是重要的分解者。

動物是以吞食為營養方式的真核生物。吞食異養包括捕獲、吞食、消化和吸收等一些列復雜的過程。動物體的結構是沿著適應吞食異養的方向發展的。單細胞動物吞入食物後形成食物泡。食物在食物泡中被消化,然後透過膜而進入細胞質中,細胞質中溶酶體與之融合,就是細胞內消化。

多細胞動物在進化過程中,細胞內消化逐漸為細胞外消化所取代,食物被捕獲後在消化道內由消化腺分泌酶而被消化,消化後的小分子營養物經過消化道吸收,並通過環系循統輸送到身體的各種細胞中。

與此相適應,多細胞動物逐步形成了復雜的排泄系統、外呼吸系統以及復雜的感覺系統、神經系統、內分泌系統和運動系統等。在全部生物中,只有動物的身體構造發展到如此復雜的高級水平。在生態系統中,動物是有機食物的消費者。

在生命發展的早期,生態系統是由生產者和分解者組成的兩環系統。隨著真核生物特別是動物的產生和發展,兩環生態系統發展成有生產者、分解者和消費者所組成的三環系統。出現了今日豐富多彩的生物世界。

從類病毒、病毒到植物、動物,生物擁有眾多特徵鮮明的類型。各種類型之間又有一系列的中間環節,形成連續的譜系。同時由營養方式決定的三大進化方向,在生態系統中呈現出相互作用的空間關系。因而,進化既是時間過程,又是空間發展過程。生物從時間的歷史淵源和空間的生活關繫上都是一個整體。

生物的特徵

生物不僅具有多樣性,而且具有一些共同的特徵和屬性。

組成生物體的生物大分子的結構和功能,在原則上是相同的。比如各種生物的蛋白質的單體都是氨基酸,種類不過20種左右,它們的功能對所有的生物都是相同的;在不同生物體內基本代謝途徑也是相同的等等。這就是生物化學的同一性。同一性深刻的揭示了生物的統一性。

生物具有多層次的結構模式。對於病毒以外的一切生物都是由細胞組成的,細胞是由大量原子和分子所組成的非均質的系統。

從結構上看,細胞是由蛋白質、核酸、脂類、多糖等組成的多分子動態體系;從資訊理論觀點看,細胞是遺傳信息和代謝信息的傳遞系統;從化學觀點看,細胞是由小分子合成的復雜大分子;從熱力學上看,細胞是遠離平衡的開放系統……

除細胞外,生物還有其他結構單位。細胞之下有細胞器、分子、原子,細胞之上有組織、器官、器官系統、個體、生態系統、生物圈等等。生物的各種結構單位,按照復雜程度和逐級結合的關系而排列成一系列的等級,這就是結構層次。較高層次上會出現許多較低層次所沒有的性質和規律。

其他的還有很多,比如生物的有序性和耗散結構、生物的穩定性,生命的連續性,個體發育,生物的進化,生態系統中的相互關系等等。

這些都說明,盡管生物世界存在驚人的多樣性,但所有的生物都有共同的物質基礎,遵循共同的規律。生物就是這樣一個統一而有多樣的物質世界。

和其他學科一樣,生物學依據自己所研究的對象,也有一些基本的研究方法——觀察描述的方法、比較的方法、實驗的方法等等,也都具有自己的特點。對於生物學來說,既需要有精確的實驗分析,又需要從整體和系統的角度來觀察生命,生物學積累了大量關於各種層次生命系統及其組成部分的資料。今天對於生命系統的規律作出定量的理論研究已經提到日程上來,系統論方法將作為新的研究方法而受到人們的重視。

生物學的分支

早期的生物學主要是對自然的觀察和描述,是關於博物學和形態分類的研究。所以生物學最早是按類群劃分學科的,如植物學、動物學、為生物學等。由於生物種類的多樣性,也由於人們對生物學的了解越來越多,學科的劃分也就越來越細,一門學科往往在劃分為若干學科。

按生物類群劃分學科,有利於從各個側面認識某一個自然類群的生物特點和規律性。但無論研究對象是什麼,都不外乎分類、形態、生理、生化、生態、遺傳、進化等等。

生物在地球歷史中有著很長的發展歷史,大約有1500萬種生物已經滅絕,它們的遺骸保存在地層中形成化石。古生物學專門通過化石研究歷史上的生物;

