Ⅰ 生物進化的證據在哪
現在的科學家們不僅接受了生物進化的理論,而且找到了大量的證據來證實它。
最直接和最可靠的證據是古生物學研究中挖掘出來的大量化石。化石是保存在地層中古代生物的遺體、遺骸和生物活動的遺跡、遺物的總稱。在不同的地質年代所發現的不同化石,就是在地球演變的不同時期各類生物發生和發展的真實記錄。因此化石是能夠證明生物進化的最有說服力的歷史證據之一
通過化石人們了解到,在地球形成的初期太古代,地球上沒有生命存在。目前已知最早的生命痕跡,出現在34億年前。元古代開始出現一些原始動植物,主要是單細胞綠藻、原生動物和腔腸動物。古生代的化石非常豐富,幾乎所有無脊椎動物門類都能找到其化石的代表。有一種屬於節肢動物門的古生物叫三葉蟲。它的甲殼容易存留成為化石。從化石中可以清楚地看到,這種小動物在寒武紀初期即已出現,寒武紀晚期發展到高峰,志留紀以後逐漸衰亡,二迭紀未完全絕滅。前後長達幾億年,品種多達一萬種,所以有人稱那個時代為「三葉蟲時代」。
古生代中期是魚類的極盛時期。古生代末期兩棲類高度發展,同時出現了原始的爬行類和原始的裸子植物。中生代是爬行類和裸子植物的時代,這一代的中期,恐龍稱霸於世,廣布於水陸空各個領域。新生代出現了現代類型的生物,恐龍等大型爬行類和裸子植物基本滅絕,代之而起的是鳥類、哺乳類和被子植物。在新生代後期距今200~300萬年前,生物進化達到高峰,完成了從猿到人的轉變。
化石的發現和研究,使人們清楚地看到,地球上各類生物並非在同一時期出現,而是有早有晚。越是早期地層發掘的化石構造越簡單;越是晚期地層發掘的生物化石構造越復雜,和現在的生物類型越相似。演變的總趨勢是從簡單到復雜,從低等到高等,種類也由少到多。這清楚地說明,生命在悠久的歷史發展中是不斷前進的,各類生物都是通過億萬年的逐漸進化發展才形成的。
一些過渡類型的生物化石更能說明問題,比如始祖鳥化石,兼有鳥類和爬行類兩類動物的特徵,表明鳥類是從古代爬行類動物演化來的。各種各樣馬的化石多達數百種,按地質年代順序排起來,就可以清楚地看到從始祖馬、漸新馬、中新馬、上新馬直到現代馬的整個變化過程。
此外還有一些器官,在某些生物體內十分發達有用,而在另一些生物體內卻顯著退化,變得無用,這叫做「痕跡器官」,像人的闌尾。從痕跡器官的存在可以追溯物種進化的歷史。鯨的體內留有後肢骨的痕跡,說明鯨起源於陸生脊椎動物。蟒蛇光溜溜的,一條腿也沒有,但體內卻有四肢的痕跡,說明它起源於四足動物。
通過發掘化石研究生物進化的過程是很有說服力的,但這並非是一件容易的事情。對任何一個結論的作出,都要經過艱苦的發掘和認真的考證。自從近幾年我國科學家發現了「中華龍鳥」和「孔子鳥」的化石後,一場關於「究竟誰是鳥類真正始祖」的爭論就開始了。但不少中外科學家在看了中華龍鳥的化石後,認為這是一種恐龍的化石而不是鳥類的化石。而孔子鳥與始祖鳥雖然都生活在中生代晚侏羅紀,但孔子鳥化石所在地層的地質年代稍晚於始祖鳥。因此目前世界上已發現的最早的過渡類型的鳥類化石還是德國的始祖鳥。不過這場爭論還在繼續中。
比較解剖學也為生物進化提供了有力的證據。在許多不同種類的生物體上,有些位置相當的器官,外形和功能上很不相同,但內部結構卻基本一致,而且在胚胎發育過程中有相似的起源,這樣的器官叫「同源器官」。例如鳥類的翅膀和哺乳類的兩個前肢。這說明,它們都起源於原始的爬行類。與此相反,有些器官外形相似,功能也相同,但內部構造和胚胎發育中的起源都不同,這叫做「同功器官」。例如鳥類的翅膀和蒼蠅的翅膀。這說明這些生物並非從同一祖先發展而來,它們的器官是在適應外界環境的發展變化過程中趨向於一致,形成了相似的形態。
胚胎學的證據更加有趣。一切高等動物、植物的胚胎發育都是從一個受精卵開始的,這似乎可以說明高等生物起源於低等的單細胞生物。魚類、兩棲類、爬行類、鳥類、哺乳類和人,在成熟的生物個體形態上,差別非常大。但是觀察它們的早期胚胎,卻相似到難以辨認的程度。胚胎早期,各種高等生物都有鰓裂和尾巴,頭大,身體彎曲,發育到一定程度後才顯現出不同的形態。這說明脊椎動物都有共同的祖先,人類是從有尾巴的動物進化來的。這個現象正是德國的赫胥黎、海克爾在1866年提出的「生物發生律」,也叫「重演律」的佐證。這是由於生物在個體發育中迅速地重現了祖先的主要演化階段,這種重演現象在生物界普遍存在,是生物進化有力而又有趣的證據。
此外細胞學、生物化學和分子生物學也都能為進化論提供證據。例如可以從生物染色體的數目和形態上研究物種間的親緣關系。染色體數目相同,形態相近,說明它們在物種上有非常近的親緣關系。如果用血清比較法進行鑒別,會發現狗和狼的親緣關系比較近,而與狐狸和牛的親緣關系就比較遠。先進的科學技術所提供的各種精細的測試手段為研究物種關系和生物進化打開了方便之門。
物種在地理分布上的特點也從某個側面證實了進化的過程。比如澳大利亞和紐西蘭有很多袋鼠、袋狼等有袋類動物和鴨嘴獸、針鼴等單孔類動物,但很難見到胎盤類動物。這說明胎盤類的哺乳動物最初出現在北方大陸上,後來逐漸向南方推移。但紐西蘭陸地在中生代的侏羅紀就脫離大陸而去,澳大利亞陸地在中生代白堊紀前也與北方大陸分離,所以北方大陸上的新物種無法進入遠隔重洋的地區,這才使隔離出去的陸地上仍然保持著原始哺乳動物物種的水平。
總之,各種各樣無以數計的證據都為生物進化這一科學理論作了很好的說明。在令人信服的科學理論和有力證據的支持下,生物進化論和細胞學說一起成為近代生物科學的基礎理論並帶動和引導生物學的各個分支學科蓬蓬勃勃地發展起來。
Ⅱ 求生物化學名詞解釋
第一章
1,氨基酸(amino acid):是含有一個鹼性氨基和一個酸性羧基的有機化合物,氨基一般連在α-碳上。
2,必需氨基酸(essential amino acid):指人(或其它脊椎動物)(賴氨酸,蘇氨酸等)自己不能合成,需要從食物中獲得的氨基酸。
3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎動物)自己能由簡單的前體合成
不需要從食物中獲得的氨基酸。
4,等電點(pI,isoelectric point):使分子處於兼性分子狀態,在電場中不遷移(分子的靜電荷為零)的pH值。
5,茚三酮反應(ninhydrin reaction):在加熱條件下,氨基酸或肽與茚三酮反應生成紫色(與脯氨酸反應生成黃色)化合物的反應。
6,肽鍵(peptide bond):一個氨基酸的羧基與另一個的氨基的氨基縮合,除去一分子水形成的醯氨鍵。
7,肽(peptide):兩個或兩個以上氨基通過肽鍵共價連接形成的聚合物。
