❶ [高中化學]物質的熔點高低怎樣判定(含選擇題1)
可見,常溫,是比O2的沸點高
I2的熔點低
Hg的熔點高,那麼,例如20攝氏度,三者的熔點高低為O2
<H<gI2
B
SiO2是原子晶體,熔點高
C
Na
K
Rb
同主族金屬性越來越高A
常溫下,O2氣態
I2固態
Hg液態
❷ 高中化學如何比較熔沸點
一般來說,原子晶體>離子晶體>分子晶體;金屬晶體(除少數外)>分子晶體。
例如:金屬晶體的熔沸點有的很高,如鎢、鉑等;有的則很低,如汞、擦、絕等。
同類型晶體熔沸點高低的比較:
同一晶體類型的物質,需要比較晶體內部結構粒子間的作用力,作用力越大,熔沸點越高。影響分子晶體熔沸點的是晶體分子中分子間的作用力,包括范德華力和氫鍵。
①組成和結構相似的分子晶體,一般來說相對分子質量越大,分子間作用力越強,熔沸點越高。
②組成和結構相似的分子晶體,如果分子之間存在氫鍵,則分子之間作用力增大,熔沸點出現反常。有氫鍵的熔沸點較高。例如,熔點:HI>HBr>HF>HC1;沸點:HF>HI>HBr>HCl。
③相對分子質量相同的同分異構體,一般是支鏈越多,熔沸點越低。例如:正戊烷>異戊烷>新戊烷;互為同分異構體的芳香烴及其衍生物,其熔沸點高低的順序是鄰>間>對位化合物。
(2)高中化學如何判斷熔點大小擴展閱讀
物質的熔點並不是固定不變的,有兩個因素對熔點影響很大。
一是壓強,平時所說的物質的熔點,通常是指一個大氣壓時的情況;如果壓強變化,熔點也要發生變化。熔點隨壓強的變化有兩種不同的情況。
對於大多數物質,熔化過程是體積變大的過程,當壓強增大時,這些物質的熔點要升高;對於像水這樣的物質,與大多數物質不同,冰熔化成水的過程體積要縮小(金屬鉍、銻等也是如此)當壓強增大時冰的熔點要降低。
另一個就是物質中的雜質,平時所說的物質的熔點,通常是指純凈的物質。但在現實生活中,大部分的物質都是含有其它的物質的,比如在純凈的液態物質中溶有少量其他物質,或稱為雜質,即使數量很少,物質的熔點也會有很大的變化。
例如水中溶有鹽,熔點就會明顯下降,海水就是溶有鹽的水,海水冬天結冰的溫度比河水低,就是這個原因。
飽和食鹽水的熔點可下降到約-22℃,北方的城市在冬天下大雪時,常常往公路的積雪上撒鹽,只要這時的溫度高於-22℃,足夠的鹽總可以使冰雪熔化,這也是一個利用熔點在日常生活中的應用。
❸ 熔點高低怎樣判斷
1、同晶體類型物質的熔沸點的判斷:一般是原子晶體>離子晶體>分子晶體。金屬晶體根據金屬種類不同熔沸點也不同(同種金屬的熔沸點相同)金屬(少數除外)>分子。
2、原子晶體中原子半徑小的,鍵長短,鍵能大,熔點高。
3、離子晶體中,陰陽離子的電荷數越多,離子半徑越小,離子間作用就越強,熔點就越高。金屬晶體中金屬原子的價電子數越多,原子半徑越小,金屬陽離子與自由電子靜電作用越強,金屬鍵越強,熔點越高,一般來說,金屬越活潑,熔點越低。分子晶體中分子間作用力越大,熔點越高,具有氫鍵的,熔點反常地高。
(3)高中化學如何判斷熔點大小擴展閱讀:
物質的熔點,即在一定壓力下,純物質的固態和液態呈平衡時的溫度,也就是說在該壓力和熔點溫度下,純物質呈固態的化學勢和呈液態的化學勢相等,而對於分散度極大的純物質固態體系(納米體系)來說,表面部分不能忽視,其化學勢則不僅是溫度和壓力的函數,而且還與固體顆粒的粒徑有關,屬於熱力學一級相變過程。
熔點是固體將其物態由固態轉變(熔化)為液態的溫度,縮寫為m.p.。而DNA分子的熔點一般可用Tm表示。進行相反動作(即由液態轉為固態)的溫度,稱之為凝固點。與沸點不同的是,熔點受壓力的影響很小。而大多數情況下一個物體的熔點就等於凝固點。
在有機化學領域中,對於純粹的有機化合物,一般都有固定熔點。即在一定壓力下,固-液兩相之間的變化都是非常敏銳的,初熔至全熔的溫度不超過0.5~1℃(熔點范圍或稱熔距、熔程)。但如混有雜質則其熔點下降,且熔距也較長。因此熔點測定是辨認物質本性的基本手段,也是純度測定的重要方法之一。
測定方法一般用毛細管法和微量熔點測定法。在實際應用中我們都是利用專業的測熔點儀來對一種物質進行測定。
相同條件不同狀態物質
一、在相同條件下,不同狀態的物質的熔、沸點的高低是不同的,一般有:固體>液體>氣體。例如:NaBr(固)>Br2>HBr(氣)。
二、不同類型晶體的比較規律
一般來說,不同類型晶體的熔、沸點的高低順序為:原子晶體>離子晶體>分子晶體,而金屬晶體的熔、沸點有高有低。這是由於不同類型晶體的微粒間作用不同,其熔、沸點也不相同。
原子晶體間靠共價鍵結合,一般熔、沸點最高;離子晶體陰、陽離子間靠離子鍵結合,一般熔、沸點較高;分子晶體分子間靠范德華力結合,一般熔、沸點較低;金屬晶體中金屬鍵的鍵能有大有小,因而金屬晶體熔、沸點有高有低。
三、同種類型晶體的比較規律
⒈原子晶體:熔、沸點的高低,取決於共價鍵的鍵長和鍵能,鍵長越短,鍵能越大,熔沸點越高。
例如:晶體硅、金剛石和碳化硅三種晶體中,因鍵長C—C<C—Si< Si—Si,所以熔沸點高低為:金剛石>碳化硅>晶體硅。
⒉離子晶體:熔、沸點的高低,取決於離子鍵的強弱。一般來說,離子半徑越小,離子所帶電荷越多,離子鍵就越強,熔、沸點就越高。
例如:MgO>CaO,NaF>NaCl>NaBr>NaI。
⒊分子晶體:熔、沸點的高低,取決於分子間作用力的大小。一般來說,組成和結構相似的物質,其分子量越大,分子間作用力越強,熔沸點就越高。
⒋金屬晶體:熔、沸點的高低,取決於金屬鍵的強弱。一般來說,金屬離子半徑越小,自由電子數目越多,其金屬鍵越強,金屬熔沸點就越高。
❹ 高中化學:怎麼比較金屬單質的熔沸點大小
因為熔沸點遞變在周期表中並不是完全有規律的,所以希望不要一味追求結論,理解才是最重要的,一旦理解了判斷的原理,元素周期表自然就掌握好了。
首先,判斷元素單質的熔沸點要先判斷其單質的晶體類型,晶體類型不同,決定其熔沸點的作用也不同。金屬的熔沸點由金屬鍵鍵能大小決定;分子晶體由分子間作用力的大小決定;離子晶體由離子鍵鍵能的大小決定;原子晶體由共價鍵鍵能的大小決定。
所以第一主族的鹼金屬熔沸點是由金屬鍵鍵能決定,在所帶電荷相同的情況下,原子半徑越小,金屬鍵鍵能越大,所以鹼金屬的熔沸點遞變規律是:從上到下熔沸點依次降低。
第七主族的鹵素,其單質是分子晶體,故熔沸點由分子間作用力決定,在分子構成相似的情況下,相對分子質量越大,分子間作用力也越大,所以鹵素的熔沸點遞變規律是:從上到下熔沸點依次升高。
