⑴ 細胞生物學的研究內容和范圍及意義
從1839年M.J.施萊登和T.A.H.施旺的細胞學說問世以來,確立了細胞(真核細胞)是多細胞生物結構和生命活動的基本單位。但是長期以來,細胞學的研究偏重在結構方面。此後,在相鄰學科的進展的影響下逐漸地發展到其他方面。例如在遺傳學的帶動下發展起細胞遺傳學,加深了對染色體的認識;在生物化學的影響之下發展起細胞生化,用生化手段了解細胞各組分的生化組成和功能活動;在物理學、化學的滲透下形成了細胞化學,研究細胞的化學成分及其定位,這些都為細胞生物學的形成和發展打下了基礎。
20世紀50年代以來,關於細胞的超顯微結構的研究,使人們對於光學顯微鏡下看不到的精細結構有了明確的認識。分子生物學、分子遺傳學以原核生物為材料取得的成就,使人們了解到遺傳密碼、中心法則以及原核生物中基因表達的調節與控制等基本問題,這些都直接促進了細胞生物學的發展。但由於原核細胞不同於真核細胞,後者具有核膜,染色質除DNA外還含有組蛋白及非組蛋白,而且細胞質中的結構也比前者復雜得多。因此,還需要了解在原核生物得到的成就在多大程度上適用於真核細胞,研究遺傳和發育在真核細胞中是如何操縱的。
細胞生物學雖說是一個比較年輕的學科,從學術思想上卻可以追溯到較早的年代。1883年德國胚胎學家W.魯就闡述過關於遺傳和發育的設想。他假定受精卵中包含著所有的遺傳物質,後者在卵裂時不是平均地分配到子細胞中,這種不同質的分裂決定子細胞及其後代的命運。德國動物學家魏斯曼發展了這種想法,提出了種質學說,認為裂球的不均等分裂導致了細胞的分化。雖然這些見解都已證明是錯誤的,但是可以看出細胞生物學所要解決的問題在那時已被提出來了。以後E.B.威爾遜1927年在他的《細胞──在發育和遺傳中》的巨著中明確指出:細胞是生命活動的基本單位,發育和遺傳這些生命現象應當在細胞上研究。1934年,美國遺傳學家和胚胎學家T.H.摩爾根在遺傳學取得巨大成就之後,在企圖融合發育與遺傳的《胚胎學與遺傳學》一書中寫道:「可以設想,各原生質區域在開始時的差異會影響基因的活動,然後基因又反轉過來影響原生質,後者就開始一系列新的、相應的反應。這樣,我們可以勾畫出胚胎各部分的逐步建立和分化。」但在摩爾根的年代,由於細胞學和其他相鄰學科還未發生密切的聯系,或者說其他學科尚未能在細胞水平上開展關於發育和遺傳的研究,所以細胞生物學只能在50年代之後,各方面的條件逐漸成熟了,才得以蓬勃發展。 從研究內容來看細胞生物學的發展可分為三個層次,即:顯微水平、超微水平和分子水平。從時間縱軸來看細胞生物學的歷史大致可以劃分為四個主要的階段:
第一階段:從16世紀後期到19世紀30年代,是細胞發現和細胞知識的積累階段。通過對大量動植物的觀察,人們逐漸意識到不同的生物都是由形形色色的細胞構成的。
第二階段:從19世紀30年代到20世紀初期,細胞學說形成後,開辟了一個新的研究領域,在顯微水平研究細胞的結構與功能是這一時期的主要特點。形態學、胚胎學和染色體知識的積累,使人們認識了細胞在生命活動中的重要作用。1893年Hertwig的專著《細胞與組織》(Die Zelle und die Gewebe)出版,標志著細胞學的誕生。其後1896年哥倫比亞大學Wilson編著的The Cell in Development and Heredity、1920年墨爾本大學Agar編著的Cytology 都是這一領域最早的教科書。
第三階段:從20世紀30年代到70年代,電子顯微鏡技術出現後,把細胞學帶入了第三大發展時期,這短短40年間不僅發現了細胞的各類超微結構,而且也認識了細胞膜、線粒體、葉綠體等不同結構的功能,使細胞學發展為細胞生物學。De Robertis等人1924出版的普通細胞學(General Cytology)在1965年第四版的時候定名為細胞生物學(Cell Biology),這是最早的細胞生物學教材之一。
第四階段:從20世紀70年代基因重組技術的出現到當前,細胞生物學與分子生物學的結合愈來愈緊密,研究細胞的分子結構及其在生命活動中的作用成為主要任務,基因調控、信號轉導、腫瘤生物學、細胞分化和凋亡是當代的研究熱點。
⑵ 醫學細胞生物學名詞解釋重點
細胞生物學名詞解釋
1. 細胞(cell)是組成包括人類在內的所有生物體的基本單位,這一基本單位的含義即包括結構上的,也包括功能上的。
2. 細胞生物學(cell biology)是在細胞水平上研究生物體的生長、運動、遺傳、變異、分化、衰老、死亡等生命現象的學科。
3. 醫學細胞生物學(medical cell biology)以人體或醫學為對象的細胞生物學研究或學科。
4. 原核細胞(prokaryotic cell)是組成原核生物的細胞,這類細胞主要特徵是細胞內沒有分化為以膜為基礎的具有專門結構與功能的細胞器和細胞核膜,且遺傳信息量小,因此進化地位較低。
5. 真核細胞(eukaryotic cell)指含有真核(被核膜包圍的核)的細胞,主要特徵是有細胞膜、發達的內膜系統和細胞骨架體系。
6. 生物大分子(biological macromolecules)也稱多聚體,由許多小分子單體通過共價鍵連接而成,相對分子質量比較大,包括蛋白質、核酸和多糖等。
7. 多肽鏈(polypeptide chain)多個氨基酸通過肽鍵組成的肽稱為多肽鏈。
