導航:首頁 > 化學知識 > 化學在工程中有哪些應用

化學在工程中有哪些應用

發布時間:2022-07-22 06:40:31

『壹』 在機械工程中,有哪些應用了化學反應基本原理的例子

最典型的是內燃機,應用了燃燒反應。
此外還有燃料電池、蒸汽機等等。

『貳』 化學在材料中的應用有哪些

說起高分子材料,普通人也許會覺得莫測高深,其實我們身邊到處都是它們的身影。

無論是作為食物的蛋白質還是作為織物的棉、毛和蠶絲都是天然高分子材料,就連人體本身,基本上也是由各種生物高分子構成的。我國在開發天然高分子材料方面曾走在世界領先水平。利用竹、棉、麻等纖維等高分子材料造紙是我國古代的四大發明之一。另外,利用桐油與大漆等高分子材料作為油漆、塗料製作漆製品也是我國古代的傳統技術。

高分子是由碳、氫、氧、硅、硫等元素組成的分子量足夠高的有機化合物。之所以稱為高分子,就是因為它的分子量高。常用高分子材料的分子量在幾百到幾百萬之間,高分子量對化合物性質的影響就是使它具有了一定的強度,從而可以作為材料使用。這也是高分子化合物不同於一般化合物之處。又因為高分子化合物一般具有長鏈結構,每個分子都好像一條長長的線,許多分子糾集在一起,就成了一個扯不開的線團,這就是高分子化合物具有較高強度,可以作為結構材料使用的根本原因。另一方面,人們還可以通過各種手段,用物理的或化學的方法,或者使高分子與其他物質相互作用後產生物理或化學變化,從而使高分子化合物成為能完成特殊功能的功能高分子材料。

功能高分子材料主要包括物理功能高分子材料及化學功能高分子材料。前者如導電高分子、高分子半導體、光導電高分子、壓電及熱電高分子、磁性高分子、光功能高分子、液晶高分子和信息高分子材料等;後者如反應性高分子、離子交換樹脂、高分子分離膜、高分子催化劑、高分子試劑及人工臟器等,此外還有生物功能和醫用高分子材料,如生物高分子、模擬器、高分子葯物及人工骨材料等。

大致地說,高分子可以分為天然高分子與合成(人工)分子。

人工高分子的歲數並不大

直到19世紀中葉,人類才開始對天然高分子的化學改性與應用,而後又發展到高分子的人工合成,這中間主要包括橡膠、纖維與塑料等。

(一)、天然橡膠的利用、開發與改性。在中美洲與南美洲,15世紀左右當地人用天然橡膠做游戲與生活用品如容器與雨具等。18世紀法國人發現南美洲亞馬孫河有野生橡膠樹,橡膠一詞當地印地語即「木頭流淚」的意思,割開橡膠樹皮即流出乳液,後來叫天然橡膠,19世紀中葉,英國人取橡膠樹的種子在錫蘭(斯里蘭卡)種植成功,並逐漸擴大到馬來西亞與印尼等地,但是製造天然橡膠製品中,生膠如何溶解與加工是一大問題。直到19世紀40年代美國人發現用松節油、硫黃與碳酸鉛共熱後得到不粘而有彈性製品,即所謂硫化技術,因此,到1920年左右,亞洲地區天然橡膠出口量達70多萬噸,與當時巴西的野生橡膠出口量相同。

(二)、天然纖維素的改性。19世紀,德國人開始用硝酸溶解棉纖維,結果可以紡絲或成膜,但其易燃燒,最後用它製成了無煙炸葯。如果在其中加入樟腦,可以加工成名為「賽璐珞」的塑料,它能製作照相底片或電影膠片,但也易燃,此外,這種工藝也用在汽車車身噴漆中。稍後,英國人用氫氧化鈉處理棉纖維得到絲光纖維,再用二硫化碳溶後紡絲,製成粘膠纖維,還可以用木漿做簾子線、玻璃紙及人造絲等。但80年代後期由於二硫化碳的污染問題,使廠家不得不另找它法,工廠多半停產。此外,德國人用醋酐進行纖維素酯化,獲得醋酸纖維,由於不易燃燒故多用於照相底片與電影膠片,也可用於飛機機身塗料或者重新紡絲製成人造絲織物。