用這樣的方法去判斷同主族元素的熔沸點遞變規律就行了,因為理解才是最重要的。
同周期的話,不太好說了。
通常會比較同一類型的元素單質熔沸點,比如說比較Na、Mg、Al的熔沸點,則由金屬鍵鍵能決定,Al所帶電荷最多,原子半徑最小,所以金屬鍵最強,故熔沸點是:Na<Mg<Al。
非金屬元素
一般不會比較它們單質之間的熔沸點,一般比較他們的氫化物的熔沸點。比較時要注意CH4、NH3、H2O、HF他們的分子間除分子間作用力外,還有氫鍵,所以同主族氫化物熔沸點他們是最高的,其餘的按分子間作用力大小排列。如氧族元素氫化物的熔沸點是:H2O>H2Te>H2Se>H2S;鹵素:HF>HI>HBr>HCl。
同周期比較的話,是從左至右熔沸點依次升高,因為氣態氫化物的熱穩定性是這樣遞變的。
另外有時還要注意物質的類型,比如讓你比較金剛石、鈣、氯化氫的熔沸點,只要知道金剛石是原子晶體,熔沸點最高,其次是金屬鈣,最後是分子晶體氯化氫。
還有原子晶體的:比較金剛石、晶體硅、碳化硅的熔沸點,那就要看共價鍵了,原子半徑越小,共價鍵鍵能越大,故熔沸點:金剛石>碳化硅>晶體硅。
熔沸點與原子結構的關系很復雜。因為各元素單質的晶體類型不同,首先要看相應的晶體類型才能下結論。通常只有相同類型,相似結構的晶體之間才有可比性。
對於分子晶體來說,影響熔沸點的是分子間作用力的大小,以及可能出現的氫鍵。
對於離子晶體來說,影響熔沸點的則是離子鍵的強度。
對於原子晶體來說,影響熔沸點的則是原子間共價鍵的強度。
對於金屬晶體來說,影響熔沸點的則是金屬鍵的強度。
對於分子晶體來說,原子結構不能直接影響單質的熔沸點,必須要看形成的分子的結構。通常有極性的分子,分子量大的分子,分子間作用力會大些,熔沸點會高些。如果有氫鍵,則會大大提高熔沸點。
對於原子晶體來說,主要看共價鍵的強度。通常短程、小個原子之間共價鍵很強,相應晶體熔沸點高。由於共價鍵本來就是相對很強的作用力,所以原子晶體的熔沸點一般都相當高。
對於離子晶體來說,主要看離子鍵的強度。穩定性強的離子,小個的離子,其離子鍵強度高,相對來說熔沸點就高。
金屬晶體的情況最復雜。因為金屬類型多,外層電子排布各異,金屬鍵的本質雖然類似,但是具體情況懸殊。熔點從汞的低於零度,到鎢的3000度以上都有。
對於鹼金屬來說,外層都只有一個電子,是金屬晶體。隨著原子量增加,外層電子受到的約束越來越小,原子間的金屬鍵越來越鬆散,因此熔點越來越小。
鹵素則都是雙原子的分子晶體,鹵素原子序數越大氧化性是越弱,因為原子半徑增大,原子核對電子的束縛越弱,越不容易得到電子,反而有的會失去電子成為陽離子。鹵素氧化性是隨著序數的增大而降低,即還原性是升高的。熔沸點的高低取決於分子間作用力,而與化學性質(氧化性或還原性)無關,化學性質是最外層電子決定的。
汞是常溫下唯一的呈液態的金屬,它具有金屬光澤,具導電能力,有很大的密度,具有很強的還原性,能發生顏色反應等很多金屬獨有的性質,對了,不可以和金屬形成化合物,和非金屬間是由離子鍵相連的。
❺ 高中化學中~單質或化合物熔沸點大小的判斷有什麼方法么
