『壹』 怎樣提出一個反應的動力學模型
反應動力學是研究化學反應速率以及各種因素對化學反應速率影響的學科。傳統上屬於物理化學的范圍,但為了滿足工程實踐的需要,化學反應工程在其發展過程中,在這方面也進行了反應動力學大量的研究工作。絕大多數化學反應並不是按化學計量式一步完成的,而是由多個具有一定程序的基元反應(一種或幾種反應組分經過一步直接轉化為其他反應組分的反應,或稱簡單反應)所構成。反應進行的這種實際歷程稱反應機理。
一般說來,化學家著重研究的是反應機理,並力圖根據基元反應速率的理論計算來預測整個反應的動力學規律。化學反應工程工作者則主要通過實驗測定,來確定反應物系中各組分濃度和溫度與反應速率之間的關系,以滿足反應過程開發和反應器設計的需要。
按化學反應的不同特點和不同的應用要求,常用的動力學模型有:
基元反應模型根據對反應體系的了解,擬定若干個基元反應,以描述一個復雜反應
反應動力學
(由若干個基元反應組成的反應)。按照擬定的機理寫出反應速率方程,然後通過實驗來檢驗擬定的動力學模型,估計模型參數。這樣得到的動力學模型稱為基元反應模型。合成氨的鏈反應機理動力學模型即為一例。
分子反應模型根據有關反應系統的化學知識,假定若干分子反應,寫出其化學計量方程式。所假設的反應必須足以反映反應系統的主要特徵。然後按標准形式(冪函數型或雙曲線型)寫出每個反應的速率方程。再根據等溫(或不等溫)動力學實驗的數據,估計模型參數。這種方法已被成功地用於某些比較復雜的反應過程,例如乙烷、丙烷等烴類裂解。
經驗模型從實用角度出發,不涉及反應機理,以較簡單的數學方程式對實驗數據進行擬合,通常用冪函數式表示。
對於有成千上萬種組分參加的復雜反應過程(如石油煉制中的催化裂化),建立反應動力學
描述每種組分在反應過程中的變化的分子反應模型是不可能的。近年來發展了集總動力學方法,將反應系統中的所有組分歸並成數目有限的集總組分,然後建立集總組分的動力學模型。集總動力學模型已成功地用於催化裂化、催化重整、加氫裂化等石油煉制過程。
『貳』 化學反應動力學
5.2.1.1 化學反應速率與化學反應動力學方程
化學反應動力學方程主要以速率方程的形式表達。
化學反應一般的化學計量表達式可表示為:
地球化學原理與應用
式中:vi為化學計量系數;Yi為參加反應的物質。vi對產物為正值,對反應物為負值,其反應速度定義為:
地球化學原理與應用
式中:ξ為反應進程度,定義為:
ξ(t)={[Yi]-[Yi]0}/vi
當離開平衡狀態時,總反應速度為:
地球化學原理與應用
顯然化學反應速度方程是非線性的。其中Rf和Rr分別正、逆反應速度,[Yi]的指數叫做該反應對物質i的反應級數,vi=1稱為一級反應,vi=2稱為二級反應,其餘類推。
對於一級反應速度方程為:
地球化學原理與應用
對於簡單可逆一級反應A=B,速度方程為:
地球化學原理與應用
對於不可逆二級反應,速度方程為:
地球化學原理與應用
對於簡單可逆二級反應,速度方程可有下列5種形式:
地球化學原理與應用
5.2.1.2 化學反應速度理論與化學反應速率常數
地球化學反應速率的獲得一般有3個方面的途徑:一是實驗測定,其指導思想是唯象方法,即力圖將一個體系的反應速率與體系的可觀測的宏觀物理量(如成分、溫度、壓力、體積和時間等)聯系起來,用宏觀參數表達其速度常數,根據體系的不同,可分別採取初始速率法、唯象速率的積分-弧立法、弛豫法、多級反應方法等;二是通過分子結構理論,由單相的性質推導出多相反應的速率及其機制,即在原子和分子的級別上,了解反應進行的本質;三是精細礦物學工作,獲得礦物的精細結構、缺陷、內部分帶及有序無序的分配等方面的性質,以推導出礦物晶體生長及物質擴散的速率及機制。第一個和第三個途徑分別屬於實驗地球化學和實驗礦物學的范疇,不在此討論。這里主要涉及與速率理論有關的第二方面的內容。
反應速度理論主要有「碰撞理論」和「過渡態理論」。
(1)碰撞理論
碰撞理論是在分子運動論基礎上,接受了阿累尼烏斯關於「活化分子組」和「活化能」的概念而發展起來的。以簡單反應A+B→C為例,認為A和B分子的碰撞接觸是發生化學反應的前提,而且只有那些能量較高的活化分子組的碰撞即所謂「有效碰撞」,並能滿足一定空間配置幾何條件時反應才能發生。