8. 細胞蛋白質組(proteome)將細胞內基因活動和表達後所產生的全部蛋白質作為一個整體,研究在個體發育的不同階段,在正常或異常情況下,某種細胞內所有蛋白質的種類、數量、結構和功能狀態,從而闡明基因的功能。
9. 擬核(nucleoid)原核細胞沒有核膜包被的細胞核,也沒有核仁,DNA位於細胞中央的核區就稱為擬核。
10. 質粒(plasmid)很多細菌除了基因組DNA外,還有一些小的雙鏈環形DNA分子,稱為質粒。
11. 細胞膜(cell membrane)又稱質膜,是指圍繞在細胞最外層,由脂質、蛋白質和糖類所組成的生物膜。
12. 生物膜(biological membrane)人們把生物膜和細胞內各種模性結構統稱為生物膜。
13. 單位膜(unit membrane)生物膜在電鏡下呈現出較為一致的3層結構,即電子緻密度高的內、外兩層之間夾著電子密度較低的中間層。
14. 脂質體(liposome)脂質體是脂質分子在水相中形成的一種自我封閉的穩定的脂質雙層膜。
15. 細胞外被(cell coat)細胞外被即為細胞膜中糖蛋白和糖脂伸出細胞外表面分支或不分支的寡糖鏈,其蛋白質和脂質部分參加了細胞膜本身的構造。
16. 細胞表面(cell surface)細胞膜、細胞外被、細胞內面的胞質溶膠、各種細胞連接結構和細胞膜的一些特化結構統稱為細胞表面。
17. 內膜系統(endomembrane system)指真核細胞內在結構、功能及發生上有一定聯系的有膜構成的細胞器。
18. 初級溶酶體(primary lysosome)只含水解酶而沒有底物的溶酶體稱為初級溶酶體。
19. 次級溶酶體(secondary lysosome)初級溶酶體與底物結合後的溶酶體稱為次級溶酶體。
20. 殘質體(resie body)吞噬溶酶體到達終末階段,水解酶活性下降,還殘留一些未被消化和分解的物質,形成在電鏡下電子密度高、色調較深的殘余物,這時的溶酶體稱為殘質體。
21. 類核體(nucleoid)有的過氧化物酶體中央含有電子密度高、呈規則形的結晶狀結構,稱類核體,實質是尿酸氧化酶的結晶。
22. 微粒體(microsome)利用蔗糖密度梯度離心法得到的由內質網碎片組成的封閉小泡。
23. 線粒體(mitochondrion)是細胞進行生物氧化和能量轉換的主要場所,被稱為能量轉換器,細胞生命活動所需能量的80﹪由線粒體提供,所以線粒體被比喻為細胞的「動力工廠」。
24. 基粒(elementary particle)又稱ATP合酶復合體,是產生ATP的部位,形態上分為三部分:頭部,突出於內腔中,具有ATP酶活性,能催化ADP磷酸化生成ATP;柄部,連接頭部與基部;基部,嵌入內膜內。
25. 嵴內空間(intracristal space)線粒體由於嵴向內腔突進造成的外腔向內伸入的部分稱為嵴內空間。
26. 嵴間腔(intercristal space)線粒體嵴與嵴之間部分稱為嵴空間。
27. 基質導入序列(matrix-targeting sequence,WTS)又稱導肽,是輸入線粒體的蛋白質在其N端具有的一段氨基酸序列,能夠被線粒體膜上的受體識別並結合,從而定向蛋白質的轉運。
28. 核糖體(ribosome)是由rRNA和蛋白質共同組成的非膜性細胞器,是細胞內蛋白質合成的場所。
29. 多聚核糖體(polyribosome)蛋白質合成時,多個核糖體結合到1個mRNA分子上,成串排列,形成蛋白質合成的功能單位,稱為多聚核糖體。
30. 細胞骨架(cytoskeleton)是細胞內蛋白質成分組成的一個復合網架系統,包括微管、微絲和中間絲。
31. 微管組織中心(microtuble organizing center,MTOC)包括中心體、基體和著絲點等,它們提供了微管組裝所需要的核心,在微管裝配過程中起重要作用。
32. 動態微管(dynamic microtuble)細胞中有的微管存在時間很短,發生快速組裝和去組裝,稱動態微管,如紡錘體。
33. 染色質(chromatin)是細胞核內能被鹼性染料著色的物質,也是遺傳性息的載體。
34. 染色體(chromosome)當細胞進入有絲分裂時,伸展、彌散的絲狀染色質高度折疊、盤曲而凝縮成條狀或棒狀的特殊形態,稱為染色體。
35. 核孔復合體(nuclear pore complex)核孔並非單純的孔道,而是一個復雜的盤狀結構體系,每個復合體由一串大的排列成八角形的蛋白質顆粒組成,中央是含水的通道。
36. 核小體(nucleosome)是構成染色質的基本單位結構。每個核小體由5種組蛋白和200bp左右的DNA組成,其中H2A、H2B、H3、H4各兩分子形成八聚體,構成核心顆粒。DNA分子以左手螺旋纏繞在核心顆粒表面,每圈約80bp,共1.75圈,約146bp,相鄰核心顆粒之間為一段60bp的連接DNA,H1位於DNA進出核心顆粒的結合處,功能與染色質的濃縮有關,形成直徑為11nm的核小體。
37. 常染色質(euchromatin)指間期細胞核內染色質纖維壓縮程度低,處於伸展狀態,用鹼性染料染色時著色淺的染色體。
38. 異染色質(heterochromatin)指間期細胞核內,染色質纖維壓縮程度高,處於聚縮狀態的染色質組分,鹼性染料染色較深的組分,分結構和兼性異染色質。