8,蛋白質一級結構(primary structure):指蛋白質中共價連接的氨基酸殘基的排列順序。
9,層析(chromatography):按照在移動相和固定相 (可以是氣體或液體)之間的分配比例將混合成分分開的技術。
10,離子交換層析(ion-exchange column)使用帶有固定的帶電基團的聚合樹脂或凝膠層析柱
11,透析(dialysis):通過小分子經過半透膜擴散到水(或緩沖液)的原理,將小分子與生物大分子分開的一種分離純化技術。
12,凝膠過濾層析(gel filtration chromatography):也叫做分子排阻層析。一種利用帶孔凝膠珠作基質,按照分子大小分離蛋白質或其它分子混合物的層析技術。
13,親合層析(affinity chromatograph):利用共價連接有特異配體的層析介質,分離蛋白質混合物中能特異結合配體的目的蛋白質或其它分子的層析技術。
14,高壓液相層析(HPLC):使用顆粒極細的介質,在高壓下分離蛋白質或其他分子混合物的層析技術。
15,凝膠電泳(gel electrophoresis):以凝膠為介質,在電場作用下分離蛋白質或核酸的分離純化技術。
16,SDS-聚丙烯醯氨凝膠電泳(SDS-PAGE):在去污劑十二烷基硫酸鈉存在下的聚丙烯醯氨凝膠電泳。SDS-PAGE只是按照分子的大小,而不是根據分子所帶的電荷大小分離的。
17,等電聚膠電泳(IFE):利用一種特殊的緩沖液(兩性電解質)在聚丙烯醯氨凝膠製造一個pH梯度,電泳時,每種蛋白質遷移到它的等電點(pI)處,即梯度足的某一pH時,就不再帶有凈的正或負電荷了。
18,雙向電泳(two-dimensional electrophorese):等電聚膠電泳和SDS-PAGE的組合,即先進行等電聚膠電泳(按照pI)分離,然後再進行SDS-PAGE(按照分子大小分離)。經染色得到的電泳圖是二維分布的蛋白質圖。
19,Edman降解(Edman degradation):從多肽鏈游離的N末端測定氨基酸殘基的序列的過程。N末端氨基酸殘基被苯異硫氰酸酯修飾,然後從多肽鏈上切下修飾的殘基,再經層析鑒定,餘下的多肽鏈(少了一個殘基)被回收再進行下一輪降解循環。
20,同源蛋白質(homologous protein):來自不同種類生物的序列和功能類似的蛋白質,例如血紅蛋白。
第二章
1,構形(configuration):有機分子中各個原子特有的固定的空間排列。這種排列不經過共價鍵的斷裂和重新形成是不會改變的。構形的改變往往使分子的光學活性發生變化。
2,構象(conformation):指一個分子中,不改變共價鍵結構,僅單鍵周圍的原子放置所產生的空間排布。一種構象改變為另一種構象時,不要求共價鍵的斷裂和重新形成。構象改變不會改變分子的光學活性。
3,肽單位(peptide unit):又稱為肽基(peptide group),是肽鍵主鏈上的重復結構。是由參於肽鏈形成的氮原子,碳原子和它們的4個取代成分:羰基氧原子,醯氨氫原子和兩個相鄰α-碳原子組成的一個平面單位。
4,蛋白質二級結構(protein在蛋白質分子中的局布區域內氨基酸殘基的有規則的排列。常見的有二級結構有α-螺旋和β-折疊。二級結構是通過骨架上的羰基和醯胺基團之間形成的氫鍵維持的。
5,蛋白質三級結構(protein tertiary structure): 蛋白質分子處於它的天然折疊狀態的三維構象。三級結構是在二級結構的基礎上進一步盤繞,折疊形成的。三級結構主要是靠氨基酸側鏈之間的疏水相互作用,氫鍵,范德華力和鹽鍵維持的。
6,蛋白質四級結構(protein quaternary structure):多亞基蛋白質的三維結構。實際上是具有三級結構多肽(亞基)以適當方式聚合所呈現的三維結構。
7,α-螺旋(α-heliv):蛋白質中常見的二級結構,肽鏈主鏈繞假想的中心軸盤繞成螺旋狀,一般都是右手螺旋結構,螺旋是靠鏈內氫鍵維持的。每個氨基酸殘基(第n個)的羰基與多肽鏈C端方向的第4個殘基(第4+n個)的醯胺氮形成氫鍵。在古典的右手α-螺旋結構中,螺距為0.54nm,每一圈含有3.6個氨基酸殘基,每個殘基沿著螺旋的長軸上升0.15nm.
8, β-折疊(β-sheet): 蛋白質中常見的二級結構,是由伸展的多肽鏈組成的。折疊片的構象是通過一個肽鍵的羰基氧和位於同一個肽鏈的另一個醯氨氫之間形成的氫鍵維持的。氫鍵幾乎都垂直伸展的肽鏈,這些肽鏈可以是平行排列(由N到C方向)或者是反平行排列(肽鏈反向排列)。
9,β-轉角(β-turn):也是多肽鏈中常見的二級結構,是連接蛋白質分子中的二級結構(α-螺旋和β-折疊),使肽鏈走向改變的一種非重復多肽區,一般含有2~16個氨基酸殘基。含有5個以上的氨基酸殘基的轉角又常稱為環(loop)。常見的轉角含有4個氨基酸殘基有兩種類型:轉角I的特點是:第一個氨基酸殘基羰基氧與第四個殘基的醯氨氮之間形成氫鍵;轉角Ⅱ的第三個殘基往往是甘氨酸。這兩種轉角中的第二個殘侉大都是脯氨酸。
10,超二級結構(super-secondary structure):也稱為基元(motif).在蛋白質中,特別是球蛋白中,經常可以看到由若干相鄰的二級結構單元組合在一起,彼此相互作用,形成有規則的,在空間上能辨認的二級結構組合體。
11,結構域(domain):在蛋白質的三級結構內的獨立折疊單元。結構域通常都是幾個超二級結構單元的組合。
12,纖維蛋白(fibrous protein):一類主要的不溶於水的蛋白質,通常都含有呈現相同二級結構的多肽鏈許多纖維蛋白結合緊密,並為 單個細胞或整個生物體提供機械強度,起著保護或結構上的作用。
13,球蛋白(globular protein):緊湊的,近似球形的,含有折疊緊密的多肽鏈的一類蛋白質,許多都溶於水。典形的球蛋白含有能特異的識別其它化合物的凹陷或裂隙部位。
14,角蛋白(keratin):由處於α-螺旋或β-折疊構象的平行的多肽鏈組成不溶於水的起著保護或結構作用蛋白質。
15,膠原(蛋白)(collagen):是動物結締組織最豐富的一種蛋白質,它是由原膠原蛋白分子組成。原膠原蛋白是一種具有右手超螺旋結構的蛋白。每個原膠原分子都是由3條特殊的左手螺旋(螺距0.95nm,每一圈含有3.3個殘基)的多肽鏈右手旋轉形成的。
16,疏水相互作用(hydrophobic interaction):非極性分子之間的一種弱的非共價的相互作用。這些非極性的分子在水相環境中具有避開水而相互聚集的傾向。
