① 化學分析都有哪些手段
主要是化學分析法,電化學分析法和儀器分析法。化學分析法又分為定量分析和定性分析,定性分析主要是分析溶液中陽離子存在與否,採用硫化物五個系列,如Cu2+,Fe3+等等,定量分析主要是滴定分析和重量法分析,如酸鹼滴定,沉澱滴定,氧化還原滴定和配位滴定,重量分析如BaSO4沉澱,用馬弗爐培燒稱重,計算含量。儀器分析又包括紅外光譜法,原子吸收法,氣相液相色譜法,元素分析法,ICP等等,很多,按需要選擇。
② 土壤修復的化學方法有哪些
總體劃分可以分為物理,化學和生物方法。物理方法可以包括機械翻土,客土等稀釋方法。但是這種方法的缺點在於,可能會導致土壤的物理化學性質改變,因為深層土壤的氧化還原電位不一樣,所以翻土後可能會讓一些物質發生氧化還原反應,產生負效應。化學方法包括電化學、淋洗、氣提等等。但是化學方法的問題是,所用的葯劑可能會產生二次污染。生物方法一種環境友好型方法。比如植物修復,微生物修復,以及植物-微生物聯合修復。但是此方法的缺點是修復周期較長,往往需要幾年到幾十年的時間。綜上所述,每種方法有各自的優缺點,一般在實際修復工程中,需要聯合幾種不同的技術來達到最優的效果。
③ 化學分析都有哪些方法
按照習慣大類分成化學分析法,電化學分析法和儀器分析法
化學分析裡麵包括滴定法(氧化還原滴定,酸鹼滴定,絡合滴定等),重量分析法等等
電化學分析裡麵包括循環伏安,極譜,電解等等方法
儀器分析就更多了,紫外可見分光光度法(UV-Vis),原子發射光譜法,色譜法(包括氣相色譜GC,高效液相色譜HPLC),毛細管電泳(CE),核磁共振(NMR),X粉末多晶衍射(XRD),質譜(MS)等等~
化工數據處理一般都是套用每個反應不同的熱力學和動力學模型來做的,特別是表觀動力學是肯定要做的
④ 化學實驗中,常用的方法有哪些
銅和硝酸的反應、二氧化硫的性質、銅氨纖維的制備等實驗都是高中化學教材中重要的演示實驗,對於探究物質的性質和用途,起著積極的作用。
⑤ 化學分析都有哪些方法
化學分析方法多了去了
按照習慣大類分成化學分析法,電化學分析法和儀器分析法
化學分析裡麵包括滴定法(氧化還原滴定,酸鹼滴定,絡合滴定等),重量分析法等等
電化學分析裡麵包括循環伏安,極譜,電解等等方法
儀器分析就更多了,紫外可見分光光度法(UV-Vis),原子發射光譜法,色譜法(包括氣相色譜GC,高效液相色譜HPLC),毛細管電泳(CE),核磁共振(NMR),X粉末多晶衍射(XRD),質譜(MS)等等~
化工數據處理一般都是套用每個反應不同的熱力學和動力學模型來做的,特別是表觀動力學是肯定要做的
⑥ 化學研究的方法有哪些
1. 實驗法。這是最普遍的方法。根據基本原理及你的總體設計路線,通過N多具體實驗驗證,得到測試數據,然後分析,歸納,總結……
2. 理論計演算法。利用現代電腦技術,再根據理論模型及其相關假設,編程、計算、預測,最好再配合實驗數據驗證、分析、總結。
3. 歸納法。從已有的N多實驗數據、已驗證數據等,歸納總結別人還沒有注意或發現的特殊規律。不過,這在現代,已經很難撿到這樣的漏了。前面的研究人員都是很聰明的。
4. 經驗法。根據生產、生活實踐中的經驗積累,總結一些特別的、專門的技術,常可以得到專利,也很能取得經濟效益。但要足具慧眼。
⑦ 化學方法
在地球表面的各類水體中,湖水化學性質的變化幅度最大;而且古湖水的化學性質對於生烴條件關系極大。因此,化學方法在古湖泊研究中佔有特殊地位。古湖泊研究中的化學方法,包括同位素化學、無機化學和有機地球化學三方面。