39. 端粒(telomere)是染色體末端特化部位,具有維持染色體結構穩定性的作用,端粒DNA為高度重復DNA序列,富含GC。
40. 核仁組織者區(nucleolair organizing region,NOR)位於某些染色體的次縊痕處,具有締合核仁的功能,稱為核仁組織者區,即NOR。
41. 核型(karyotype)根據染色體的相對大小、著色粒的位置、臂的長短、次縊痕及隨體的有無乃至帶型等特徵,把某種生物體細胞中的全套染色體按照同源染色體配對,依次排列起來,就構成了這一個體的核型。
42. 核骨架(nuclear skeleton)也稱核基質,是間期細胞核內,除去染色質和核仁之外的網架體系和均質物質。其基本形態與細胞質內的細胞骨架相似,且在結構上有一定的聯系,因此也稱為核骨架。與DNA復制和染色體的構建有關。核骨架由3~30um的蛋白纖維和一些顆粒結構組成,主要成分是蛋白質,還含少量的RNA和DNA。核基質可能參與染色體DNA的包裝和構建、DNA復制、基因表達以及核內的一系列生物活動。
43. 細胞外基質(extracellular matrix,ECM)是基體發育過程中,由細胞合成並分泌到細胞外的生物大分子構成德纖維網狀物質,分布於細胞與組織之間、細胞周圍或形成上皮細胞的基膜,將細胞與細胞或細胞與基膜相聯系,構成組織與器官,使其連成有機整體。為細胞的生存及活動提供適宜的場所,並通過信號轉導系統影響細胞的形態、代謝、功能、遷移、增殖和分化。
44. 膠原(collagen)是動物體內含量最豐富的蛋白質,約含人體蛋白質總量的30%以上。它遍布於體內各種器官和組織,是細胞外基質中的框架結構,可由成纖維細胞、軟骨細胞、成骨細胞及某些上皮細胞合成並分泌到細胞外。
45. 前膠原(procollagen)是指帶有前肽的3股螺旋膠原分子。
46. 纖連蛋白(fibronectin.FN)是一種大型的糖蛋白,存在於所有脊椎動物。以可溶的形式存在於血漿及各種體液中,以不溶的形式存在於細胞外基質及細胞表面,可將細胞連接到細胞外基質上。
47. 層粘連蛋白(laminin)是一種大型的糖蛋白,與IV膠原一起構成基膜,是胚胎發育過程中出現最早的細胞外基質成分。
48. 氨基聚糖(glycosaminoglycan,GAC)是重復二塘單位構成德無分支長鏈多糖,二糖單位通常由氨基己糖和糖醛酸組成,但硫酸角質素中糖醛酸由半乳糖代替。
49. 蛋白聚糖(proteoglycan)是氨基聚糖(除透明質酸外)與線性多肽形成的共價結合物,能形成水性的膠狀物。
50. 錨定依賴性(anchorage dependence)正常真核細胞除成熟血細胞外,大多需黏附於細胞外基質才能抑制凋亡而存活,稱為錨定依賴性。
51. 基膜(basement membrane)是上皮細胞下方一層柔軟的特化的細胞外基質,也存在於肌肉、脂肪和神經膜細胞周圍。它不僅起保護和過濾的作用,還決定細胞的極性,影響細胞的代謝、存活、遷移、增殖和分化。
52. 被動運輸(passive transport)物質順濃度梯度,從高濃度到低濃度運輸,不消耗能量。
53. 單純運輸(simple diffusion)不需要膜運輸蛋白幫助,不消耗能量,物質從高濃度到低濃度運輸。
54. 幫助運輸(facilitated diffusion)藉助於細胞膜上載體蛋白的構象改變而順濃度的物質運輸方式。
55. 協同運輸(coupled transport)載體蛋白在運轉一種溶質分子的同時或隨後轉運另一種溶質分子。
56. 主動運輸(active transport)物質逆濃度梯度,從低濃度到高濃度運輸,消耗能量。
57. 結構性分泌途徑(constitutive pathway of secretion)分泌蛋白合成後,立即包裝入高爾基復合體的分泌泡中,然後迅速帶到細胞膜處排出。
58. 調節性分泌途徑(regulated pathway of secretion)分泌蛋白或小分子合成後,儲存在分泌泡中。只有當接受細胞外信號的刺激時,分泌泡才移到細胞膜處,將分泌泡中的物質排出。
59. 信號肽(signal peptide)是位於蛋白質上的一段連續氨基酸序列,一般有15~60個殘基,在引導蛋白質到達目的地後被切除。
60. 信號斑(signal patch)是位於蛋白質不同部位的氨基酸序列,在多肽鏈折疊後形成的一個斑塊區,它是一種三維結構。
61. 信號識別顆粒(signal recognition particle,SRP)是由6個多肽亞單位和1個分子7SrRNA組成的11S核糖體蛋白。它既能識別特異的信號肽,又可以與核糖體的A位點結合。
62. 細胞通訊(cell communication)是指在多細胞生物的細胞社會中,細胞間或通過高度精確和高效發送與接收信息的通訊機制,並通過放大引起快速的細胞生理反應,或者引起成為基因活動,爾後發生一系列的細胞生理活動來協調各組織活動,使之成為生命的統一整體對多變的外界環境作出綜合反應。
63. 信號轉導(signal transction)指細胞外因子通過與受體(膜受體或核受體)結合,引起細胞內的一系列生物化學反應以及蛋白間相互作用,直至細胞生理反應所需基因開始表達、各種生物學效應形成的過程