(三)、最早的塑料。在20世紀初,美國人用苯酚與甲醛反應得到可用作電絕緣器材的酚醛樹酯,這是最早的合成高分子,與此同時,俄國人用酒精製成丁二烯,再用鈉使之聚合成橡膠,二次大戰後德國人與美國人又發展成一類十分重要的合成橡膠即丁二烯與苯乙烯共聚而得的丁苯橡膠。盡管有以上幾方面的重要成果並建立了工業,但當時對天然高分子與合成高分子的結構並不清楚,因此,對聚合反應歷程也還不了解。

20世紀初,人們已經確認了澱粉的分子式,並知道其水解後得到葡萄糖。但並不知道分子之間如何連接,所以認為澱粉是葡萄糖或它的環狀二聚體的締合體。同樣,科學家了解天然橡膠裂解可得異戊二烯,但是不知它們之間如何連接以及它的末端結構,因為也認為是二聚環狀結構的締合體。科學技術的發展使科學家們有可能用物理化學和膠體化學的方法去研究天然和實驗室合成的高分子物質的結構。德國物理化學家斯陶丁格經過近10年的研究認為,高分子物質是由具有相同化學結構的單體經過化學反應(聚合)將化學鍵連接在一起的大分子化合物,高分子或聚合物一詞即源於此。1928年當斯陶丁格在德國物理和膠體化學年會上宣布這一觀點時,卻遭到多數同行反對而未被承認。但真理是在斯陶丁格這一邊,經過兩年的實驗驗證,1930年斯陶丁格再次在德國物理和膠體化學年會上闡明他的高分子概念觀點時,他成功了。至此,歷經10餘載的爭論,科學的高分子概念才得以確立。他進一步闡明了高分子的稀溶液粘度與分子量的定量關系,並在1932年出版了一部關於高分子有機物的論著,這後來被公認為是高分子化學作為一門新興學科建立的標志。為了表揚斯陶丁格的功績,瑞典皇家科學院授予他1953年諾貝爾化學獎。

對大分子概念的一個有力證實就是1935年美國杜邦公司發表已二胺與已二酸縮聚而成高分子聚醯胺,即尼龍6-6,並於1938年工業化,這就是大家熟知的尼龍襪材料。另外,鮮為人知的是,二次大戰後期美軍使用的降落傘就是這種尼龍6-6材料製作的。 40年代乙烯類單體的自由基引發聚合發展很快,實現工業化的包括氯乙烯、聚苯乙烯和有機玻璃等,這是合成高分子蓬勃發展的時期。進入50年代,從石油裂解而得的a-烯烴主要包括乙烯與丙烯,德國人齊格勒與義大利人納塔分別發明用金屬絡合催化劑聚合而成聚乙烯即低壓聚乙烯與聚丙烯,前者1952年工業化,後者1957年工業化,這是高分子化學的歷史性發展,因為可以由石油為原料又能建立年產10萬噸的大廠,他們二人後來都獲得了諾貝爾獎金。

60年代,由於要飛往月球而出現高溫高分子的研究熱。耐高溫的定義是材料能夠在氮氣中、500攝氏度環境中能使用一個月;在空氣中,300攝氏度環境下能使用一個月。其結果主要分為兩大類,一類是芳香聚醯胺例如苯二胺與間苯二醯縮聚得到的高分子Nomex,這在當時曾被作為太空服的原料。還有對苯二胺與對苯二醯氯縮聚得到的高分子Kevlar,它屬於耐高溫的高分子液晶,現在用於超音速飛機的復合材料中。另一類是雜環高分子,例如聚芳亞醯胺和作為高溫粘合劑的聚苯並咪唑為現在的宇航飛行所需的材料打下了基礎。