17,伴娘蛋白(chaperone):與一種新合成的多肽鏈形成復合物並協助它正確折疊成具有生物功能構向的蛋白質。伴娘蛋白可以防止不正確折疊中間體的形成和沒有組裝的蛋白亞基的不正確聚集,協助多肽鏈跨膜轉運以及大的多亞基蛋白質的組裝和解體。
18,二硫鍵(disulfide bond):通過兩個(半胱氨酸)巰基的氧化形成的共價鍵。二硫鍵在穩定某些蛋白的三維結構上起著重要的作用。
19,范德華力(van der Waals force):中性原子之間通過瞬間靜電相互作用產生的一弱的分子之間的力。當兩個原子之間的距離為它們范德華力半徑之和時,范德華力最強。強的范德華力的排斥作用可防止原子相互靠近。
20,蛋白質變性(denaturation):生物大分子的天然構象遭到破壞導致其生物活性喪失的現象。蛋白質在受到光照,熱,有機溶濟以及一些變性濟的作用時,次級鍵受到破壞,導致天然構象的破壞,使蛋白質的生物活性喪失。
21,肌紅蛋白(myoglobin):是由一條肽鏈和一個血紅素輔基組成的結合蛋白,是肌肉內儲存氧的蛋白質,它的氧飽和曲線為雙曲線型。
22,復性(renaturation):在一定的條件下,變性的生物大分子恢復成具有生物活性的天然構象的現象。
23,波爾效應(Bohr effect):CO2濃度的增加降低細胞內的pH,引起紅細胞內血紅蛋白氧親和力下降的現象。
24,血紅蛋白(hemoglobin): 是由含有血紅素輔基的4個亞基組成的結合蛋白。血紅蛋白負責將氧由肺運輸到外周組織,它的氧飽和曲線為S型。
25,別構效應(allosteric effect):又稱為變構效應,是寡聚蛋白與配基結合改變蛋白質的構象,導致蛋白質生物活性喪失的現象。
26,鐮刀型細胞貧血病(sickle-cell anemia): 血紅蛋白分子遺傳缺陷造成的一種疾病,病人的大部分紅細胞呈鐮刀狀。其特點是病人的血紅蛋白β—亞基N端的第六個氨基酸殘缺是纈氨酸(vol),而不是下正常的谷氨酸殘基(Ghe)。
第三章
1,酶(enzyme):生物催化劑,除少數RNA外幾乎都是蛋白質。酶不改變反應的平衡,只是
通過降低活化能加快反應的速度。
2,脫脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有機或無機輔助因子或輔基後的蛋白質部分。
3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亞基,輔基和其它輔助因子。
4,酶活力單位(U,active unit):酶活力單位的量度。1961年國際酶學會議規定:1個酶活力單位是指在特定條件(25oC,其它為最適條件)下,在1min內能轉化1μmol底物的酶量,或是轉化底物中1μmol的有關基團的酶量。
5,比活(specific activity):每分鍾每毫克酶蛋白在25oC下轉化的底物的微摩爾數。比活是酶純度的測量。
6,活化能(activation energy):將1mol反應底物中所有分子由其態轉化為過度態所需要的能量。
7,活性部位(active energy):酶中含有底物結合部位和參與催化底物轉化為產物的氨基酸殘基部分。活性部位通常位於蛋白質的結構域或亞基之間的裂隙或是蛋白質表面的凹陷部位,通常都是由在三維空間上靠得很進的一些氨基酸殘基組成。
8,酸-鹼催化(acid-base catalysis):質子轉移加速反應的催化作用。
9,共價催化(covalent catalysis):一個底物或底物的一部分與催化劑形成共價鍵,然後被轉移給第二個底物。許多酶催化的基團轉移反應都是通過共價方式進行的。
10,靠近效應(proximity effect):非酶促催化反應或酶促反應速度的增加是由於底物靠近活性部位,使得活性部位處反應劑有效濃度增大的結果,這將導致更頻繁地形成過度態。
11,初速度(initial velocity):酶促反應最初階段底物轉化為產物的速度,這一階段產物的濃度非常低,其逆反應可以忽略不計。
12,米氏方程(Michaelis-Mentent equation):表示一個酶促反應的起始速度(υ)與底物濃度([s])關系的速度方程:υ=υmax[s]/(Km+[s])
13,米氏常數(Michaelis constant):對於一個給定的反應,異至酶促反應的起始速度(υ0)達到最大反應速度(υmax)一半時的底物濃度。
14,催化常數(catalytic number)(Kcat):也稱為轉換數。是一個動力學常數,是在底物處於飽和狀態下一個酶(或一個酶活性部位)催化一個反應有多快的測量。催化常數等於最大反應速度除以總的酶濃度(υmax/[E]total)。或是每摩酶活性部位每秒鍾轉化為產物的底物的量(摩[爾])。
15,雙倒數作圖(double-reciprocal plot):那稱為Lineweaver_Burk作圖。一個酶促反應的速度的倒數(1/V)對底物度的倒數(1/LSF)的作圖。x和y軸上的截距分別代表米氏常數和最大反應速度的倒數。
16,競爭性抑製作用(competitive inhibition):通過增加底物濃度可以逆轉的一種酶抑制類型。競爭性抑制劑通常與正常的底物或配體競爭同一個蛋白質的結合部位。這種抑制使Km增大而
υmax不變。
17,非競爭性抑製作用(noncompetitive inhibition): 抑制劑不僅與游離酶結合,也可以與酶-底物復合物結合的一種酶促反應抑製作用。這種抑制使Km不變而υmax變小。
18,反競爭性抑製作用(uncompetitive inhibition): 抑制劑只與酶-底物復合物結合而不與游離的酶結合的一種酶促反應抑製作用。這種抑制使Km和υmax都變小但υmax/Km不變。
19,絲氨酸蛋白酶(serine protease): 活性部位含有在催化期間起親核作用的絲氨殘基的蛋白質。
20,酶原(zymogen):通過有限蛋白水解,能夠由無活性變成具有催化活性的酶前體。
21,調節酶(regulatory enzyme):位於一個或多個代謝途徑內的一個關鍵部位的酶,它的活性根據代謝的需要而增加或降低。
22,別構酶(allosteric enzyme):活性受結合在活性部位以外的部位的其它分子調節的酶。
23,別構調節劑(allosteric molator):結合在別構調節酶的調節部位調節該酶催化活性的生物分子,別構調節劑可以是激活劑,也可以是抑制劑。
24,齊變模式(concerted model):相同配體與寡聚蛋白協同結合的一種模式,按照最簡單的齊變模式,由於一個底物或別構調節劑的結合,蛋白質的構相在T(對底物親和性低的構象)和R(對底物親和性高的構象)之間變換。這一模式提出所有蛋白質的亞基都具有相同的構象,或是T構象,或是R構象。