64. 信號分子(signaling molecules)是指生物體內的某些化學分子,即非營養物,又非能源物質和結構物質,而且也不是酶,它們主要是用來在細胞間和細胞內傳遞信息,如激素、神經遞質、生長因子等統稱為信號分子,它們的唯一功能是同細胞受體結合,傳遞細胞信息。
65. 受體(receptor)是指任何能夠同激素、神經遞質、葯物或細胞內的信號分子結合並能引起細胞功能改變的生物大分子,通常是指位於細胞膜表面或細胞內與信號分子結合的蛋白質。
66. 離子通道偶聯受體(into-channel linked receptor)具有離子通道作用的細胞質膜受體稱為離子通道受體。
67. G蛋白偶聯受體(G-protein linked receptor)配體與受體結合後激活相鄰的G蛋白,被激活的G蛋白又可激活或抑制一種產生特異第二信使的酶活離子通道,引起膜電位的改變。由於這種受體參與的信號轉導作用要與GTP結合的調節蛋白相偶聯,因此它稱為G蛋白偶聯受體。G蛋白偶聯受體是最大的一類細胞表面受體。
68. 酶聯受體(enzyme linked receptor)這種受體蛋白即是受體,又是酶。一旦被配體激活既具有酶活性並將信號放大,又稱催化受體。酶聯受體也是跨膜蛋白,細胞內結構域常常具有某種酶的活性,故稱為酶聯受體。按照受體的細胞內結構域是否具有酶活性將此類受體分成兩大類:缺少細胞內催化活性的酶聯受體和具有細胞內催化活性的受體。
69. 信號級聯放大(signaling cascade)從細胞表面受體接收外部信號到最後作出綜合性應答是一個將信號逐步放大的過程,稱為信號的次級聯放大反應。組成次級聯反應的各個成員稱為一個級聯,主要是由磷酸化和去磷酸化的酶組成。
70. 第二信使(second messengers)細胞表面受體接受細胞外信號後轉換而來的細胞內信號稱為第二信使。細胞內有5種最重要的第二信使:cAMP、cGMP、1,2-二醯甘油、1,4,5-三磷酸肌醇、Ca2+等。
71. GTP結合蛋白(GTP binding protein,G蛋白)與GTP或GDP結合的蛋白質,又叫鳥苷酸結合調節蛋白。從組成上看,有單體G蛋白(一條多肽鏈)和多亞基G蛋白(多條多肽鏈組成)。G蛋白參與細胞的多樣生命活動,如細胞通訊、核糖體與內質網的結合、小泡運輸、蛋白質合成等。
72. 腺苷酸環化酶(adenylate cyclase,AC)是膜整合蛋白,它的N端和C端都朝向細胞質。腺苷酸環化酶在膜的細胞質面有兩個催化結構域,還有兩個膜整合區,每個膜整合區分別有6個跨膜的a螺旋。哺乳動物中已發現6個腺苷酸環化酶異構體。由於腺苷酸環化酶能夠將ATP轉成cAMP,引起細胞的信號應答,因此,腺苷酸環化酶是G蛋白偶聯系統中的效應物。
73. 鈣調蛋白(calmolin)是真核生物細胞中的胞質溶膠蛋白,每個末端有兩個Ca2+結構域,每個結構域可以結合一個Ca2+。這樣,一個鈣調蛋白可以結合4個Ca2+,鈣調蛋白與Ca2+結合後的構型相當穩定。在非刺激的細胞中鈣調蛋白與Ca2+結合的親和力很低。如果由於刺激使細胞中Ca2+濃度升高時,Ca2+同鈣調蛋白結合形成Ca2+-鈣調蛋白復合物,就會引起鈣調蛋白構型的變化,增強了鈣調蛋白與許多效應物結合的親和力。
74. SH結構鹼(SH domain)SH結構域是「Src同源結構域」(Src homology domain)的縮寫(Src是一種癌基因,最初在Rous sarcoma病毒中發現)。這種結構域是能夠與受體酪氨酸激酶磷酸化殘基緊緊結合,形成多蛋白的復合體進行信號傳導。
75. Ras蛋白(Ros protein)Ras是大鼠肉瘤(rat sarcoma,Ras)的英文縮寫。Ras蛋白質是原癌基因c-ras的表達產物,屬單體GTP結合蛋白,具有弱的GTP酶活性。
76. Grb2蛋白(growth factor receptor-bound protein 2)Grb2是生長因子受體結合蛋白2,又叫Ash蛋白。該蛋白參與細胞內各種受體激活後的下游調節,它能夠直接與激活的表皮生長因子(EGF)受體磷酸化的酪氨酸結合,參與EGF受體介質的信號轉導,也能通過與Shc磷酸化的酪氨酸結合間接參與由胰島素受體介導的信號轉導。Grb2蛋白含有一個SH2結構域和兩個SH3結構域,屬SH蛋白。
77. Sos蛋白是編碼鳥苷釋放蛋白的基因sos的產物(sos是son of sevenless的縮寫)。Sos蛋白在Ras信號轉導途徑中的作用是促進Ras釋放GDP,結合GTP,使Ras蛋白由非活性狀態變為活性狀態,所以Sos蛋白是Ras激活蛋白。Sos蛋白不含SH結構域,不屬於SH蛋白。
78. 信號趨異(divergence)是指同一種信號與受體作用後在細胞內分成幾個不同的信號途徑進行傳播,最典型的是受體酪氨酸激酶的信號轉導。
79. 竄擾(crosstalk)是指不同信號傳導途徑間的相互影響,即通常所說的「相互作用」(interaction)。
80. 受體鈍化(receptor desensitization)受體對信號分子失去敏感性稱為受體鈍化,一般是通過對受體的修飾進行鈍化的。如腎上激素受體在絲氨酸和蘇氨酸殘基磷酸化後,則失去對腎上腺素的信號轉導作用。分為同源鈍化(homologousdesensitization)和異源鈍化(heterologousdesensitization)。