由於高分子材料具有許多優良性能,適合現代化生產,經濟效益顯著,且不受地域、氣候的限制,因而高分子材料工業取得了突飛猛進的發展,目前世界上合成高分子材料的年產量已經超過1.4億噸。如今高分子材料已經不再是金屬、木、棉、麻、天然橡膠等傳統材料的代用品,而是國民經濟和國防建設中的基礎材料之一。與此同時,高分子科學的三大組成部分――高分子化學、高分子物理和高分子工程也已經日趨成熟。

高分子材料包括塑料、橡膠、纖維、薄膜、膠粘劑和塗料等。其中被稱為現代高分子三大合成材料的塑料、合成纖維和合成橡膠已經成為國家建設和人民日常生活中必不可少的重要材料。由於石油資源的逐漸減少,人們正在積極考慮其它能源,例如太陽能、氫能與原子能的開發,但也必需看到石油的主要用途是作為燃料,用於化學工業的僅佔7%,其中作為高分子原料的只有5%,因此一般認為即使在下個世紀,高分子的主要原料仍可來自石油。另一方面,特種油田高分子用於二次或三次採油頗有成效,很有助於石油能源開發。材料高分子在材料領域中有它特殊的地位,特別是交通工具,可以替代比重較大的金屬與陶瓷,以及木材及其它天然材料。例如汽車車身與車殼結構材料中已經有50%用高分子材料,下世紀將增至70%至100%。再如宇航與航空機身與機翼,減輕重量可以大大省油,因此都用高分子復合材料,從80年代的30-40%總重量,至90年代的50-60%,估計21世紀可達70-80%。

活性聚合是促使高分子化學走向新時代的基礎。要進行活性聚合,引發速度要快,沒有鏈轉移與鏈終止,實驗室測定活性聚合從三個方面下手,一是轉化率與單體濃度成正比與催化劑濃度成反正;二是高分子分子量與轉化率或時間成正比;三是分子量分布要窄,約為1.2左右。目前,正離子活性聚合與負離子活性聚合都已展開,絡合催合聚烯烴的活性聚合所用烯土催化劑已有端倪,只有自由活性聚合還未達到應用程度。

有人說高分子化學是一門排隊化學,排頭要很快站出來,隊員迅速排上隊,面向都一樣,所有隊員都必需排上隊,結果是每排長短都一樣,也就是分子量分布為1,轉化率100%。這意味著在高分子材料新時代中,有下列三個重要方面:首先是高分子的分子量概念將徹底改變,因為原來的高分子分子量都是各式各樣的平均值,主要原因是因為長短不齊;其次是高分子的概念也將徹底改變。高分子決不是不易控制的長短不齊的分子組成,而是均勻高分子所組成;最後是高分子性能以及加工應用,都將因為是精密高分子而出現全新的數據、全新的性能與加工方法與用途。

所謂高分子材料主要包括塑料、橡膠與纖維三大合成材料,其中塑料占總量的80%。在塑料中佔80%的是通用高分子,包括高壓聚乙烯、低壓聚乙烯、聚丙烯以及聚氯乙烯與聚苯乙烯。

在科學家的手中,工程塑料家族誕生了,它的成員包括能耐高溫100-160攝氏度的尼龍、聚碳酸酯、聚酯及聚苯醚。到了90年代又發展更高耐熱200-240攝氏度的聚醚碸、聚苯硫醚、聚醚醚酮及聚醯亞胺的所謂高溫工程塑料。與此同時還有復合材料的建立與發展,例如開始用玻璃纖維的復合材料發展到用碳纖維的耐高溫復合材料。

非結構高分子材料與功能高分子也獲得了大發展。80年代以來高分子粘合劑與油漆塗料也都向耐高溫方向發展,也就是高分子從結構向非結構材料方面發展。還有更重要的是功能高分子的多方面發展,例如利用吸附性能作為海水淡化及其它如離子交換樹脂與分離膜的屬於化學功能高分子;應用於光導纖維與光刻膠的屬於光功能高分子;具有導電性能的電功能高分子及作為人工臟器與葯物控釋的醫學功能高分子。因為功能高分子的興起是80年代以來的十分重要的發展。