25,序變模式(sequential model):相同配體與寡聚蛋白協同結合的另外一種模式。按照最簡單的序變模式,一個配體的結合會誘導它結合的亞基的三級結構的變化,並使相鄰亞基的構象發生很大的變化。按照序變模式,只有一個亞基對配體具有高的親和力。
26,同功酶(isoenzyme isozyme):催化同一化學反應而化學組成不同的一組酶。它們彼此在氨基酸序列,底物的親和性等方面都存在著差異。
27,別構調節酶(allosteric molator):那稱為別構效應物。結合在別構酶的調節部位,調節酶催化活性的生物分子。別構調節物可以是是激活劑,也可以是抑制劑。
第四章
1,維生素(vitamin):是一類動物本身不能合成,但對動物生長和健康又是必需的有機物,所以必需從食物中獲得。許多輔酶都是由維生素衍生的。
2,水溶性維生素(water-soluble vitamin):一類能溶於水的有機營養分子。其中包括在酶的催化中起著重要作用的B族維生素以及抗壞血酸(維生素C)等。
3,脂溶性維生素(lipid vitamin):由長的碳氫鏈或稠環組成的聚戊二烯化合物。脂溶性維生素包括A,D,E,和K,這類維生素能被動物貯存。
4,輔酶(conzyme):某些酶在發揮催化作用時所需的一類輔助因子,其成分中往往含有維生素。輔酶與酶結合鬆散,可以通過透析除去。
5,輔基(prosthetic group):是與酶蛋白質共價結合的金屬離子或一類有機化合物,用透析法不能除去。輔基在整個酶促反應過程中始終與酶的特定部位結合。
6,尼克醯胺腺嘌呤二核苷酸(NAD+)和尼克醯胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克醯胺的輔酶,在某些氧化還原中起著氫原子和電子載體的作用,常常作為脫氫酶的輔。
7,黃素單核苷酸(FMN)一種核黃素磷酸,是某些氧化還原反應的輔酶。
8,硫胺素焦磷酸(thiamine phosphate):是維生素B1的輔形式,參與轉醛基反應。
9,黃素腺嘌呤二核苷酸(FAD):是某些氧化還原反應的輔酶,含有核黃素。
10,磷酸吡哆醛(pyidoxal phosphate):是維生素B6(吡哆醇)的衍生物,是轉氨酶,脫羧酶和消旋酶的酶。
11,生物素(biotin):參與脫羧反應的一種酶的輔助因子。
12,輔酶A(coenzyme A):一種含有泛酸的輔酶,在某些酶促反應中作為醯基的載體。
13,類胡蘿卜素(carotenoid):由異戊二烯組成的脂溶性光合色素。
14,轉氨酶(transaminase):那稱為氨基轉移酶,在該酶的催化下,一個α-氨基酸的氨基可轉移給別一個α-酮酸。
第五章
1,醛糖(aldose):一類單糖,該單糖中氧化數最高的C原子(指定為C-1)是一個醛基。
2,酮糖(ketose):一類單糖,該單糖中氧化數最高的C原子(指定為C-2)是一個酮基。
3,異頭物(anomer):僅在氧化數最高的C原子(異頭碳)上具有不同構形的糖分子的兩種異構體。
4,異頭碳(anomer carbon):環化單糖的氧化數最高的C原子,異頭碳具有羰基的化學反應性。
5,變旋(mutarotation):吡喃糖,呋喃糖或糖苷伴隨它們的α-和β-異構形式的平衡而發生的比旋度變化。
6,單糖(monosaccharide):由3個或更多碳原子組成的具有經驗公式(CH2O)n的簡糖。
7,糖苷(dlycoside):單糖半縮醛羥基與別一個分子的羥基,胺基或巰基縮合形成的含糖衍生物。
8,糖苷鍵(glycosidic bond):一個糖半縮醛羥基與另一個分子(例如醇、糖、嘌呤或嘧啶)的羥基、胺基或巰基之間縮合形成的縮醛或縮酮鍵,常見的糖醛鍵有O—糖苷鍵和N—糖苷鍵。
9,寡糖(oligoccharide):由2~20個單糖殘基通過糖苷鍵連接形成的聚合物。
10,多糖(polysaccharide):20個以上的單糖通過糖苷鍵連接形成的聚合物。多糖鏈可以是線形的或帶有分支的。
11,還原糖(recing sugar):羰基碳(異頭碳)沒有參與形成糖苷鍵,因此可被氧化充當還原劑的糖。
12,澱粉(starch):一類多糖,是葡萄糖殘基的同聚物。有兩種形式的澱粉:一種是直鏈澱粉,是沒有分支的,只是通過α-(1→4)糖苷鍵的葡萄糖殘基的聚合物;另一類是支鏈澱粉,是含有分支的,α-(1→4)糖苷鍵連接的葡萄糖殘基的聚合物,支鏈在分支處通過α-(1→6)糖苷鍵與主鏈相連。
13,糖原(glycogen): 是含有分支的α-(1→4)糖苷鍵的葡萄糖殘基的同聚物,支鏈在分支點處通過α-(1→6)糖苷鍵與主鏈相連。
14,極限糊精(limit dexitrin):是指支鏈澱粉中帶有支鏈的核心部位,該部分經支鏈澱粉酶水解作用,糖原磷酸化酶或澱粉磷酸化酶作用後仍然存在。糊精的進一步降解需要α-(1→6)糖苷鍵的水解。
15,肽聚糖(peptidoglycan):N-乙醯葡萄糖胺和N-乙醯唾液酸交替連接的雜多糖與不同的肽交叉連接形成的大分子。肽聚糖是許多細菌細胞壁的主要成分。
16,糖蛋白(glycoprotein):含有共價連接的葡萄糖殘基的蛋白質。
17,蛋白聚糖(proteoglycan):由雜多糖與一個多肽連組成的雜化的在分子,多糖是分子的主要成分。
第六章
1,脂肪酸(fatty acid):是指一端含有一個羧基的長的脂肪族碳氫鏈。脂肪酸是最簡單的一種脂,它是許多更復雜的脂的成分。
2,飽和脂肪酸(saturated fatty acid):不含有—C=C—雙鍵的脂肪酸。
3,不飽和脂肪酸(unsaturated fatty acid):至少含有—C=C—雙鍵的脂肪酸。
4,必需脂肪酸(occential fatty acid):維持哺乳動物正常生長所必需的,而動物又不能合成的脂肪酸,Eg亞油酸,亞麻酸。
5,三脂醯苷油(triacylglycerol):那稱為甘油三酯。一種含有與甘油脂化的三個脂醯基的酯。脂肪和油是三脂醯甘油的混合物。
6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,腦磷脂。
7,鞘脂(sphingolipid):一類含有鞘氨醇骨架的兩性脂,一端連接著一個長連的脂肪酸,另一端為一個極性和醇。鞘脂包括鞘磷脂,腦磷脂以及神經節苷脂,一般存在於植物和動物細胞膜內,尤其是在中樞神經系統的組織內含量豐富。