生物的類群是如此的繁多,需要一個專門的學科來研究類群的劃分,就產生了分類學;

形態學是生物學中研究動植物的形態結構的學科;隨著顯微鏡的使用,形態學又深入到超微結構的領域,組織學和細胞學也就相應的建立起來了;

生理學是研究生物機能的學科,生理學的研究方法是以實驗為主;

遺傳學是研究生物性狀的遺傳和變異,闡明其規律的學科;

胚胎學是研究生物個體發育的學科;

生態學是研究生物與生物之間以及生物與環境之間的關系的學科。研究范圍包括個體、種群、群落、生態系統以及生物圈等層次。揭示生態系統中食物鏈、生產力、能量流動和物質循環的有關規律;

生物化學是研究生命物質的化學組成和生物體各種化學過程的學科,是進入20世紀以後迅速發展起來的一門學科。生物化學的成就提高了人們對生命本質的認識。生物化學側重於生命的化學過程、參與這一過程的物質、產品以及酶的作用機制的研究。分子生物學是從研究生物大分子的結構發展起來的,現在更多的仍是研究生物大分子的結構與功能的關系、以及基因的表達、調控等方面的機制;

生物物理學是用物理薛的概念和方法研究生物的結構、生命活動的物理和物理化學過程的學科。早期生物物理學的研究是從生物發光、生物電等問題開始的。隨著生物學、物理學的發展,新概念的產生和介入,生物物理的研究范圍和水平不斷加深加寬。產生了量子生物學、生物大分子晶體結構以及生物控制論等小分支;

生物數學是數學和生物學結合的產物,它的任務是研究生命過程中的數學規律。

生物界是一個多層次的復雜系統,為了揭示某一層次的規律以及和其他層次的關系,出現了按層次劃分的學科並且越來越受人們的重視。比如:分子生物學、細胞生物學、個體生物學、種群生物學等等。

總之,生物學中一些新的學科在不斷的分化出來,另一些學科又在走向融合。生物學分可的這種局面,反映了生物學極其豐富的內容,也反映了生物學蓬勃發展的景象。

研究生物學的意義

生物與人類生活的許多方面都有著非常密切的關系。生物學作為一門基礎科學,傳統上一直是農業和醫學的基礎,涉及種植業、畜牧業、養殖業、醫療、制葯、衛生等等。隨著生物學理論與方法的不斷進步,它的應用領域也在不斷擴大。現在,生物學的影響已經擴展到食品、化工、環境保護、能源、冶金等方面。如果考慮仿生學的因素,它還影響到了機械、電子技術、信息技術等等諸多領域的發展。

生物學分支學科

植物學、孢粉學、動物學、微生物學、細胞生物學、分子生物學、生物分類學、習性學、生理學、細菌學、微生物生理學、微生物遺傳學、土壤微生物學、細胞學、細胞化學、細胞遺傳學、免疫學、胚胎學、優生學、悉生生物學、遺傳學、分子遺傳學、生態學、仿生學、生物物理學、生物力學、生物力能學、生物聲學、生物化學、生物數學
參考資料:http://ke..com/view/7868.htm