硅系高分子材料取代碳高分子材料,成為新一代功能材料。日本電信電話公司開發的由氧、碳、氘和硅四種元素構成的新型材料,在500攝氏度下不熔化,用它製作光器件,不會因屈折率變化而降低功能。

一些國家和地區的領導人對材料科學的基礎地位認識日益深化,意識到許多行業技術上的可行性和進步基本上取決於相應材料的開發,而材料的選擇關繫到提高生產效率,降低成本和提高質量的問題。基於這種認識,他們加大對新材料研究的投入力度。

美國競爭力委員會把材料技術列為應予重點扶植的六十類關鍵技術的第一位;英國一項包括高分子材料在內的新型材料的大規模研製計劃,正在實施。法國確定的IDMAT新材料研究開發計劃,是11項國家計劃的重點。俄羅斯最近通過的《俄羅斯聯邦1996-2000年民用科技優先研究開發的專項規劃》把新材料研究開發劃入優先領域中;日本正在積極實施為期10年(從1991年度起)的高分子新材料研究計劃。連台灣也把開發高級材料作為69項重點技術的「重點中的重點」。90年代,日本在新材料開發研究領域每年投入的費用比美國高50%,人力投入也比美國多近一倍。從1991年起,日本總共投資大約2500億日元用於以開發革新材料為目標的10年研究計劃。歐洲聯盟對材料科學的投資占其第四個科研框架計劃投資總額的16%,僅次於信息技術和能源技術投資,達17.07億歐洲貨幣單位。

英國瑞侃公司研究所的郭衛清在旅英中國學人第3屆材料科學年會提出,作為材料科學的一個重要分支,高分子材料和技術的發展尤其迅猛。高分子材料在眾多工業的廣泛應用已使該材料成為經濟發展不可缺少的一部分。

中國高分子材料熠熠生輝

國內高分子材料的進展不斷見諸報端。新華社曾報道:國家「八五」重點科技攻關項目「聚醚碸、聚醚醚酮、雙馬型聚醯亞胺等類樹脂專用材料及其加工技術」,在成都通過由國家有關部門組成的驗收委員會的驗收。

聚醚碸、聚醚醚酮、雙馬型聚醯亞胺等特種工程塑料,是60年代發展起來的新型高分子材料。由於這類材料具有優良的綜合性能,現已成為各種空間飛行器和新型運輸工具實現高速、輕量、增加航程的可靠保證,也是電子電氣產品實現大容量、高集成和小型化不可缺少的新材料。由四川聯合大學、北京市化工研究院、東方絕緣材料廠等10個單位共同承擔的這項重點課題,經過120多名科技人員五年合作攻關,不但全面完成了任務,取得27項鑒定成果。其中吉林大學吳忠文教授等研製的「聚醚醚酮樹脂」,性能達到目前國際先進水平,成本大大低於國外同類產品;大連理工大學蹇(湯去氵加釒旁)高教授等研製完成的「雜環取代聯苯聚醚碸的合成」,主要經濟技術指標達到國際先進水平;四川聯合大學、成都飛機工業公司、東方絕緣材料廠江璐霞教授等研製的「雙馬型聚醯亞胺航空工裝模具材料」,在國內處領先地位,達到80年代末國際水平。目前有多種產品形成了規模生產能力,提供特種工程塑料新產品15種、新材料19種、新工藝3項。

另外,新華社還曾以「我國高分子化學研究取得重大突破」為題報道一種用於家電產品的新型紫外光固化塗料――JD-1紫外光固化樹脂,在湖南長沙市研製開發成功,並通過鑒定。專家們認為,它填補了國內一項空白,達到國外同類產品的先進水平。