反應物分子的碰撞以ZAB代表A和B兩種分子在單位時間、單位體積內的碰撞數,並稱為碰撞頻率;nA和nB分別代表每毫升中A和B的分子數;dAB代表A和B分子半徑之和;V代表分子平均相對速度;M代表分子量,MA與MB分別代表分子A與分子B的分子量,則據分子運動論求得:
地球化學原理與應用
式中:ZAB為當CA=CB=1mol/L時,每升每秒內A和B發生碰撞的摩爾組數。
有效碰撞頻率是指活化能指數
地球化學原理與應用
因此有:
地球化學原理與應用
從而反應速率為:
地球化學原理與應用
它與質量作用定律應用於簡單反應A+B→C所得速率方程V=kCACB相比較得:
地球化學原理與應用
(2)過渡態理論
過渡態理論,又稱為活化絡合物理論。它認為在一個反應中,先形成一種過渡態物質不穩定的活化絡合物,這種活化絡合物一方面能迅速地與反應物達到熱力學平衡,另一方面可分解為產物,化學反應的速度就是單位時間、單位體積內活化絡合物分解的量。
反應式可寫成:
A+BC=A…B…C→AB+C (5.25)
式中:A,B,C各代表一個原子,…代表不穩定結合。由A與BC反應生成AB+C的反應速率主要由A+BC反應形成活化絡合物A…B…C的速率決定,其反應速度為:
地球化學原理與應用
式中:NA和NB為A和B的分子數;qA和qB分別為A和B絡合物的配分函數;
地球化學原理與應用
若以平均穿透系數
地球化學原理與應用
這就是艾林方程,它表明利用反應物及活化絡合物的結構數據就可計算出反應的速度常數K(T)。
過渡態理論可以運用於氣相、液相和復相反應,目前地球化學中的反應動力學理論主要建立在過渡態理論上。
『叄』 化學反應動力學的三個參數
化學反應動力學的三個參數:反應物的濃度、反應的溫度和壓強。
化學動力學的主要內容包括以下幾點:
1)確定化學反應的速率以及溫度、壓力、催化劑、溶劑和光照等外界因素對反應速率的影響。
2)研究化學反應機理,揭示化學反應速率本質。
3)探求物質結構與反應能力之間的關系和規律。
研究意義:
通過化學動力學的研究,可以知道如何控制反應條件,提高主反應的速率,增加產品產量,抑制副反應的速率,減少原料消耗,減少副產物,提高純度,提高產品質量。
化學動力學也研究如何避免危險品的爆炸、材料的腐蝕、產品的變質與老化等問題。所以化學動力學的研究有理論與實踐上的重大意義。
『肆』 化學動力學
我們初中高中學的化學基本上都在學哪些物質可以和什麼物質反應,基本沒涉及過如何定量控制反應的進行,而化學動力學重點研究化學反應進行的條件方向和程度。
『伍』 研究一個化學反應,由反應物變成產物,要從哪幾個方面去探究
主要從三個方面:
1、
化學熱力學
——即這個反應在給定條件下,能不能進行
2、
化學動力學
——即
化學反應速率
如何,什麼時間可以達到平衡或反應完成
3、反應歷程——即化學反應經由何種途徑,有無中間產物等等
『陸』 化學動力學是什麼怎麼理解
化學動力學是研究化學反應速率(rate of reaction)和反應機理(mechanism of reaction)的化學分支學科。
主要是確定化學反應的速率以及溫度、壓力、催化劑、溶劑和光照等外界因素對反應速率的影響;通過化學動力學的研究,可以知道如何控制反應條件,提高主反應的速率,增加產品產量,抑制副反應的速率,減少原料消耗,減少副產物,提高純度,提高產品質量。化學動力學也研究如何避免危險品的爆炸、材料的腐蝕、產品的變質與老化等問題。所以化學動力學的研究有理論與實踐上的重大意義。
化學熱力學的核心理論有三個:所有的物質都具有能量,能量是守恆的,各種能量可以相互轉化;事物總是自發地趨向於平衡態;處於平衡態的物質系統可用幾個可觀測量描述。化學熱力學是建立在三個基本定律基礎上發展起來的。
熱力學所根據的基本規律就是熱力學第一定律、第二定律和第三定律,從這些定律出發,用數學方法加以演繹推論,就可得到描寫物質體系平衡的熱力學函數及函數間的相互關系,再結合必要的熱化學數據,解決化學變化、物理變化的方向和限度,這就是化學熱力學的基本內容和方法。
『柒』 化學反應進行的條件,從熱力學和動力學來講分別是什麼