(一)穩定同位素化學
穩定同位素地球化學方法早已是大洋地層學和古海洋學研究中不可缺少的一種手段(同濟大學海洋地質系,1989)。近年來,該方法在古湖泊學研究中的應用亦越來越受到重視,且有從第四紀古湖泊學研究向第三紀古湖泊學研究推廣應用之趨勢(劉傳聯,1993)。
古湖泊學研究中的穩定同位素分析以氧(18O/16O)、碳(13C/12C)、鍶(87Sr/86Sr)三種同位素最為重要,分析材料可以是生物化石殼體,也可以是碳酸鹽岩。穩定同位素分析在古湖泊學研究中的應用十分廣泛,可以研究古湖泊水體的物理特徵(如湖泊的封閉和開放性、湖水面變化)、化學特徵(如古鹽度、硫酸鹽含量與鹼度)和生物特徵(如古生產力),也可以研究古湖泊的氣候條件。泥頁岩中有豐富的古生物化石,又含有碳酸鹽礦物或者與碳酸鹽岩共生或互層,這為進行同位素分析提供了素材。
1.氧、碳同位素
利用湖相沉積中化石或碳酸鹽岩氧碳同位素的相關性可以研究生油湖泊的封閉性和開放性。通過對現代不同類型湖泊中碳酸鹽氧、碳同位素進行大量測試後發現:開放型淡水湖泊中,原生碳酸鹽δ18O和δ13C之間不相關或略呈相關,而且δ18O和δ13C均為負值,其投點落在第三象限,如瑞士Greifen湖、美國Henderson湖和以色列Huleh湖;而封閉型鹹水、半鹹水湖泊中,δ18O和δ13C之間呈明顯的相關關系,相關系數(r)一般大於0.7,封閉性越強,相關系數越大,且δ18O正負均有,δ13C則基本屬正值,其投點落在第一、四象限,如美國大鹽湖(r=0.87)、圖爾卡納湖(r=0.86)、Natron-Magadi湖(r=0.84)。
上述規律出現的原因是,開放型湖泊中,水體快速更替,停留時間短,湖水同位素的演化微乎其微,其氧、碳同位素更多地反映了注入水的同位素特徵,因此在其中形成的原生碳酸鹽氧和碳同位素組分的變化各自獨立。封閉型湖泊中則不然,由於水體停留時間長,蒸發作用對湖水的化學組成起決定性的作用。隨著蒸發作用的增強,較輕的16O和12C優先從湖水表面逸出,造成湖水中的18O和13C含量增加,使得湖水的δ18O和δ13C較注入水明顯偏正。同時由於這種演化作用對於氧、碳同位素是同步的,所以兩者呈明顯的共變趨勢,反映在其中形成的原生碳酸鹽同位素成分上,δ18O和δ13C呈明顯的相關性。
這一規律已成為判斷第四紀古湖泊或更老湖泊封閉性的標志之一,並已有許多成功的例子。如對迦納Bosumtwi湖晚更新世—全新世沉積、對東非Kivu湖晚第四紀沉積、對西班牙Cenajo盆地中新世沉積和蘇格蘭Orcadian盆地泥盆紀沉積的研究等。
在水文條件封閉、水體停留時間長的封閉湖泊中,蒸發作用是控制氧同位素的決定因素。隨著蒸發作用的增強,使湖水的δ18O值增加,反映在其中生活的介形蟲殼體上,δ18O值也增加。所以,可以根據介形蟲殼體δ18O值的變化,可以恢復蒸發/降雨古氣候條件的變化。在封閉湖泊中,蒸發/降雨條件的變化必然引起古湖水面的波動。蒸發量大於降雨量,湖水面降低,反之則湖水面升高。所以,據介形蟲殼體δ18O值的變化同樣可以再造古湖水面的變化情況。