Ⅳ 有關生物數學的論文的發表

生物數學是生物學與數學之間的邊緣學科。它以數學方法研究和解決生物學問題,並對與生物學有關的數學方法進行理論研究。
生物數學是在生物學的不同領域中應用數學工具對生命現象進行研究的學科。其一般方法是建立被研究對象的數學模型並對其進行定性和定量研究,主要應用的數學方法有:微分方程、概率論和數理統計、抽象代數、拓撲學、突變理論等,電子計算機的發展使生物數學的研究又有了新的突破。生物數學的內容是多方面的:生物統計、數量遺傳、數學生態和數學生物分類學可做為四大分支。生物統計學用統計方法研究生物界的客觀現象;數量遺傳學用數學方法研究在各種不同情況下全體基因型的變化,研究數量性遺傳規律;數學生態學用數學理論和和方法描述生態系統的的行為動態定量關系,建立各種生態模型,模擬動物行為;數學生物分類學使用現代數學方法和工具(特別是電子計算機)對古老的生物分類學進行研究。目前,數學方法幾乎滲透到生物學的每個角落,有人預言:生物學將會取代物理學成為使用數學工具最多的部門,21世紀可能是生物數學的黃金時代。
生物數學的分支學科較多,從生物學的應用去劃分,有數量分類學、數量遺傳學、數量生態學、數量生理學和生物力學等;從研究使用的數學方法劃分,又可分為生物統計學、生物信息論、生物系統論、生物控制論和生物方程等分支。這些分支與前者不同,它們沒有明確的生物學研究對象,只研究那些涉及生物學應用有關的數學方法和理論。
生物數學具有豐富的數學理論基礎,包括集合論、概率論、統計數學、對策論、微積分、微分方程、線性代數、矩陣論和拓撲學,還包括一些近代數學分支,如資訊理論、圖論、控制論、系統論和模糊數學等。
由於生命現象復雜,從生物學中提出的數學問題往往十分復雜,需要進行大量計算工作。因此,計算機是研究和解決生物學問題的重要工具。然而就整個學科的內容而論,生物數學需要解決和研究的本質方面是生物學問題,數學和電腦僅僅是解決問題的工具和手段。因此,生物數學與其他生物邊緣學科一樣通常被歸屬於生物學而不屬於數學。
生命現象數量化的方法,就是以數量關系描述生命現象。數量化是利用數學工具研究生物學的前提。生物表現性狀的數值表示是數量化的一個方面。生物內在的或外表的,個體的或群體的,器官的或細胞的,直到分子水平的各種表現性狀,依據性狀本身的生物學意義,用適當的數值予以描述。
數量化的實質就是要建立一個集合函數,以函數值來描述有關集合。傳統的集合概念認為一個元素屬於某集合,非此即彼、界限分明。可是生物界存在著大量界限不明確的模糊現象,而集合概念的明確性不能貼切地描述這些模糊現象,給生命現象的數量化帶來困難。1965年扎德提出模糊集合概念,模糊集合適合於描述生物學中許多模糊現象,為生命現象的數量化提供了新的數學工具。以模糊集合為基礎的模糊數學已廣泛應用於生物數學。
數學模型是能夠表現和描述真實世界某些現象、特徵和狀況的數學系統。數學模型能定量地描述生命物質運動的過程,一個復雜的生物學問題藉助數學模型能轉變成一個數學問題,通過對數學模型的邏輯推理、求解和運算,就能夠獲得客觀事物的有關結論,達到對生命現象進行研究的目的。
比如描述生物種群增長的費爾許爾斯特-珀爾方程,就能夠比較正確的表示種群增長的規律;通過描述捕食與被捕食兩個種群相剋關系的洛特卡-沃爾泰拉方程,從理論上說明:農葯的濫用,在毒殺害蟲的同時也殺死了害蟲的天敵,從而常常導致害蟲更猖獗地發生等。
還有一類更一般的方程類型,稱為反應擴散方程的數學模型在生物學中廣為應用,它與生理學、生態學、群體遺傳學、醫學中的流行病學和葯理學等研究有較密切的關系。60年代,普里戈任提出著名的耗散結構理論,以新的觀點解釋生命現象和生物進化原理,其數學基礎亦與反應擴散方程有關。
由於那些片面的、孤立的、機械的研究方法不能完全滿足生物學的需要,因此,在非生命科學中發展起來的數學,在被利用到生物學的研究領域時就需要從事物的多方面,在相互聯系的水平上進行全面的研究,需要綜合分析的數學方法。