位於長沙市東岸的湖南亞大高分子化工廠有限公司,多年來始終追蹤高科技發展潮流,不斷研製開發高起點、高水平、高效益的新技術,並使這些技術成果迅速轉化為生產力。這個公司的科技人員在資金少、條件差的情況下,經過數千次試驗,終於研製開發出JD-1紫外光固化樹脂。只需在各種家電外部塗上一層紫外光固化樹脂,經過一番處理,家電猶如穿上一件硬如玻璃鋼、光潔似鏡面的「外衣」。專家介紹,家電外表的裝飾是衡量其檔次的一個重要指標,這是國內外化工界多年研究的一大課題。新型紫外光固化樹脂的研製成功,將使我國家電裝飾跨上一個新台階;同時結束長期進口的歷史,可節約大量外匯。專家鑒定認為,這是一種污染少、節能效益好的高科技產品,具有耐沖擊、耐老化、固化速度快等優點,可廣泛應用於電冰箱、洗衣機、電氣儀表、電訊設備和汽車、摩托車等。

一項處於國際領先水平的聚合物技術--超高分子量聚丙烯醯胺合成技術在大慶油田化工總廠研製成功。專家稱,這項技術推廣應用後,可使聚合物用量在減少百分之二十的情況下,大幅度提高原油採收率,每年可為油田化工企業增效5000多萬元。

1995年,隨著三次採油技術在大慶油田的推廣應用,油田化工總廠引進法國技術生產聚丙烯醯胺,分子量達1000-1500萬,使我國生產聚合物技術跨入世界先進行列。但根據聚合物驅油試驗研究,分子量大於1700萬的超高分子量聚合物的驅油效果更好。為了加快超高分子量聚丙烯醯胺產品的工業開發步伐,大慶油田化工總廠通過多渠道橫向聯合的辦法,開展科技攻關。僅用三個月時間,攻關小組的14名科技人員就在工業化試驗中,成功地合成了分子量達到1700萬的聚丙烯醯胺,並在試生產中取得了滿意效果。目前,這個廠已開始投入批量生產超高分子量聚丙烯醯胺產品。

另外,「PTC智能恆溫電纜」、「多功能超強吸水保水劑」、「粉煤灰高效活化劑」等等,都是我國在高分子材料領域取得的不俗成果。還有就是我國的高分子單鏈單晶的研究取得國際領先的成績:成功地制備出順丁橡膠的單鏈單晶,獨創性地開展了單分子鏈玻璃體的研究,首次觀察到高分子液晶態的新的紋影結構。這都引起世界科技界的轟動。

『叄』 化學反應工程的應用

主要用於進行工業反應過程的開發、放大和操作優化以及新型反應器和反應技術的開發。
①工業反應過程的開發和放大在化學反應工程學科建立以前,工業界廣泛採用的方法是逐級經驗放大的方法。其步驟是,首先在小型試驗中進行反應器的選型和確定優越的工藝條件(溫度、壓力、濃度、流速和反應時間度),然後自小至大進行多次中間試驗,直至工業規模。由於全部實驗帶有經驗性質,而且試驗所用設備的尺寸逐級增大,因而取名為逐級經驗放大。中間試驗往往耗資大而歷時久。化學反應工程學科建立以後,逐步形成一套新的數學模型方法。這種方法是首先在小型試驗中確定動力學模型;然後在冷模試驗中確定各類候選反應器的傳遞模型;進而在計算機上進行各候選反應器內反應過程的模擬研究,即在各種不同的工藝條件下對反應器數學模型進行數值求解,預測反應結果,並據此進行反應器的選型,優選工藝條件並設計反應器。採用這種方法時,往往也需要進行適當規模的中間試驗,目的是為了「檢驗」和「修正」模型,以及考察模型中難以包括的因素(如微量雜質的積累,焦油的生成,材質的腐蝕,顆粒粉碎,等等)可能產生影響。而不是為了自小至大進行逐級放大。時下,逐級經驗放大和數學模型兩種方法同時並存,各有適用范圍。但是,即使是逐經級驗放大方法,也常是以化學反應工程的理論為指導,而不再是純經驗性的了。
②工業反應過程的操作優化實際工業反應過程未必在最優的條件下操作。即使設計是優化的,在實施時往往有許多難以預料的因素,使原定的優化設計條件對實際操作未必是優化的。運用化學反應工程理論對現行的工業反應過程進行分析,結合模擬研究,可找出薄弱環節之所在和進一步調優的方向,通過調節和改造以獲得較大的經濟效益。
③新型反應器和反應技術的開發反應工程的理論為新反應器和新反應技術的開發指明了方向,研究者可以據此尋找合理的設備結構和操作方法。例如近幾年來出現的新的石油化工裂解技術和各種新型流化床反應器,都得益於反應工程理論的指導。