熱力學:研究反應發生的可能性。主要研究問題:1、指定條件下,某一反應能否自發進行(反應方向,用吉布斯自由能描述);2、若反應能給自發進行,反應進行的程度(化學平衡,用平衡常數描述)
動力學:研究反應的速率(快慢)及其影響因素、反應機理,即反應的現實性。
所以說動力學和熱力學是相輔相成的,動力學的研究必須以熱力學研究的結果為前提,而熱力學只有與動力學結合才能全面解決化學反應的實際問題。
『捌』 如何根據化學熱力學,化學動力學原理和工程實際來
化學熱力學的基本理論內容:
化學熱力學是物理化學和熱力學的一個分支學科,它主要研究物質系統在各種條件下的物理和化學變化中所伴隨著的能量變化,從而對化學反應的方向和進行的程度作出准確的判斷。
化學熱力學的核心理論有三個:所有的物質都具有能量,能量是守恆的,各種能量可以相互轉化;事物總是自發地趨向於平衡態;處於平衡態的物質系統可用幾個可觀測量描述。
動力學的基本理論內容:
動力學是理論力學的一個分支學科,它主要研究作用於物體的力與物體運動的關系。動力學的研究對象是運動速度遠小於光速的宏觀物體。
動力學的基本內容包括質點動力學、質點系動力學、剛體動力學,達朗伯原理等。以動力學為基礎而發展出來的應用學科有天體力學、振動理論、運動穩定性理論、陀螺力學、外彈道學、變質量力學以及正在發展中的多剛體系統動力學等(見振動,運動穩定性,變質量體運動,多剛體系統)。
感覺這樣的提問是沒有意義的
還是自己找下資料吧
『玖』 化工動力學的研究意義有哪些
化學動力學的研究方法有:①唯象動力學研究方法,也稱經典化學動力學研究方法,它是從化學動力學的原始實驗數據──濃度c與時間t的關系──出發,經過分析獲得某些反應動力學參數──反應速率常數k、活化能Ea、指前因子A。用這些參數可以表徵反應體系的。
『拾』 化學動力學可以解決那些問題
化學動力學(chemical kinetics)是研究化學反映過程的速率和反應機理的物理化學分支學科,它的研究對象是物質性質隨時間變化的非平衡的動態體系。時間是化學動力學的一個重要變數。
化學動力學的研究方法主要有兩種。一種是唯象動力學研究方法,也稱經典化學動力學研究方法,它是從化學動力學的原始實驗數據——濃度與時間的關系出發,經過分析獲得某些反應動力學參數——反應速率常數、活化能、指前因子等。用這些參數可以表徵反應體系的速率化學動力學參數是探討反應機理的有效數據。
20世紀前半葉,大量的研究工作都是對這些參數的測定、理論分析以及利用參數來研究反應機理。但是,反應機理的確認主要依賴於檢出和分析反應中間物的能力。20世紀後期,自由基鏈式反應動力學研究的普遍開展,給化學動力學帶來兩個發展趨向:一是對元反應動力學的廣泛研究;二是迫切要求建立檢測活性中間物的方法,這個要求和電子學、激光技術的發展促進了快速反應動力學的發展。目前,對暫態活性中間物檢測的時間解析度已從50年代的毫秒級提高到皮秒級。
另一種是分子反應動力學研究方法。從微觀的分子水平來看,一個化學反應是具有一定量子態的反應物分子問的互相碰撞,進行原子重排,產生一定量子態的產物分子以至互相分離的單次反應碰撞行為。用過渡態理論解釋,它是在反應體系的超勢能面上一個代表體系的質點越過反應勢壘的一次行為。
原則上,如果能從量子化學理論計算出反應體系的正確的勢能面,並應用力學定律計算具有代表性的點在其上的運動軌跡,就能計算反應速率和化學動力學的參數。但是,除了少數很簡單的化學反應以外,量子化學的計算至今還不能得到反應體系的可靠的、完整的勢能面。因此,現行的反應速率理論仍不得不借用經典統計力學的處理方法。這樣的處理必須作出某種形式的平衡假設,因而使這些速率理論不適用於非常快的反應。盡管對於衡假設的適用性研究已經很多,但日前完全用非平衡態理論處理反應速率問題尚不成熟。
經典的化學動力學實驗方法不能制備單一量子態的反應物,也不能檢測由單次反應碰撞所產生的初生態產物。分子束(即分子散射),特別是交叉分子束方法對研究化學元反應動力學的應用,使在實驗上研究單次反應碰撞成為可能。分子束實驗已經獲得了許多經典化學動力學無法取得的關於化學元反應的微觀信息,分子反應動力學是現代化學動力學的一個前沿陣地。