多元分析就是為適應生物學等多元復雜問題的需要、在統計學中分化出來的一個分支領域,它是從統計學的角度進行綜合分析的數學方法。多元統計的各種矩陣運算,體現多種生物實體與多個性狀指標的結合,在相互聯系的水平上,綜合統計出生命活動的特點和規律性。
生物數學中常用的多元分析方法有回歸分析、判別分析、聚類分析、主成分分析和典範分析等。生物學家常常把多種方法結合使用,以期達到更好的綜合分析效果。
多元分析不僅對生物學的理論研究有意義,而且由於原始數據直接來自生產實踐和科學實驗,有很大的實用價值。在農、林業生產中,對品種鑒別、系統分類、情況預測、生產規劃以及生態條件的分析等,都可應用多元分析方法。醫學方面的應用,多元分析與電腦的結合已經實現對疾病的診斷,幫助醫生分析病情,提出治療方案。
系統論和控制論是以系統和控制的觀點,進行綜合分析的數學方法。系統論和控制論的方法沒有把那些次要的因素忽略,也沒有孤立地看待每一個特性,而是通過狀態方程把錯綜復雜的關系都結合在一起,在綜合的水平上進行全面分析。對系統的綜合分析也可以就系統的可控性、可觀測性和穩定性作出判斷,更進一步揭示該系統生命活動的特徵。
在系統和控制理論中,綜合分析的特點還表現在把輸出和狀態的變化反饋對系統的影響,即反饋關系也考慮在內。生命活動普遍存在反饋現象,許多生命過程在反饋條件的制約下達到平衡,生命得以維持和延續。對系統的控制常常靠反饋關系來實現。
生命現象常常以大量、重復的形式出現,又受到多種外界環境和內在因素的隨機干擾。因此概率論和統計學是研究生物學經常使用的方法。生物統計學是生物數學發展最早的一個分支,各種統計分析方法已經成為生物學研究工作和生產實踐的常規手段。
概率與統計方法的應用還表現在隨機數學模型的研究中。原來數學模型可分為確定模型和隨機模型兩大類如果模型中的變數由模型完全確定,這是確定模型;與之相反,變數出現隨機性變化不能完全確定,稱為隨機模型。又根據模型中時間和狀態變數取值的連續或離散性,有連續模型和離散模型之分。前述幾個微分方程形式的模型都是連續的、確定的數學模型。這種模型不能描述帶有隨機性的生命現象,它的應用受到限制。因此隨機模型成為生物數學不可缺少的部分。
60年代末,法國數學家托姆從拓撲學提出一種幾何模型,能夠描繪多維不連續現象,他的理論稱為突變理論。生物學中許多處於飛躍的、臨界狀態的不連續現象,都能找到相應的躍變類型給予定性的解釋。躍變論彌補了連續數學方法的不足之處,現在已成功地應用於生理學、生態學、心理學和組織胚胎學。對神經心理學的研究甚至已經指導醫生應用於某些疾病的臨床治療。
繼托姆之後,躍變論不斷地發展。例如塞曼又提出初級波和二級波的新理論。躍變理論的新發展對生物群落的分布、傳染疾病的蔓延、胚胎的發育等生物學問題賦予新的理解。
上述各種生物數學方法的應用,對生物學產生重大影響。20世紀50年代以來,生物學突飛猛進地發展,多種學科向生物學滲透,從不同角度展現生命物質運動的矛盾,數學以定量的形式把這些矛盾的實質體現出來。從而能夠使用數學工具進行分析;能夠輸入電腦進行精確的運算;還能把來自名方面的因素聯系在一起,通過綜合分析闡明生命活動的機制。
總之,數學的介入把生物學的研究從定性的、描述性的水平提高到定量的、精確的、探索規律的高水平。生物數學在農業、林業、醫學,環境科學、社會科學和人口控制等方面的應用,已經成為人類從事生產實踐的手段。
數學在生物學中的應用,也促使數學向前發展。實際上,系統論、控制論和模糊數學的產生以及統計數學中多元統計的興起都與生物學的應用有關。從生物數學中提出了許多數學問題,萌發出許多數學發展的生長點,正吸引著許多數學家從事研究。它說明,數學的應用從非生命轉向有生命是一次深刻的轉變,在生命科學的推動下,數學將獲得巨大發展。
當今的生物數學仍處於探索和發展階段,生物數學的許多方法和理論還很不完善,它的應用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強的。許多更復雜的生物學問題至今未能找到相應的數學方法進行研究。因此,生物數學還要從生物學的需要和特點,探求新方法、新手段和新的理論體系,還有待發展和完善。