81. 受體減量調節(receptor down-regulation)通過內吞作用減少質膜中受體量來調節信號傳導,稱為受體減量調節。
82. 自養生物(autotroph)能夠通過光合作用,將無機物轉化為可被自身利用的有機物的生物,包括含葉綠素的植物和一些有光合作用的細菌。
83. 細胞生物(cellular respiration)細胞內特定的細胞器在O2的參與下,分解各種大分子產生CO2,同時將分解代謝所釋放的能量儲存於ATP中的過程,稱細胞氧化。
84. 氧化磷酸化(oxidative phosphorylation)由高能底物水解放能,直接將高能磷酸鍵從底物轉移到ATP上,使其磷酸化成為ATP的作用。
85. 電子傳遞呼吸鏈(electron transport respiratory chain)在內膜上有序地排列成相互關聯的鏈狀傳遞電子的酶體系,它們能夠可逆地接收和釋放H+和電子。
86. ATP合酶(ATP synthase)基粒位於線粒體的內膜上,由頭部、柄部和基片組成,是生成ATP的關鍵部位,因此稱為ATP合酶。
87. 細胞鬆弛素(cytochalasins)真菌產生的一種代謝物(生物鹼),可以切斷微絲並結合在微絲(+)端,阻抑肌動蛋白聚合,但對解聚沒有影響。
88. 鬼筆環肽(phalloidin)由毒性蘑菇毒蕈產生的一種雙環桿肽生物鹼,與微絲有強親和力,使肌動蛋白纖維穩定,抑制解聚,且只與F-肌動蛋白結合,不與G-肌動蛋白結合。
89. 肌球蛋白(myosin)與微絲運動有關的動力蛋白,分頭部、頸部和尾部。頭部能結合肌動蛋白和ATP。
90. 驅動蛋白(kinesin)與微絲運動有關的動力蛋白,分頭部、頸部和尾部。頭部是產生力的活性部位,尾部能與膜泡結合。
91. 有絲分裂器(mitotic apparatus)有絲分裂中期的一個動態結構,由紡錘體和星體組成。其中星體有3種微管組成;動力微管、極間微管和星體微管。
92. 轉錄(transcription)在細胞核中以DNA為模板合成mRNA的過程,成為轉錄。
93. 翻譯(translasion)mRNA從細胞核進入細胞質,在核糖體上合成蛋白質的過程,稱為翻譯。
94. 轉座子(transposon)即移動基因,是指可以從染色體的一個位置轉移到另一個位置或在不同染色體之間移動的基因。
95. 重疊基因(overlapping gene)是指在同一段DNA序列中存在兩個基因的核苷酸序列彼此重疊的現象。
96. 基因表達(gene expression)DNA分子中由4種鹼基不同組合而構成的遺傳信息通過轉綠「傳抄」給mRNA,進而mRNA通過遺傳密碼將其翻譯成特定蛋白質氨基酸序列的過程,稱為基因表達。
97. 遺傳密碼(genetic code)遺傳信息由DNA通過鹼基互補轉錄至mRNA後,mRNA分子上相鄰的3個核苷酸能合成一種氨基酸或是終止信號者稱為密碼子,所有密碼子統稱為遺傳密碼。
98. 引發體(primosome)由6種蛋白與DNA單鏈結合所形成的引發前體和引物酶組裝而成,能夠識別DNA復制起點位置。
99. DNA復制體(replisome)是指在DNA復制過程中,在復制叉附近,形成的由兩套DNA聚合酶Ⅲ全酶分子、引發體和螺旋酶構成的類似核糖體大小的復合體。
100. 轉錄子(transcription)DNA鏈上從啟動子到終止子為止的長度稱為一個轉錄單位,即轉錄子。
101. 模板鏈(template strand)在DNA的兩條鏈中只有其中一條鏈可作為模板,這條鏈叫作模板鏈。又叫作義鏈。
102. 啟動子(promoter)轉錄是從DNA模板上的特定部位開始的,這個部位也是RNA聚合酶結合的部位,稱為啟動子。
103. 中心法則(central dogma)是指細胞內遺傳信息的流動方向。遺傳信息的流動時從DNA轉錄至RNA,最後流向蛋白質;同時也包括mRNA通過反轉錄酶形成DNA的方式。
104. 細胞增殖(cell proliferation)細胞通過生長和分裂獲得和母細胞一樣遺傳特性的子細胞,使細胞數目成倍增加的過程。
105. 細胞增殖周期(cell generation cycle)從親代細胞分裂結束到子代細胞分裂結束之間的間隔時期。
106. 限制點(restriction point,R點)細胞周期中G1期的特殊調節點,在控制細胞增殖周期起到開和關的「閥門」作用。
107. 有絲分裂促進因子(mitosis-promoting factor,MPF)M期細胞質中存在的異二聚體,由調節細胞進出M期所必須的蛋白質激酶和細胞周期蛋白組成,通過促進靶蛋白的磷酸化調節細胞周期。
108. 紡錘體(mitotic spindle)有絲分裂前期,中心粒分別移向細胞兩級,微管加速聚合,形成紡錘形結構,稱為紡錘體。
109. 細胞周期蛋白(cyclin)是一類隨細胞周期的變化呈周期性出現或消失的蛋白質,可以時相形地激活CDK,從而調控細胞周期。
110. 細胞分裂周期基因(cell division cycle,cdc)細胞內的與細胞周期運轉和調控有關的基因,產物調節細胞周期的進程。