8,鞘磷脂(sphingomyelin):一種由神經醯胺的C-1羥基上連接了磷酸毛里求膽鹼(或磷酸乙醯胺)構成的鞘脂。鞘磷脂存在於在多數哺乳動物動物細胞的質膜內,是髓鞘的主要成分。
9,卵磷脂(lecithin):即磷脂醯膽鹼(PC),是磷脂醯與膽鹼形成的復合物。
10,腦磷脂(cephalin):即磷脂醯乙醇胺(PE),是磷脂醯與乙醇胺形成的復合物。
11,脂質體(liposome):是由包圍水相空間的磷脂雙層形成的囊泡(小泡)。
12,生物膜(bioligical membrane):鑲嵌有蛋白質的脂雙層,起著畫分和分隔細胞和細胞器作用生物膜也是與許多能量轉化和細胞內通訊有關的重要部位。
13,內在膜蛋白(integral membrane protein):插入脂雙層的疏水核和完全跨越脂雙層的膜蛋白。
14,外周膜蛋白(peripheral membrane protein):通過與膜脂的極性頭部或內在的膜蛋白的離子相互作用和形成氫鍵與膜的內或外表面弱結合的膜蛋白。
15,流體鑲嵌模型(fluid mosaic model):針對生物膜的結構提出的一種模型。在這個模型中,生物膜被描述成鑲嵌有蛋白質的流體脂雙層,脂雙層在結構和功能上都表現出不對稱性。有的蛋白質「鑲「在脂雙層表面,有的則部分或全部嵌入其內部,有的則橫跨整個膜。另外脂和膜蛋白可以進行橫向擴散。
16,通透系數(permeability coefficient):是離子或小分子擴散過脂雙層膜能力的一種量度。通透系數大小與這些離子或分子在非極性溶液中的溶解度成比例。
17,通道蛋白(channel protein):是帶有中央水相通道的內在膜蛋白,它可以使大小適合的離子或分子從膜的任一方向穿過膜。
18,(膜)孔蛋白(pore protein):其含意與膜通道蛋白類似,只是該術語常用於細菌。
19,被動轉運(passive transport):那稱為易化擴散。是一種轉運方式,通過該方式溶質特異的結合於一個轉運蛋白上,然後被轉運過膜,但轉運是沿著濃度梯度下降方向進行的,所以被動轉達不需要能量的支持。
20,主動轉運(active transport):一種轉運方式,通過該方式溶質特異的結合於一個轉運蛋白上然後被轉運過膜,與被動轉運運輸方式相反,主動轉運是逆著濃度梯度下降方向進行的,所以主動轉運需要能量的驅動。在原發主動轉運過程中能源可以是光,ATP或電子傳遞;而第二級主動轉運是在離子濃度梯度下進行的。
21,協同運輸(contransport):兩種不同溶質的跨膜的耦聯轉運。可以通過一個轉運蛋白進行同一方向(同向轉運)或反方向(反向轉運)轉運。
22,胞吞(信用)(endocytosis):物質被質膜吞入並以膜衍生出的脂囊泡形成(物質在囊泡內)被帶入到細胞內的過程。
第七章
1,核苷(nucleoside):是嘌呤或嘧啶鹼通過共價鍵與戊糖連接組成的化合物。核糖與鹼基一般都是由糖的異頭碳與嘧啶的N-1或嘌呤的N-9之間形成的β-N-糖鍵連接。
2,核苷酸(uncleoside):核苷的戊糖成分中的羥基磷酸化形成的化合物。
3,cAMP(cycle AMP):3ˊ,5ˊ-環腺苷酸,是細胞內的第二信使,由於某部些激素或其它分子信號刺激激活腺苷酸環化酶催化ATP環化形成的。
4,磷酸二脂鍵(phosphodiester linkage):一種化學基團,指一分子磷酸與兩個醇(羥基)酯化形成的兩個酯鍵。該酯鍵成了兩個醇之間的橋梁。例如一個核苷的3ˊ羥基與別一個核苷的5ˊ羥基與同一分子磷酸酯化,就形成了一個磷酸二脂鍵。
5,脫氧核糖核酸(DNA):含有特殊脫氧核糖核苷酸序列的聚脫氧核苷酸,脫氧核苷酸之間是是通過3ˊ,5ˊ-磷酸二脂鍵連接的。DNA是遺傳信息的載體。
6,核糖核酸(RNA):通過3ˊ,5ˊ-磷酸二脂鍵連接形成的特殊核糖核苷酸序列的聚核糖核苷酸。
7,核糖體核糖核酸(Rrna,ribonucleic acid):作為組成成分的一類 RNA,rRNA是細胞內最 豐富的 RNA .
8,信使核糖核酸(mRNA,messenger ribonucleic acid):一類用作蛋白質合成模板的RNA .
9, 轉移核糖核酸(Trna,transfer ribonucleic acid):一類攜帶激活氨基酸,將它帶到蛋白質合成部位並將氨基酸整合到生長著的肽鏈上RNA。TRNA含有能識別模板mRNA上互補密碼的反密碼。
10,轉化(作用)(transformation):一個外源DNA 通過某種途徑導入一個宿主菌,引起該菌的遺傳特性改變的作用。
11,轉導(作用)(transction):藉助於病毒載體,遺傳信息從一個細胞轉移到另一個細胞。
12,鹼基對(base pair):通過鹼基之間氫鍵配對的核酸鏈中的兩個核苷酸,例如A與T或U , 以及G與C配對 。
13,夏格夫法則(Chargaff』s rules):所有DNA中腺嘌呤與胸腺嘧啶的摩爾含量相等(A=T),鳥嘌呤和胞嘧啶的摩爾含量相等(G=C),既嘌呤的總含量相等(A+G=T+C)。DNA的鹼基組成具有種的特異性,但沒有組織和器官的特異性。另外,生長和發育階段`營養狀態和環境的改變都不影響DNA的鹼基組成。
14,DNA的雙螺旋(DNAdouble helix):一種核酸的構象,在該構象中,兩條反向平行的多核甘酸鏈相互纏繞形成一個右手的雙螺旋結構。鹼基位於雙螺旋內側,磷酸與糖基在外側,通過磷酸二脂鍵相連,形成核酸的骨架。鹼基平面與假象的中心軸垂直,糖環平面則與軸平行,兩條鏈皆為右手螺旋。雙螺旋的直徑為2nm,鹼基堆積距離為0.34nm, 兩核甘酸之間的夾角是36゜,每對螺旋由10對鹼基組成,鹼基按A-T,G-C配對互補,彼此以氫鍵相聯系。維持DNA雙螺旋結構的穩定的力主要是鹼基堆積力。雙螺旋表面有兩條寬窄`深淺不一的一個大溝和一個小溝。
15.大溝(major groove)和小溝(minor groove):繞B-DNA雙螺旋表面上出現的螺旋槽(溝),寬的溝稱為大溝,窄溝稱為小溝。大溝,小溝都、是由於鹼基對堆積和糖-磷酸骨架扭轉造成的。
16.DNA超螺旋(DNAsupercoiling):DNA本身的捲曲一般是DNA雙`螺旋的彎曲欠旋(負超螺旋)或過旋(正超螺旋)的結果。
17.拓撲異構酶(topoisomerse):通過切斷DNA的一條或兩條鏈中的磷酸二酯鍵,然後重新纏繞和封口來改變DNA連環數的酶。拓撲異構酶Ⅰ、通過切斷DNA中的一條鏈減少負超螺旋,增加一個連環數。某些拓撲異構酶Ⅱ也稱為DNA促旋酶。
18.核小體(nucleosome):用
Ⅲ 什麼是生物化學