Ⅳ 生物學都有哪些內容

生物學是自然科學的一個門類,研究生物的結構、功能、發生和發展的規律。根據研究對象,分為動物學、植物學、微生物學等;根據研究內容,分為分類學、解剖學、生理學、遺傳學、生態學等。它是研究生物各個層次的種類、結構、功能、行為、發育和起源進化以及生物與周圍環境的關系等的科學。人是生物的一種,也是生物學的研究對象。

Ⅵ 生物數學 基本再生數的定義

一、生物數學的定義:

生物數學是生物學與數學之間的邊緣學科。它以數學方法研究和解決生物學問題,並對與生物學有關的數學方法進行理論研究。

生物數學是在生物學的不同領域中應用數學工具對生命現象進行研究的學科。


二、基本再生數的定義:

基本再生數:basic reproction number.

基本再生數(R0)是一個非常重要的概念.它表示在發病初期,當所有人均為易感者時,一個病人在其平均患病期內所傳染的人數。通常,R0=1可作為決定疾病是否消亡的一個閾值,即:當R01時,疾病將始終存在而形成地方病。


三、參考資料及網址:

1.http://ke..com/link?url=kv4gLK9AjOXFovgy-_bph5q3HyX0BK

2. http://xuewen.cnki.net/CJFD-GCSX201302004.html

Ⅶ 生物數學的主要研究對象內容有哪些

生物數學是在生物學的不同領域中應用數學工具對生命現象進行研究的學科。其一般方法是建立被研究對象的數學模型並對其進行定性和定量研究,主要應用的數學方法有:微分方程、概率論和數理統計、抽象代數、拓撲學、突變理論等,電子計算機的發展使生物數學的研究又有了新的突破。生物數學的內容是多生物數學
方面的:生物統計、數量遺傳、數學生態和數學生物分類學可做為四大分支。生物統計學用統計方法研究生物界的客觀現象;數量遺傳學用數學方法研究在各種不同情況下全體基因型的變化,研究數量性遺傳規律;數學生態學用數學理論和和方法描述生態系統的的行為動態定量關系,建立各種生態模型,模擬動物行為;數學生物分類學使用現代數學方法和工具(特別是電子計算機)對古老的生物分類學進行研究。目前,數學方法幾乎滲透到生物學的每個角落,有人預言:生物學將會取代物理學成為使用數學工具最多的部門,21世紀可能是生物數學的黃金時代。

Ⅷ 生物數學是什麼專業,哪些學校有

生物數學是在生物學的不同領域中應用數學工具對生命現象進行研究的學科。其一般方法是建立被研究對象的數學模型並對其進行定性和定量研究,主要應用的數學方法有:微分方程、線性代數、概率論和數理統計、抽象代數、拓撲學、突變理論等,電子計算機的發展使生物數學的研究又有了新的突破。生物數學的內容是多
生物數學方面的:生物統計、數量遺傳、數學生態和數學生物分類學可做為四大分支。生物統計學用統計方法研究生物界的客觀現象;數量遺傳學用數學方法研究在各種不同情況下全體基因型的變化,研究數量性遺傳規律;數學生態學用數學理論和和方法描述生態系統的的行為動態定量關系,建立各種生態模型,模擬動物行為;數學生物分類學使用現代數學方法和工具(特別是電子計算機)對古老的生物分類學進行研究。數學方法幾乎滲透到生物學的每個角落。有人預言:生物學將會取代物理學成為使用數學工具最多的部門,21世紀可能是生物數學的黃金時代。

Ⅸ 生物學包括什麼內容

生物學是研究生命系統各個層次的種類、結構、功能、行為、發育和起源進化以及生物與周圍環境的關系等的科學.研究對象有動物學、植物學、微生物學、古生物學等;依研究內容,分為分類學、解剖學、生理學、細胞學、分子生物學、遺傳學、進化生物學、生態學等;從方法論分為實驗生物學與系統生物學等體系。
帶著時光和歲月的甜美,在心底恣意彌漫

Ⅹ 生物數學的數學基礎

生物數學具有豐富的數學理論基礎,包括集合論、概率論、統計數學、對策論、微積分、微分方程、線性代數、矩陣論和拓撲學,還包括一些近代數學分支,如資訊理論、圖論、控制論、系統論和模糊數學等。由於生命現象復雜,從生物學中提出的數學問題往往十分復雜,需要進行大量計算工作。因此,電腦是生物數學產生和發展的基礎,成為研究和解決生物學問題的重要工具。然而就整個學科的內容而論,生物數學需要解決和研究的本質方面是生物學問題,數學和電腦僅僅是解決問題的工具和手段。因此,生物數學與其他生物邊緣學科一樣,通常被歸屬於生物學而不屬於數學。

閱讀全文

與生物數學內容有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:747
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1364
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1008
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1668
下列哪個水飛薊素化學結構 瀏覽:1431
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1072