111. 原癌基因(proto-oncogene)正常細胞基因組中存在與病毒癌基因相似的一類基因,產物是正常細胞增殖所必不可少的,突變為癌基因則導致細胞生長失控。
112. 抑癌基因(tumor suppression oncogene)正常細胞中存在可抑制惡性增殖的一類基因,產物可以抑制細胞的生長和分裂。
113. 聯會(synapsis)第1次減數分裂偶線期,同源染色體發生配對現象,稱為聯會。
114. 四分體(tetrad)同源染色體聯會的結果是形成二價體,每個二價體都由兩條同源染色體組成,這樣一個二價體有4條染色單體,稱為四分體。
115. 生長因子(growth factor,GF)通過與膜上受體相結合誘發一系列生理反應,對細胞的增殖活動進行調節的多肽類物質。
116. 抑素(chalone)是一類細胞中產生的對細胞增殖具有抑製作用的調節因子,有些是小分子可溶性蛋白,有些是糖蛋白。
117. 收縮環(contractile ring)有絲分裂末期,胞質分裂開始時,大量肌動蛋白和肌球蛋白在細胞膜下聚集形成收縮環。
118. 分裂溝(cleavage furrow)收縮環通過微絲滑動、直徑逐漸變小、使細胞膜凹陷,產生與紡錘體軸相垂直的分裂溝。
119. 細胞分化(cell differentiation)細胞後代在形態、結構和功能上發生穩定性差異的過程稱為細胞分化。
120. 細胞決定(cell determination)通常情況下,細胞在發生可識別的形態變化前,已經受到約束向著特定的方向分化,確定了未來的發育命運,因此細胞從分化方向確定開始到出現特異形態特徵之前這一時期,稱為細胞決定。
121. 細胞全能性(cell totipotency)是單個細胞在一定條件下增殖、分化發育成為完整個體的能力,具有這種能力的細胞稱為全能型細胞(totipotent cell)
122. 管家基因(housekeeping gene)是維持細胞最低限度功能所不可缺少的基因,對細胞分化一般只有協助作用。
123. 奢侈基因(luxury gene)是指與各種分化細胞的特殊性狀有直接關系的基因,喪失這類基因對細胞的生存並無直接影響。
124. 同源框基因(homeobox gene)凡是含有同源異型基因序列的基因,均稱為同源框基因。
125. DNA甲基化(DNA methylation)是指DNA分子上的胞苷加上甲基形成甲基胞嘧啶的現象,特別多見於CG序列中。
126. 細胞誘導(cell inction)是指一部分細胞對鄰近細胞的形態發生影響,並決定其分化方向的作用。
127. 細胞抑制(cell inhibition)是在胚胎發育中,分化的細胞受到鄰近細胞產生抑制物質的影響,其作用與誘導相對。
128. 癌基因(oncogenes)是控制細胞生長和分裂的正常基因的一種突變形式,能引起正常細胞癌變。
129. 幹細胞(stem cell)是處於分化過程中仍具有增殖分裂能力,並能分化產生一種以上的「專業」細胞的原始細胞。根據其存在的部位以及分化潛能的大小,將其分為胚胎幹細胞和成體幹細胞。胚胎幹細胞是具有分化成為機體任何一種組織器官潛能的細胞,如囊胚內細胞團中的細胞;成體幹細胞是存在於成熟個體各種組織器官中的幹細胞,具有自我更新能力,但通常只能分化成為相應或相鄰組織器官的專業細胞。
130. 成體幹細胞(alt stem cell)是在成體組織中具有自我更新能力,能分化產生一種或一種以上組織細胞的未成熟細胞。例如造血幹細胞、間充質幹細胞、神經幹細胞、表皮幹細胞、腸幹細胞、肝幹細胞等。
131. 轉分化(trans-differentiation)由一種組織類型的幹細胞在適當條件下分化為另一種組織類型細胞的現象。
132. 不對稱分裂(asymmetry division)是細胞分裂時產生異型的細胞,如兩個子細胞一個是幹細胞,而另一個是分化細胞。
133. 過渡放大細胞(transit amplifying cell)是介於幹細胞和分化細胞之間的過渡細胞,其分裂較快,經若干次分裂後產生分化細胞,起作用是可以通過較少的幹細胞產生較多的分化細胞。
134. 衰老(aging)又稱老化,通常指在正常狀況下生物發育成熟後,隨年齡增加,自身功能減退,內環境穩定能力與應激能力下降,結構、組分逐步退行性變,趨向死亡的不可逆轉的現象。
135. 自由基(free radical)是指在外層軌道上具有不成對電子的分子或原子基團,是一種高度活化的分子,它可奪取其他物質的電子,使該物質氧化,進而對細胞產生有害的生物效應。
⑶ 生態學上環境的內涵;地境與生境的概念;微環境與內環境的概念。
1.環境:指影響生物機體生命、發展與生存的所有外部條件的總體。對生物學來說,環境是指生物生活周圍的氣候、生態系統、周圍群體和其他種群。
2.地境:指地形環境。
3.生境(habitat)一詞,是由美國Grinnell(1917)首先提出,其定義是生物出現的環境空間范圍,一般指生物居住的地方,或是生物生活的生態地理環境。
4.微環境:指一個極微小的環境區域。如圍繞一個分子或分子的一個功能基團、一個單細胞、一小群細胞或機體的環境。
5.內環境:細胞在體內直接所處的環境即細胞外液,稱之為內環境。
⑷ 生物學是什麼!