原子晶體:原子半徑越小,熔沸點越高;離子晶體:電荷越多,離子半徑越小,熔沸點越高;金屬晶體:陽離子越多,半徑越小,熔沸點越高;分子晶體,相對分子質量越大,分子極性越大,熔沸點越高
❻ 高中化學 比較熔點大小
一般而言,熔點原子晶體>離子晶體>金屬晶體>分子晶體,金剛石、硅晶體、SiO2、Si等為原子晶體熔點都較高,金屬晶體熔點一般與活性有關,活性高熔點低順序為二氧化硅>氯化鉀> 鈉>苯酚 ,鈉是活潑金屬熔點是較低
❼ 熔點高低怎麼判斷
同種晶體類型,看作用力強弱。
原子晶體,一般原子半徑越小,即共價鍵越強,熔沸點越高,常見的原子晶體有金剛石、碳化硅、硅、二氧化硅和氮化硅等。
離子晶體,一般離子半徑越小,所帶電荷數越多,即離子鍵越強,熔沸點越高。一般含有金屬元素和銨根的都是離子晶體。
分子晶體,一般能形成氫鍵的熔沸點較高,不含氫鍵的相對分子質量越大熔沸點越高。氫鍵是特殊的分子間作用力,所以即分子間作用力越強,分子晶體的熔沸點越高。通常要形成氫鍵要有氮、氧、氟元素中的至少一種和氫元素。
測定方法:
在有機化學領域中,對於純粹的有機化合物,一般都有固定熔點。即在一定壓力下,固-液兩相之間的變化都是非常敏銳的,初熔至全熔的溫度不超過0.5~1℃(熔點范圍或稱熔距、熔程)。
但如混有雜質則其熔點下降,且熔距也較長。因此熔點測定是辨認物質本性的基本手段,也是純度測定的重要方法之一。
測定方法一般用毛細管法和微量熔點測定法。在實際應用中我們都是利用專業的測熔點儀來對一種物質進行測定。
❽ 化合物熔點大小比較
1、分子量越大熔點越高。
2、分子量相同的就看支鏈,支鏈越多熔點越低。
3、對稱性好的分子,由於晶格間可以排列很緊密,從而造成熔點會反常高,環己烷的熔點在題目中最高就是這個原因。
(8)高中化學如何判斷熔點大小擴展閱讀:
1、化合物為由二種或二種以上不同元素所組成的純凈物。組成此化合物的不同原子間必以一定比例存在,換言之,化合物不論來源如何,其均有一定組成。在日常生活里,氯化鈉、及蒸餾水,均為常見的化合物。
2、由這些化合物中,人們發現它們的性質彼此各不相同,食鹽為鈉原子和氯原子所組成;糖為碳、氫及氧等原子所組成;氫氣在氧中燃燒則反應生成水。這些事實,表示二種或多種物質可以反應生成一種新物質,這新物質就是化合物。
3、新物質的性質和原物質的性質完全不同。通常化學上藉此方式來決定一質之該性是否為化合物。又假如一純質可以分解為二種或二種以上之質,則原來之質必為化合物。例如熔融食鹽,通以電流,可完全分解為鈉及氯原子,故食鹽為一種化合物。
4、在有機化學領域中,對於純粹的有機化合物,一般都有固定熔點。即在一定壓力下,固-液兩相之間的變化都是非常敏銳的,初熔至全熔的溫度不超過0.5~1℃。但如混有雜質則其熔點下降,且熔距也較長。
5、因此熔點測定是辨認物質本性的基本手段,也是純度測定的重要方法之一。
6、首先要確定化合物種類。只有同種化合物種類才能以微觀的角度去判斷熔點或沸點。
7、針對離子化合物,他含有離子鍵的強度是決定熔點的主要因素,離子鍵的鍵能越高,則所需要的能量也越高,所以熔點也就高。
8、離子鍵強度取決與離子的半徑以及所帶電荷量。通常半徑大,熔點小。電荷量大,熔點高。