『肆』 舉例說明化學鍍在工程中有哪些應用

1.化學鍍鎳由於化學鍍鎳層具有優良的均勻性、硬度、耐磨和耐蝕等綜合物理化學性能,該項技術在國外已經得到廣泛應用。化學鍍鎳在各個工業中應用的比例大致如下:航空航天工業:9%;汽車工業:5%;電子計算機工業:15%;食品工業:5%;機械工業:15%;核工業:2%;石油化工:10%;塑料工業:5%;電力輸送:3%;印刷工業:3%;閥門製造業:17%;其他:11%。
如發電廠的發電機組凝汽器黃銅管內表層化學鍍鎳可大大地提高抗腐蝕性,延長凝汽管使用壽命;鋁合金鍍鎳,可提高鋁合金硬度及防護性能。改善鋁合金錶面性質,擴大鋁合金的應用范圍。
2.化學鍍鎳合金
(1)鎳-磷二元之合金鍍層:硬度HV550~600,導電性好,焊接性好,耐蝕,用於IC頂蓋,引線框架,模具,按鈕等;
(2)高磷鎳合金鍍層,無磁性,大量用於電子儀器,半導體電子設備防電磁干擾的屏蔽層等。
(3)鎳-硼-磷三元合金,鍍層硬度HV680,用於壓電陶瓷電極,傳動裝置,閥。
(4)鎳-B-W硬度HV800,電子模具,觸點材料等。
(5)45#鋼齒輪面刷鍍鎳磷和鎳鈷合金金屬,能顯著地提高45#鋼齒輪接觸面。
3.化學鍍銀主要用於電子部件的焊接點、印製線路板,以提高製品的耐蝕性和導電性能。還廣泛用於各種裝飾品,如裝配杯、高級旅行保溫杯、扣件等。鈹青銅在通訊行業應用廣泛,為進一步提高鈹青銅彈性的導電性,可在鈹青銅上鍍銀。

『伍』 希望在工程化學上學到什麼知識或能力

化學工程與工藝專業課程

主幹課程

有機化學、分析化學、無機化學、物理化學、化工原理、化學反應工程、化工機械、精細有機合成原理等。

基本能力

1. 掌握化學工程、化學工藝、應用化學等學科的基本理論、基本知識;2.掌握化工裝置工藝與設備設計方法,掌握化工過程模擬優化方法;3.具有對新產品、新工藝、新技術和新設備進行研究、開發和設計的初步能力;4.熟悉國家對於化工生產、設計、研究與開發、環境保護等方面的方針、政策和法規;5.了解化學工程學的理論前沿,了解新工藝、新技術與新設備的發展動態;6.掌握文獻檢索、資料查詢的基本方法,具有一定的科學研究和實際工作能力;7. 具有創新意識和獨立獲取新知識的能力。

主幹學科

化學、化學工程與技術,主要偏重於工藝研究方面。主要課程:無機化學、分析化學、大學物理、有機化學、物理化學、化工原理、化學反應工程和一門必選的專業方向課程。另外輔修化工經濟技術分析,電工電子等。根據學校略有變動。主要實踐性教學環節:包括化學與化工基礎實驗、認識實習、生產實習、計算機應用及上機實踐、課程設計、畢業設計(論文)計算機應用要求較高等,一般安排40周。主要專業實驗:有機化學實驗、無機化學實驗、化工熱力學、化工傳遞過程、化學反應工程、化工過程系統工程、工業催化和應用化學等。修業年限:四年。授予學位:工學學士。專業發展方向:化學工程、化學工藝、精細化工。相近專業:制葯工程。(主要的是化學制葯)。