生物學是研究生物(包括植物、動物和微生物)的結構、功能、發生和發展規律的科學,是自然科學的一個部分。
研究生物分類的方法和原理的生物學分支。分類就是遵循分類學原理和方法,對生物的各種類群進行命名和等級劃分。
瑞典生物學家林奈將生物命名後,而後的生物學家才用域(Domain)、界(Kingdom)、門( Phylum)、綱(Class)、目(Order)、科(Family)、屬(Genus)、種(Species)加以分類。
最上層的界,由懷塔克所提出的五界,比較多人接受;分別為原核生物界、原生生物界、菌物界、植物界以及動物界。 從最上層的「界」開始到「種」,愈往下層則被歸屬的生物之間特徵愈相近。共有七大類,分別是:界門綱目科屬種。
(4)細胞微環境系統生物學什麼意思擴展閱讀
生物在地球歷史中有著40億年左右的發展進化歷程。大約有1500萬種生物已經絕滅,它們的一些遺骸保存在地層中形成化石。
古生物學專門通過化石研究地質歷史中的生物,早期古生物學多偏重於對化石的分類和描述,來生物學領域的各個分支學科被引入古生物學,相繼產生古生態學、古生物地理學支學科。有人建議,以廣義的古生物生物學代替原來限於對化石進行分類描述的古生物學。
生物的類群是如此的繁多,需要一個專門的學科來研究類群的劃分,這個學科就是分類學。林奈時期的分類以物種不變論為指導思想,只是根據某幾個鑒別特徵來劃分門類,習稱人為分類。
現代的分類是以進化論為指導思想,根據物種在進化上的親疏遠近進行分類,通稱自然分類。現代分類學不僅進行形態結構的比較,而且吸收生物化學及分子生物學的成就,進行分子層次的比較,從而更深刻揭示生物在進化中的相互關系。
生物學中有很多分支學科是按照生命運動所具有的屬性、特徵或者生命過程來劃分的。
⑸ 微生物學的名詞解釋
微生物學(Microbiology)是生物學的分支學科之一,它是在分子、細胞或群體水平上研究各類微小生物(細菌、放線菌、真菌、病毒、立克次氏體、支原體、衣原體、螺旋體原生動物以及單細胞藻類)的形態結構、生長繁殖、生理代謝、遺傳變異、生態分布和分類進化等生命活動的基本規律,並將其應用於工業發酵、醫學衛生和生物工程等領域的科學。
概述
微生物的含義:非分類學上名詞,來自法語「Microbe」一詞。是形體微小、單細胞或個體結構簡單的多細
胞、甚至無細胞結構的低等生物的通稱。
種類:微生物類群十分龐雜,包括:無細胞結構的病毒、類病毒、擬病毒等,
屬於原核生物的細菌、放線菌、立克次氏體、衣原體等,
屬於真核生物的酵母菌和黴菌,單細胞藻類、原生動物等。
兩界系統
動物界Animalia:不具細胞壁,可運動,不進行光合作用。
植物界Plantae:具有細胞壁,不運動,可進行光合作用。
三界:原生生物界Protista:(E.H.Haeckel,1866年提出)
五界系統
原核生物界Monera:細菌、放線菌等
原生生物界Protista:藻類、原生動物、粘菌等
真菌界Fungi:酵母、黴菌
動物界Animalia:
植物界Plantae:
五界系統是以細胞結構分化的等級以及和光合、吸收、攝食這三種主要營養方式有關的組織類型為基礎的。六界:加上病毒界。
三界(域)系統
Woese用寡核苷酸序列編目分析法對60多株細菌的16SrRNA序列進行比較後,驚奇地發現:產甲烷細菌完全沒有作為細菌特徵的那些序列,於是提出了生命的第三種形式--古細菌(archaebacteria)。隨後他又對包括某些真核生物在內的大量菌株進行了16SrRNA(18SrRNA)序列的分析比較,又發現極端嗜鹽菌和極端嗜酸嗜熱菌也和產甲烷細菌一樣,具有既不同其他細菌也不同於其核生物的序列特徵,而它們之間則具有許多共同的序列特徵。於是提出將生物分成為三界(Kingdom)(後來改稱三個域):古細菌、真細菌(Eubacteria)和真核生物(Eukaryotes)。1990年,他為了避免把古細菌也看作是細菌的一類,他又把三界(域)改稱為:Bacteria(細菌)、Archaea(古生菌)和Eukarya(真核生物),並構建了三界(域)生物的系統樹。
微生物特點
1.體積小、比表面積大
微生物的大小以μm計,但比表面積(表面積/體積)大,必然有一個巨大的營養吸收,代謝廢物排泄和環境信息接受面。這一特點也是微生物與一切大型生物相區別的關鍵所在。
舉例:乳酸桿菌:120,000;雞蛋:1.5;人(200磅):0.3
2.吸收多、轉化快
這一特性為高速生長繁殖和產生大量代謝物提供了充分的物質基礎。
舉例:3克地鼠每天消耗與體重等重的糧食;1克閃綠蜂鳥每天消耗兩倍於體重的糧食;大腸桿菌每小時消耗2000倍於體重的糖;發酵乳糖的細菌在1小時內就可以分解相當於其自身重量1,000~10,000倍的乳糖,產生乳酸;1公斤酵母菌體,在一天內可發酵幾千公斤的糖,生成酒精
3.生長旺、繁殖快
極高生長繁殖速度,如E.coli20-30分鍾分裂一次,若不停分裂,48小時2.2×10^43菌數增加,營養消耗,代謝積累,限制生長速度。這一特性可在短時間內把大量基質轉化為有用產品,縮短科研周期。也有不利一面,如疾病、糧食霉變。舉例:Escherichiacoli(大腸桿菌)在最適的生長條件下,每12.5~20分鍾細胞就能分裂一次;在液體培養基中,細菌細胞的濃度一般為108~109個/ml;谷氨酸短桿菌:搖瓶種子→50噸發酵罐:52小時內細胞數目可增加32億倍。利用微生物的這一特性就可以實現發酵工業的短周期、高效率生產。例如生產鮮酵母時,幾乎12小時就可以收獲一次,每年可以收獲數百次。
⑹ 什麼是細胞生物學有補充嗎
細胞生物學是生命科學研究的重要基礎學科之一```對細胞的研究基本是三個方面的,顯微,亞顯微,分子.醫學的細胞生物學一般都是先講發展```然後內容```內容分為:細胞的起源和進化,研究方向和手段,然後就是細胞內部的結構的細分```