利用湖相沉積中化石或碳酸鹽岩碳同位素變化還可以恢復古生產力的變化。湖相原生碳酸鹽的碳同位素組分與其生活水體中溶解無機碳的碳同位素組分平衡。而影響湖水溶解無機碳碳同位素組分的一個重要因素就是湖泊的生產力。Stiller等(1980)曾提出湖泊溶解無機碳(DIC)的碳同位素組分生產力控制模式。按該模式,在穩定分層條件下,當浮游植物勃發、生產力高時,浮游植物通過光合作用吸收較多的12C,使表層水體中溶解無機碳儲庫中13C含量相對增加,從而使表層水體中形成的原生碳酸鹽的δ13C值偏高;而隨著12C富集的有機質不斷下沉,使得湖下層生活的底棲生物殼體的δ13C值逐漸降低。
這是深水分層湖泊的模式,對於淺水、不分層的湖泊來說,則有極大的不同。當湖水生產力高,造成水體中DIC儲庫中13C含量增加時,生活在其中的介形蟲也是「受益者」。其殼體的δ13C值也應是增高,而不是降低。
利用沉積物中有機質碳同位素的變化可以判斷出沉積物中有機質的來源。湖泊沉積物中的有機質有兩個來源,即陸生植物和水生植物。陸生植物按照光合作用固碳方式和初級產物的碳原子數不同可分出C3植物、C4植物和CAM植物。陸生植物中,絕大多數喬木和灌木是C3植物,草本植物主要是C4植物。
C3植物和C4植物以不同的生物化學方法固定CO2,它們具有完全不同的δ13C值。C3植物的δ13C值值變化范圍較大,在一般的情況下,它們的δ13C值大約在-22‰~-34‰之間,而C4植物的δ13C值的變化在-20‰~-9‰之間。
浮游植物利用與大氣CO2保持平衡的水中溶解CO2作為光合作用的碳源,其δ13C值與陸生C3植物的δ13C值接近,最大可偏負至-35.5‰。
所以,根據沉積有機質的碳同位素特徵可以判別有機質的物源。
2.鍶同位素
現代研究表明,生物碳酸鹽骨骼中的87Sr/86Sr比值與其生活的海水保持平衡,地質歷史上海水的87Sr/86Sr比值在不斷變化,但任一時期全球海水的87Sr/86Sr比值則是均一的(Elderfield,1986);同時人們還發現由於河、湖水中的鍶與海水中的鍶來源物質的不同,造成河、湖水的87Sr/86Sr比值明顯高於海水,如現代海水的87Sr/86Sr比值為0.709,河水中的87Sr/86Sr比值為0.711(Wadleigh等,1985)。另外,海水中鍶的濃度也與河、湖水相差懸殊,如新生代海水中鍶含量在102~103 mg/L之間(DePaolo等,1985;Koepnick等,1985),河、湖水中鍶含量多在100~102μg/L之間(Wadleigh等,1985),兩者相差3個數量級。如果海水與湖水相混(即使少量海水),水體仍反映海水87Sr/86Sr比值。所以,這樣就為利用87Sr/86Sr比值來判別「海相」、「陸相」奠定了理論基礎,無論正常海相還是與海水有關連的海陸過渡相化石都應呈現其生活時期海水的87Sr/86Sr比值(劉傳聯,1993)。
(二)無機化學
CaCO3含量分析、Sr、Ca、Mg等微量元素含量分析和常量元素分析是古湖泊學研究中常用的方法。由於介形蟲化石是湖相沉積中最常見的微體化石,對其微量元素的分析顯得格外重要,這里特別做一簡介。
介形蟲在蛻殼過程中,從其生活的水體中攝取化學成分建造新殼體(Turpen等,1971),因此,介形蟲殼體中的化學成分應記錄了水體的化學特徵。十多年,許多學者致力探索介形蟲殼體化學成分與水環境參數之間的關系,迄今報道最多的是關於介形蟲殼體中Sr/Ca和Mg/Ca摩爾比值的環境意義,而對其他微量元素的涉及尚少。Chivas等(1983,1985,1986)通過對澳大利亞鹽湖中介形蟲調查和室內飼養,指出介形蟲殼體的Sr/Ca和Mg/Ca比值與其生活水體中相應的元素比值呈定量的正相關。由於澳大利亞鹽湖中的Sr和Mg含量隨鹽度的增加而增加,因此,介形蟲殼體中Sr/Ca和Mg/Ca比值具有明顯的鹽度意義。盡管還存在不同的爭議(如Teeter等,1990),一些學者已應用這種關系,在古環境研究中把介形蟲殼體的Sr/Ca和Mg/Ca比值當作古鹽度的一個標志(Gasse等,1987;De Deckker等,1988;Anadon等,1990;Lister等,1991;Holmes等,1992;張彭熹等,1989,1994)。