『陸』 化學工程在工業社會中的有什麼地位及作用

化學工業為農業技術改造和發展社會主義農業經濟提供物質條件。重工業用它生產的大量農業機械以及現代化的運輸工具、電力設備、化肥、農葯等產品裝備農業,逐步實現農業的機械化、現代化,把農業轉移到現代化機器大生產的基礎上,以不斷提高農業的勞動生產率。二、化學工業與制葯制葯工業是現代化工業,它與其它工業有許多共性,尤其是化學工業,它們彼此之間有密切的關系。

『柒』 化學工程與工藝在生活中的應用

比如我們蓋房所需的鋼筋水泥、玻璃門窗,裝修所需的油漆石膏、地磚馬賽克,日常所需的鍋碗瓢盆、肥皂化妝品都是以化學物理原理為基礎,通過工業生產而成的典型的化學工程產品。

『捌』 化學工藝與化學工程兩門學科相結合可以在實際生活中解決那些問題

咨詢記錄 · 回答於2021-12-07

『玖』 舉例化學應用在工程中的哪些方面

由於化學工程在我國國民經濟中占據著重要的領域,能夠推動經濟的發展,化學工程技術在化學生產中的應用也日漸突起。因此本文重點對在化學生產過程中的應用進行研究探析,對化學工程進行具體的研究。
一、新型反應技術的研究
1、綠色化學反應技術。
綠色化學是指對環境不會造成污染的,有利於保護環境的化學工程。綠色化學簡單說就是採取化學的技術和方法來減少或消除那些對人類有害的、妨礙社區安全的、對生態環境會產生不利影響的原料或溶劑等。綠色化學是將污染從源頭進行消除的工程,因此很徹底,這主要包含原子經濟性和高選擇性的反應,生產出對環境有利的材料,並且回收廢物循環利用的一門科學技術。
2、超臨界化學反應技術。
隨著綠色化學概念的興起,以超臨界流體作為化學反應介質或反應物引起了廣泛重視。由於在超臨界條件下的擴散系數遠比液體中的大,粘度遠比液體中的小,所以在超臨界流體介質中的化學反應可以加快,而且越靠近臨界點,反應速率越快。
3、新的分離技術。
隨著科技的發展及國內外的分工合作共同研究除了大量新的分離技術,具有廣闊的發展前景,但是這些在應用中同樣也存在著很多問題,此項研究對相關分子蒸餾的基礎理論探究比較少,沒有在理論上充分說明和指導,對設汁刮膜式分子蒸餾器也沒有深入的研究。隨著信息技術和科學的不斷進步和發展,分離技術也隨之得到改善,取得了長足的進步,逐浙信息技術引入到分離技術的研究與開發上,主要從事新型分離技術(膜分離技術、超臨界流體技術、微波萃取技術、超聲提取、反應精餾等)的工藝與設備、傳統化工分離技術的改進、分離技術的耦合等方面的研究。目前在天然植物有效成分的提取與分離、中葯有效成分的提取與分離、膜分離工藝與設備等方面形成特色研究方向。
二、傳熱過程中一些新的研究進展和方向
1、微細尺度傳熱學研究發展。
早期的微細尺度傳熱學研究主要集中在微細尺度導熱問題上,之後則擴展到微細尺度熱輻射、微細尺度對流換熱和微細尺度相變傳熱問題的研究。
20世紀60年代後期,熱物理學家開始注意到工程器件中的一系列傳熱問題存在尺度效應,發現微尺度下導熱率依賴於材料的厚度。到了80年代後期,隨著新型工程實際應用的日新月異,出現了許多傳統傳熱學難以解決甚至完全矛盾的問題。正是這些理論與實驗觀察上的矛盾促成了微尺度傳熱學的發展,目前已經覆蓋了范圍廣闊的多個領域。
2、傳熱理論研究進展。