⑺ 生物學基本系統概念是什麼
生物學是研究生物(包括植物、動物和微生物)的結構、功能、發生和發展規律的科學。自然科學的一個部分。目的在於闡明和控制生命活動,改造自然,為農業、工業和醫學等實踐服務。
幾千年來,我國在農、林、牧、副、漁和醫葯等實踐中,積累了有關植物、動物、微生物和人體的豐富知識。1859年,英國博物學家達爾文《物種起源》的發表,確立了唯物主義生物進化觀點,推動了生物學的迅速發展。
研究意義
生物與人類生活的許多方面都有著非常密切的關系。生物學作為一門基礎科學,傳統上一直是農學和醫學的基礎,涉及種植業、畜牧業、漁業、醫療、制葯、衛生等等方面。
隨著生物學理論與方法的不斷發展,它的應用領域不斷擴大。生物學的影響已突破上述傳統的領域,而擴展到食品、化工、環境保護、能源和冶金工業等等方面。如果考慮到仿生學,它還影響到電子技術和信息技術。
⑻ 細胞生物學和生態學都包括什麼
細胞生物學是以細胞為研究對象,從細胞的整體水平、亞顯微水平、分子水平等三個層次,(斯。諾。美。A11-走在生物醫學的最前沿)以動態的觀點,
研究細胞和細胞器的結構和功能、細胞的生活史和各種生命活動規律的學科。
生態學按基本內容與分類編輯
按所研究的生物類別分
有微生物生態學、植物生態學、動物生態學、人類生態學等。
生物系統的結構層次分
有:個體生態學、種群生態學、群落生態學,生態系統生態學等。
生物棲居的環境類別分
有陸地生態學和水域生態學;前者又可分為森林生態學、草原生態學、荒漠生態學、土壤生態學等,後者可分為海洋生態學、湖沼生態學、流域生態學等;還有更細的劃分,如:植物根際生態學、腸道生態學等。
生態學與非生命科學相結合的,有數學生態學、化學生態學、物理生態學、地理生態學、經濟生態學、生態經濟學、森林生態會計等;與生命科學其他分支相結合的有生理生態學、行為生態學、遺傳生態學、進化生態學,古生態學等。
應用性分支學科有:農業生態學、醫學生態學、工業資源生態學、環境保護生態學、環境生態學、生態保育、生態信息學、城市生態學、生態系統服務、景觀生態學等。
⑼ 系統生物學和合成生物學有何關系
系統生物學是研究一個生物系統中所有組成成分(基因、mRNA、蛋白質等)的構成,以及在特定條件下這些組分間的相互關系的學科(注,該定義在國際國內都引起異議,缺乏系統論基礎)。也就是說,系統生物學不同於以往的分子生物學——僅關心個別的基因和蛋白質,它要研究所有的基因、所有的蛋白質、組分間的所有相互關系。顯然,系統生物學是以系統論、整體性研究為特徵的一種交叉科學。
20 世紀生物學從宏觀到微觀進步巨大, 傳統的分析還原的研究方法受到質疑。在此背景下, 系統生物學是繼基因組學、蛋白質組學之後一門新興的生物學交叉學科。從系統角度來進行生物學研究逐步成為現代生物學研究方法的主流。在研究上, 了解一個復雜的生物系統需要整合實驗和計算方法、基因組學和蛋白質組學中的高通量方法為系統生物學發展提供大量的數據, 計算生物學通過數據處理、模型構建和理論分析, 成為系統生物學發展的一個必不可缺的、強有力的工具, 已經在諸多醫學前沿領域的研究中成為重要研究方法而被廣泛應用。
⑽ 細胞和微生物有什麼區別
1、定義不同
細胞:細胞 (英文名:cell)並沒有統一的定義,比較普遍的提法是:細胞是生物體基本的結構和功能單位。已知除病毒之外的所有生物均由細胞所組成,但病毒生命活動也必須在細胞中才能體現。
微生物:個體難以用肉眼觀察的一切微小生物之統稱。微生物包括細菌、病毒、真菌和少數藻類等。
病毒是一類由核酸和蛋白質等少數幾種成分組成的「非細胞生物」,但是它的生存必須依賴於活細胞。根據存在的不同環境分為空間微生物、海洋微生物等,按照細胞結構分類分為原核微生物和真核微生物。
2、特徵不同
細胞:所有的細胞表面均有由磷脂雙分子層與鑲嵌蛋白質及糖被構成的生物膜(注意 :癌細胞無糖被,容易遊走擴散),即細胞膜。
所有的細胞都含有兩種核酸:即DNA與RNA。
作為遺傳信息復制與轉錄的載體。
作為蛋白質合成的機器─核糖體,毫無例外地存在於一切細胞內。核糖體,是蛋白質合成的必須機器,在細胞遺傳信息流的傳遞中起著必不可少的作用。
基本上所有細胞的增殖都以一分為二的方式進行分裂。(少數不是,如藍藻的有些種類從老細胞內產生新細胞)
部分細胞能進行自我增殖和遺傳(高度分化的細胞無法自我增殖。)
新陳代謝。
細胞都具有運動性,包括細胞自身的運動和細胞內部的物質運動。
註:病毒不具有細胞結構。
微生物:生長繁殖快,相比於大型動物,微生物具有極高的生長繁殖速度。大腸桿菌能夠在12.5-20分鍾內繁殖1次。不妨計算一下,1個大腸桿菌假設20分鍾分裂1次,1小時3次,1晝夜24小時分裂24×3=72次,大概可產生4722366500萬億個(2的72次方),這是非常巨大的數字。
但事實上,由於各種條件的限制,如營養缺失、競爭加劇、生存環境惡化等原因,微生物無法完全達到這種指數級增長。 已知大多數微生物生長的最佳pH范圍為7.0 (6.6~7.5)附近,部分則低於4.0。
3、研究歷史不同
細胞:細胞(Cells)是由英國科學家羅伯特·胡克(Robert Hooke,1635~1703)於1665年發現的。當時他用自製的光學顯微鏡觀察軟木塞的薄切片,放大後發現一格一格的小空間,就以英文的cell命名之,而這個英文單字的意義本身就有小房間一格一格的用法,所以並非另創的字匯。
微生物:微生物的形態觀察是從安東尼·列文虎克發明顯微鏡開始的,他利用能放大50~300倍的顯微鏡,清楚地看見了細菌和原生動物,他的發現和描述首次揭示了一個嶄新的生物世界——微生物世界。在微生物學的發展史上具有劃時代的意義。