生物化學是研究生命物質的化學組成結構,及生命過程中各種化學變化的生物學分支學科。
若以不同的生物為對象,生物化學可分為動物生化、植物生化、微生物生化、昆蟲生化等;若以生物體的不同組織或過程為研究對象,則可分為肌肉生化、神經生化、免疫生化、生物力能學等;因研究的物質不同,又可分為蛋白質化學、核酸化學、酶學等分支;研究各種天然物質的化學稱為生物有機化學;研究各種無機物的生物功能的學科則稱為生物無機化學或無機生物化學。
二十世紀六十年代以來,生物化學與其它學科又融合產生了—些邊緣學科,如生化葯理學、古生物化學、化學生態學等;或按應用領域不同,有醫學生化、農業生化、工業生化、營養生化等。
生物化學發展簡史
生物化學這一名詞的出現大約在19世紀末、20世紀初,但它的起源可追溯得更遠,其早期的歷史是生理學和化學的早期歷史的一部分。例如18世紀80年代,拉瓦錫證明呼吸與燃燒一樣是氧化作用,幾乎同時科學家又發現光合作用本質上是動物呼吸的逆過程。又如1828年沃勒首次在實驗室中合成了一種有機物——尿素,打破了有機物只能靠生物產生的觀點,給「生機論」以重大打擊。
1860年巴斯德證明發酵是由微生物引起的但他認為必需有活的酵母才能引起發酵。1897年畢希納兄弟發現酵母的無細胞抽提液可進行發酵,證明沒有活細胞也可進行如發酵這樣復雜的生命活動,終於推翻了「生機論」。
生物化學的發展大體可分為三個階段。
第一階段從19世紀末到20世紀30年代,主要是靜態的描述性階段,對生物體各種組成成分進行分離、純化、結構測定、合成及理化性質的研究。其中菲舍爾測定了很多糖和氨基酸的結構,確定了糖的構型,並指出蛋白質是肚鍵連接的。1926年薩姆納製得了脲酶結晶,並證明它是蛋白質。
此後四、五年間諾思羅普等人連續結晶了幾種水解蛋白質的酶,指出它們都無例外地是蛋白質,確立了酶是蛋白質這一概念。通過食物的分析和營養的研究發現了一系列維生素,並闡明了它們的結構。
與此同時,人們又認識到另一類數量少而作用重大的物質——激素。它和維生素不同,不依賴外界供給,而由動物自身產生並在自身中發揮作用。腎上腺素、胰島素及腎上腺皮質所含的甾體激素都在這一階段發現。此外,中國生物化學家吳憲在1931年提出了蛋白質變性的概念。
第二階段約在20世紀30~50年代,主要特點是研究生物體內物質的變化,即代謝途徑,所以稱動態生化階段。其間突出成就是確定了糖酵解、三羧酸循環以及脂肪分解等重要的分解代謝途徑。對呼吸、光合作用以及腺苷三磷酸(ATF)在能量轉換中的關鍵位置有了較深入的認識。
當然,這種階段的劃分是相對的。對生物合成途徑的認識要晚得多,在50~60年代才闡明了氨基酸、嘌嶺、嗜啶及脂肪酸等的生物合成途徑。
第三階段是從20世紀50年代開始,主要特點是研究生物大分子的結構與功能。生物化學在這一階段的發展,以及物理學、技術科學、微生物學、遺傳學、細胞學等其他學科的滲透,產生了分子生物學,並成為生物化學的主體。
生物化學的基本內容
除了水和無機鹽之外,活細胞的有機物主要由碳原子與氫、氧、氮、磷、硫結合組成,分為大分子和小分子兩大類。前者包括蛋白質、核酸、多糖和以結合狀態存在的脂質;後者有維生素、激素、各種代謝中間物,以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,還有各種次生代謝物,如萜類、生物鹼、毒素、抗生素等。
雖然對生物體組成的鑒定是生物化學發展初期的特點,但直到今天,新物質仍不斷在發現。如陸續發現的干擾素、環核苷磷酸、鈣調蛋白、粘連蛋白、外源凝集素等,已成為重要的研究課題。
早已熟知的化合物也會發現新的功能,20世紀初發現的肉鹼,50年代才知道是一種生長因子,而到60年代又了解到是生物氧化的一種載體;多年來被認為是分解產物的腐胺和屍胺,與精胺、亞精胺等多胺被發現有多種生理功能,如參與核酸和蛋白質合成的調節,對DNA超螺旋起穩定作用以及調節細胞分化等。
新陳代謝由合成代謝和分解代謝組成。前者是生物體從環境中取得物質,轉化為體內新的物質的過程,也叫同化作用;後者是生物體內的原有物質轉化為環境中的物質,也叫異化作用。同化和異化的過程都由一系列中間步驟組成。中間代謝就是研究其中的化學途徑的。
在物質代謝的過程中還伴隨有能量的變化。生物體內機械能、化學能、熱能以及光、電等能量的相互轉化和變化稱為能量代謝,此過程中ATP起著中心的作用。新陳代謝是在生物體的調節控制之下有條不紊地進行的。生物體內絕大多數調節過程是通過別構效應實現的。
生物大分子的多種多樣功能與它們特定的結構有密切關系。蛋白質的主要功能有催化、運輸和貯存、機械支持、運動、免疫防護、接受和傳遞信息、調節代謝和基因表達等。由於結構分析技術的進展,使人們能在分子水平上深入研究它們的各種功能,蛋白質分子內部的運動性是它們執行各種功能的重要基礎。
80年代初出現的蛋白質工程,通過改變蛋白質的結構基因,獲得在指定部位經過改造的蛋白質分子。這一術不僅為研究蛋白質的結構與功能的關系提供了新的途徑;而且也開辟了按一定要求合成具有特定功能的、新的蛋白質的廣闊前景。
核酸的結構與功能的研究為闡明基因的本質,了解生物體遺傳信息的流動作出了貢獻。鹼基配對是核酸分子相互作用的主要形式,這是核酸作為信息分子的結構基礎。
基因表達的調節控制是分子遺傳學研究的一個中心問題,也是核酸的結構與功能研究的一個重要內容。對於原核生物的基因調控已有不少的了解;真核生物基因的調控正從多方面探討。如異染色質化與染色質活化;DNA的構象變化與化學修飾;DNA上調節序列如加強子和調制子的作用;RNA加工以及轉譯過程中的調控等。
生物體的糖類物質包括多糖、寡糖和單糖。在多糖中,纖維素和甲殼素是植物和動物的結構物質,澱粉和糖元等是貯存的營養物質。單糖是生物體能量的主要來源。寡糖在結構和功能上的重要性在20世紀70年代才開始為人們所認識。寡糖和蛋白質或脂質可以形成糖蛋白、蛋白聚糖和糖脂。
由於糖鏈結構的復雜性,使它們具有很大的信息容量,對於細胞專一地識別某些物質並進行相互作用而影響細胞的代謝具有重要作用。從發展趨勢看,糖類將與蛋白質、核酸、酶並列而成為生物化學的4大研究對象。
生物大分子的化學結構一經測定,就可在實驗室中進行人工合成。生物大分子及其類似物的人工合成有助於了解它們的結構與功能的關系。有些類似物由於具有更高的生物活性而可能具有應用價值。通過DNA化學合成而得到的人工基因可應用於基因工程而得到具有重要能的蛋白質及其類似物。
生物體內幾乎所有的化學反應都是酶催化的。酶的作用具有催化效率高、專一性強等特點。這些特點取決於酶的結構。酶的結構與功能的關系、反應動力學及作用機制、酶活性的調節控制等是酶學研究的基本內容。酶與人類生活和生產活動關系十分密切,因此酶在工農業生產、國防和醫學上的應用一直受到廣泛的重視。