近年來,傳熱研究者一直都致力於滴狀冷凝在工業生產上的應用,但至今仍不能很好的實現,主要問題是怎樣獲得實現滴狀冷凝,並且使其冷凝表面壽命延長。改變冷凝界面的性質,將滴狀冷凝應用到工業上進行傳熱改造是傳播熱學研究的主要熱點之一。沸騰的傳熱方式不僅在機械、動力和石油化工等傳統的工業之中廣泛使用,而且應用於航空航天技術等高科技領域。長期以來,人們都在對液體發生核態沸騰的主要原因和具有高換熱強度的機理進行著深入的探究。由於沸騰的現象是復雜和多變的,這些都導致了我們不能利用常規的計算方法來計算出沸騰所能傳輸的熱量。
到現在為止,加熱器表面受到水沸騰時產生的氣泡的影響,這一問題是最需要得到解決的,也是研究的重點所在,從新的角度來探究和研究問題,從基本理論出發,提出新的理論與計算方法或研究出新的模型,將數學與之相結合計算出沸騰所傳出的熱量,這將成為今後研究的重中之重。
三、靜態混合反應器
靜態混合反應器就是指在流體混合過程中,沒有機械轉動裝置,是依靠流體自身的動力流過設置在管路中的靜止插件實現的。如利用扭曲葉片或交錯平板的組合等,流體流經這些結構單元後,受到混合元件的約束,產生分流、合流、旋轉等行為,是流體達到有效的混合。設計高效的混合設備,實現有效混合,對於提高產品的質量、減少副產物的收率、優化整個生產過程具有重要的意義。靜態混合反應器作為一種新型高效的反應混合裝置,可以有效地進行化工過程強化,在過程工業中應用越來越廣泛,甚至在很多場合已經取代傳統的攪拌反應器。靜態混合反應器具有無須機械攪拌、可連續生產、無污染、佔地面積小、分散混合效果好等優點,被廣泛應用於混合、反應、分散、傳質和傳熱等方面。
四、化學工程學科未來的發展動態
時代的發展,科學的進步使大量新的技術和產品能源不斷涌現,並且在先進技術的引導下得到了廣泛的應用,這就為化學工程的研究提出了新的問題,那就是如何為新的產業的形成和發展提供良好的服務並不斷形成新的完整的理論,化學工程的發展不斷進入一個新的發展階段。在學科研究的方法上更多的是注重學科的交叉,更多的研究材料其中包含信息和化學、生物與化學、能源與化學、環境與化學相結合的工程學科,這些都為化學工程的發展提出了新的發展方向和研究課題,為化學工程的發展做了良好的鋪墊。
從以上可以看出,化學反應是基礎,其中的理論原理作為生產的理論根基。其應用到化工技術中的時候,就會實現相輔相成的效果。不管是對於社會的重要價值,還是對於環境的污染,化工技術都要依託於化學反應的基本原理,從中尋找最佳的利用率,以及最佳的反應條件。

『拾』 分析化學在生物工程的應用

摘要 你好,朋友,很高興為你回答哦,分子生物學進展使得一些生物技術工具極大提高了生物發光和化學發光的檢測和快速應用。這些發展方便了體外和體內持續檢測生物過程(如基因表達,蛋白質-蛋白質相互間作用和疾病的進程),可應用於臨床、診斷、和葯物開發等。而且,結合發光酶或某些在基因水平有生物特異結合位點的發光蛋白發展了超敏感和選擇性的生物分析工具,如重組細胞生物感測器,免疫分析和核酸雜交系統。發光分析信號的高度可偵測性使得它非常適合於微小化的生物分析裝置(如微矩陣,微流設備和高密度的微孔板)以用於小量樣品體積的基因和蛋白的高通量篩選。

閱讀全文

與化學在工程中有哪些應用相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1400
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070