對介形蟲殼體中其他微量元素的研究尚少見。Carbonel等(1988)報道了介形蟲殼體中的鹼土金屬含量與水體鹽度呈正相關,並且指出殼體中Ca、Mg含量隨水體由少營養向真營養的發展而減少了,而P、Mn、Fe的含量增加。Bodergat等(1985,1991)研究了地中海海岸帶介形蟲,指出介形蟲殼體在少鹽水中富含Si、Al、Fe、Mn和Ba,在超鹽水中以P、Sr和Li為特徵;殼體中S的含量與水體中有機質有關,殼體中P的含量則反映了水體中有機磷的含量。
總之,對介形蟲殼體化學元素的研究起步不久,對它們的環境意義尚遠不夠了解。盡管如此,無機沉積物元素地球化學和湖泊學兩者的研究成果,可以借鑒來解釋介形蟲殼體中諸多元素的環境意義(鄧宏文等,1993;李世傑等,1993)。介形蟲殼體化學元素測定可以通過質子激發X熒光分析(PIXE)技術來完成。
(三)有機地球化學
有機地球化學雖然主要著眼於烴源岩的生烴能力研究,但是同樣在古環境再造方面有巨大的潛力。這是因為沉積有機質的豐度和演化不僅與埋藏史、地熱演化史有關,而且還受控於沉積環境。所以,有機地球化學也是含油盆地古湖泊學研究的一項重要方法(鄧宏文等,1993)。
烴源岩中有機質類型的差異主要與原始生物類型及組合有關,而後者又主要取決於生物的生存環境,因而有機質類型可作為判別古環境的首要標志。具體來說可以根據乾酪根組成與類型、乾酪根碳同位素、正烷烴組成等來判別沉積環境。
生物標記化合物是識別古環境的另一項重要內容。生物標記化合物是指在有機質岩石中仍能在一定程度上保存了原始生物化學成分的基本格架的有機化合物。它的特殊的「標志作用」可以來識別有機質來源、有機質類型和沉積環境。生物標志化合物使有機地球化學將有機質提高到分子級的研究水平。從近代沉積物中可以見到不同類型的烴類或各種有關的分子,這些分子可以來自陸生植物,也可以來自海洋或湖泊的水生生物。分子的碳骨架被保存下來,它們能夠聯結成一些結構類型,如甾族化合物萜烯化合物等。生物標志化合物包括正構烷烴、類異戊間二烯烷烴、甾烷、萜烷、芳甾類烴及卟啉等。例如,正構烷烴類中<C22分子結構類型與≥C22分子結構類型的生源意義明顯不同,前者指示菌藻類,而後者是陸生高等植物高蠟質特徵。甾烷類中的4-甲基甾烷是水生的浮游植物甲藻類的標志。
一些有機地球化學參數還具有特殊的意義。如可根據有機碳含量、姥鮫烷/植烷比值、碳優勢指數等判別烴源岩沉積時的氧化-還原條件。可根據伽馬蠟烷含量和植烷優勢等判別古鹽度的高低。
除上以外,目前在油氣勘探中廣泛應用的有機相分析也是一類重要的方法。在第九章中對該方法進行了詳細描述,此處不在贅述。同時,在第十章到十三章論述中國近海各湖盆的生烴條件時,也應用了許多上面提到的有機地球化學指標。
⑧ 化學法兩大類,兩法各有什麼特點
(1)微生物檢定法
優點:靈敏度高、需用量少、與臨床效果一致、干擾物質少;缺點:操作繁瑣、培養時間長、測定誤差大。
(2)理化方法
優點:准確度高、簡單快速;缺點:易被干擾。