生物膜主要由脂質和蛋白質組成,一般也含有糖類,其基本結構可用流動鑲嵌模型來表示,即脂質分子形成雙層膜,膜蛋白以不同程度與脂質相互作用並可側向移動。生物膜與能量轉換、物質與信息的傳送、細胞的分化與分裂、神經傳導、免疫反應等都有密切關系,是生物化學中一個活躍的研究領域。
激素是新陳代謝的重要調節因子。激素系統和神經系統構成生物體兩種主要通訊系統,二者之間又有密切的聯系。70年代以來,激素的研究范圍日益擴大,許多激素的化學結構已經測定,它們主要是多肽和甾體化合物。一些激素的作用原理也有所了解,有些是改變的通透性,有些是激活細胞的酶系,還有些是影響基因的表達。維生素對代謝也有重要影響,可分水溶性與脂溶性兩大類。它們大多是酶的輔基或輔酶,與生物體的健康有密切關系。
生物進化學說認為:地球上數百萬種生物具有相同的起源,並在大約40億年的進化過程中逐漸形成。生物化學的發展為這一學說在分子水平上提供了有力的證據。
在生物化學的發展中,許多重大的進展均得力於方法上的突破。90年代以來計算機技術廣泛而迅速地向生物化學各個領域滲透,不僅使許多分析儀器的自動化程度和效率大大提高,而且為生物大分子的結構分析,結構預測以及結構功能關系研究提供了全新的手段。生物化學今後的繼續發展無疑還要得益於技術和方法的革新。
生物化學對其它各門生物學科的深刻影響首先反映在與其關系比較密切的細胞學、微生物學、遺傳學、生理學等領域。通過對生物高分子結構與功能進行的深入研究,揭示了生物體物質代酣、能量轉換、遺傳信息傳遞、光合作用、神經傳導、肌肉收縮、激素作用、免疫和細胞間通訊等許多奧秘,使人們對生命本質的認識躍進到一個嶄新的階段。
生物學中一些看來與生物化學關系不大的學科,如分類學和生態學,甚至在探討人口控制、世界食品供應、環境保護等社會性問題時,都需要從生物化學的角度加以考慮和研究。
此外,生物化學作為生物學和物理學之間的橋梁,將生命世界中所提出的重大而復雜的問題展示在物理學面前,產生了生物物理學、量子生物化學等邊緣學科,從而豐富了物理學的研究內容,促進了物理學和生物學的發展。
生物化學是在醫學、農業、某些工業和國防部門的生產實踐的推動下成長起來的,反過來,它又促進了這些部門生產實踐的發展。
生物化學在發酵、食品、紡織、制葯、皮革等行業都顯示了強大的威力。例如皮革的鞣製、脫毛,蠶絲的脫膠,棉布的漿紗都用酶法代替了老工藝。近代發酵工業、生物製品及制葯工業包括抗生素、有機溶劑、有機酸、氨基酸、酶制劑、激素、血液製品及疫苗等均創造了相當巨大的經濟價值,特別是固定化酶和固定化細胞技術的應用更促進了酶工業和發酵工業的發展。
Ⅳ 下列作為生物進化中"生物化學證據"的是( )
選C
注意是「生物化學」證據。
其他幾個選項都是形態學證據。
Ⅳ 生物化學研究的內容有哪些
摘要 三、基因表達及其調控
Ⅵ 化學生物學與生物化學的區別
化學生物學與生物化學的區別:
1、性質不同
化學生物學:化學生物學是研究生命過程中化學基礎的科學。
生物化學:生物化學是指用化學的方法和理論研究生命的化學分支學科。
2、任務不同
化學生物學:化學生物學通過用化學的理論和方法研究生命現象、生命過程的化學基礎,通過探索干預和調整疾病發生發展的途徑和機理,為新葯發現中提供必不可少的理論依據。
生物化學:任務主要是了解生物的化學組成、結構及生命過程中各種化學變化。從早期對生物總體組成的研究,進展到對各種組織和細胞成分的精確分析。
3、研究內容不同
化學生物學:生物無機化學、生物分析化學、生物有機化學、生物化學、化學信息學、生物物理化學和仿生高分子材料。
生物化學:生物化學主要研究生物體分子結構與功能、物質代謝與調節以及遺傳信息傳遞的分子基礎與調控規律。
Ⅶ 什麼叫生物化學研究對象包括哪些主要內容
生物化學(biochemistry)是一門研究生物體的化學組成及其變化規律,從分子水平上揭示生命現象本質的一門生命科學,又稱生命的化學。
生物化學的研究對象:蛋白質、核酸、酶。
生物化學的主要內容:
1、人體的物質組成;
2、生物分子的結構與功能;
3、物質代謝及調控;
4、基因信息傳遞與表達及調控;
5、器官生化。
(7)生物化學證據是指什麼擴展閱讀
生物化學若以不同的生物為對象,可分為動物生化、植物生化、微生物生化、昆蟲生化等。若以生物體的不同組織或過程為研究對象,則可分為肌肉生化、神經生化、免疫生化、生物力能學等。因研究的物質不同,又可分為蛋白質化學、核酸化學、酶學等分支。
生物化學對其他各門生物學科的深刻影響首先反映在與其關系比較密切的細胞學、微生物學、遺傳學、生理學等領域。
通過對生物高分子結構與功能進行的深入研究,揭示了生物體物質代謝、能量轉換、遺傳信息傳遞、光合作用、神經傳導、肌肉收縮、激素作用、免疫和細胞間通訊等許多奧秘,使人們對生命本質的認識躍進到一個嶄新的階段。
Ⅷ 如何證明動物進化的歷程
證明動物進化就要先找到證據,因為動物的進化並不是一兩年、就可心完成的。所以在進化學上,說明動物進化的,都是依靠一些證據。
第一、化石證據:始祖鳥化石顯示鳥類從爬行類進化而來
第二、胚胎發育證據:比較了幾種脊椎動物的胚胎發育時的形態、結構與特徵
第三、解剖證據:對動物個體進行解剖,比較其骨骼情況
第四、生物化學證據:比較各動物之間的蛋白質等的情況
Ⅸ 生物化學主要研究什麼
生物化學主要研究生物體分子結構與功能、物質代謝與調節以及遺傳信息傳遞的分子基礎與調控規律。
生物體的化學組成
除了水和無機鹽之外,活細胞的有機物主要由碳原子與氫、氧、氮、磷、硫等結合組成,分為大分子和小分子兩大類。前者包括蛋白質、核酸、多糖和以結合狀態存在的脂質;後者有維生素、激素、各種代謝中間物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,還有各種次生代謝物,如萜類、生物鹼、毒素、抗生素等。
雖然對生物體組成的鑒定是生物化學發展初期的特點,但直到今天,新物質仍不斷在發現。如陸續發現的干擾素、環核苷一磷酸、鈣調蛋白、粘連蛋白、外源凝集素等,已成為重要的研究課題。有的簡單的分子,如作為代謝調節物的果糖-2,6-二磷酸是1980年才發現的。另一方面,早已熟知的化合物也會發現新的功能,20世紀初發現的肉鹼,50年代才知道是一種生長因子,而到60年代又了解到是生物氧化的一種載體。多年來被認為是分解產物的腐胺和屍胺,與精胺、亞精胺等多胺被發現有多種生理功能,如參與核酸和蛋白質合成的調節,對DNA超螺旋起穩定作用以及調節細胞分化等。
新陳代謝與代謝調節控制
新陳代謝由合成代謝和分解代謝組成。前者是生物體從環境中取得物質,轉化為體內新的物質的過程,也叫同化作用;後者是生物體內的原有物質轉化為環境中的物質,也叫異化作用。同化和異化的過程都由一系列中間步驟組成。中間代謝就是研究其中的化學途徑的。如糖元、脂肪和蛋白質的異化是各自通過不同的途徑分解成葡萄糖、脂肪酸和氨基酸,然後再氧化生成乙醯輔酶A,進入三羧酸循環,最後生成二氧化碳。
在物質代謝的過程中還伴隨有能量的變化。生物體內機械能、化學能、熱能以及光、電等能量的相互轉化和變化稱為能量代謝,此過程中ATP起著中心的作用。
新陳代謝是在生物體的調節控制之下有條不紊地進行的。這種調控有3種途徑:①通過代謝物的誘導或阻遏作用控制酶的合成。這是在轉錄水平的調控,如乳糖誘導乳糖操縱子合成有關的酶;②通過激素與靶細胞的作用,引發一系列生化過程,如環腺苷酸激活的蛋白激酶通過磷醯化反應對糖代謝的調控;③效應物通過別構效應直接影響酶的活性,如終點產物對代謝途徑第一個酶的反饋抑制。生物體內絕大多數調節過程是通過別構效應實現的。
生物大分子的結構與功能
生物大分子的多種多樣功能與它們特定的結構有密切關系。蛋白質的主要功能有催化、運輸和貯存、機械支持、運動、免疫防護、接受和傳遞信息、調節代謝和基因表達等。由於結構分析技術的進展,使人們能在分子水平上深入研究它們的各種功能。酶的催化原理的研究是這方面突出的例子。蛋白質分子的結構分4個層次,其中二級和三級結構間還可有超二級結構,三、四級結構之間可有結構域。結構域是個較緊密的具有特殊功能的區域,連結各結構域之間的肽鏈有一定的活動餘地,允許各結構域之間有某種程度的相對運動。蛋白質的側鏈更是無時無刻不在快速運動之中。蛋白質分子內部的運動性是它們執行各種功能的重要基礎。
80年代初出現的蛋白質工程,通過改變蛋白質的結構基因,獲得在指定部位經過改造的蛋白質分子。這一技術不僅為研究蛋白質的結構與功能的關系提供了新的途徑;而且也開辟了按一定要求合成具有特定功能的、新的蛋白質的廣闊前景。
核酸的結構與功能的研究為闡明基因的本質,了解生物體遺傳信息的流動作出了貢獻。鹼基配對是核酸分子相互作用的主要形式,這是核酸作為信息分子的結構基礎。脫氧核糖核酸的雙螺旋結構有不同的構象,J.D.沃森和F.H.C.克里克發現的是B-結構的右手螺旋,後來又發現了稱為 Z-結構的左手螺旋。DNA還有超螺旋結構。這些不同的構象均有其功能上的意義。核糖核酸包括信使核糖核酸(mRNA)、轉移核糖核酸(tRNA)和核蛋白體核糖核酸(rRNA),它們在蛋白質生物合成中起著重要作用。新近發現個別的RNA有酶的功能。
基因表達的調節控制是分子遺傳學研究的一個中心問題,也是核酸的結構與功能研究的一個重要內容。對於原核生物的基因調控已有不少的了解;真核生物基因的調控正從多方面探討。如異染色質化與染色質活化;DNA的構象變化與化學修飾;DNA上調節序列如加強子和調制子的作用;RNA加工以及轉譯過程中的調控等。生物體的糖類物質包括多糖、寡糖和單糖。在多糖中,纖維素和甲殼素是植物和動物的結構物質,澱粉和糖元等是貯存的營養物質。單糖是生物體能量的主要來源。寡糖在結構和功能上的重要性在20世紀70年代才開始為人們所認識。寡糖和蛋白質或脂質可以形成糖蛋白、蛋白聚糖和糖脂。由於糖鏈結構的復雜性,使它們具有很大的信息容量,對於細胞專一地識別某些物質並進行相互作用而影響細胞的代謝具有重要作用。從發展趨勢看,糖類將與蛋白質、核酸、酶並列而成為生物化學的4大研究對象。
生物大分子的化學結構一經測定,就可在實驗室中進行人工合成。生物大分子及其類似物的人工合成有助於了解它們的結構與功能的關系。有些類似物由於具有更高的生物活性而可能具有應用價值。通過 DNA化學合成而得到的人工基因可應用於基因工程而得到具有重要功能的蛋白質及其類似物。
酶學研究
生物體內幾乎所有的化學反應都是酶催化的。酶的作用具有催化效率高、專一性強等特點。這些特點取決於酶的結構。酶的結構與功能的關系、反應動力學及作用機制、酶活性的調節控制等是酶學研究的基本內容。通過 X射線晶體學分析、化學修飾和動力學等多種途徑的研究,一些具有代表性的酶的作用原理已經比較清楚。70年代發展起來的親和標記試劑和自殺底物等專一性的不可逆抑制劑已成為探討酶的活性部位的有效工具。多酶系統中各種酶的協同作用,酶與蛋白質、核酸等生物大分子的相互作用以及應用蛋白質工程研究酶的結構與功能是酶學研究的幾個新的方向。酶與人類生活和生產活動關系十分密切,因此酶在工農業生產、國防和醫學上的應用一直受到廣泛的重視。
生物膜和生物力能學
生物膜主要由脂質和蛋白質組成,一般也含有糖類,其基本結構可用流動鑲嵌模型來表示,即脂質分子形成雙層膜,膜蛋白以不同程度與脂質相互作用並可側向移動。生物膜與能量轉換、物質與信息的傳送、細胞的分化與分裂、神經傳導、免疫反應等都有密切關系,是生物化學中一個活躍的研究領域。
以能量轉換為例,在生物氧化中,代謝物通過呼吸鏈的電子傳遞而被氧化,產生的能量通過氧化磷酸化作用而貯存於高能化合物ATP中,以供應肌肉收縮及其他耗能反應的需要。線粒體內膜就是呼吸鏈氧化磷酸化酶系的所在部位,在細胞內發揮著電站作用。在光合作用中通過光合磷酸化而生成 ATP則是在葉綠體膜中進行的。以上這些研究構成了生物力能學的主要內容。
激素與維生素
激素是新陳代謝的重要調節因子。激素系統和神經系統構成生物體兩種主要通訊系統,二者之間又有密切的聯系。70年代以來,激素的研究范圍日益擴大。如發現腸胃道和神經系統的細胞也能分泌激素;一些生長因子、神經遞質等也納入了激素類物質中。許多激素的化學結構已經測定,它們主要是多肽和甾體化合物。一些激素的作用原理也有所了解,有些是改變膜的通透性,有些是激活細胞的酶系,還有些是影響基因的表達。維生素對代謝也有重要影響,可分水溶性與脂溶性兩大類。它們大多是酶的輔基或輔酶,與生物體的健康有密切關系。
生命的起源與進化
生物進化學說認為地球上數百萬種生物具有相同的起源並在大約40億年的進化過程中逐漸形成。生物化學的發展為這一學說在分子水平上提供了有力的證據。例如所有種屬的 DNA中含有相同種類的核苷酸。許多酶和其他蛋白質在各種微生物、植物和動物中都存在並具有相近的氨基酸序列和類似的立體結構,而且類似的程度與種屬之間的親緣關系相一致。DNA復制中的差錯可以說明作為進化基礎的變異是如何發生的。生物由低級向高級進化時,需要更多的酶和其他蛋白質,基因的重排和突變為適應這種需要提供了可能性。由此可見,有關進化的生物化學研究將為闡明進化的機制提供更加本質的和定量的信息。