導航:首頁 > 化學知識 > 化學脂基怎麼判斷

化學脂基怎麼判斷

發布時間:2022-07-25 05:00:42

Ⅰ 高中化學,這是不是酯基

酯基是藍框裡面的-COO-,
不包括亞甲基(-CH2-)。我們常說的-COOR,是一個形式,R這樣的表示相接的基團需要有的特徵,而不包括在酯基裡面。如果我們不寫R的話可能會造成誤解。比如HCOOH裡面有-COO-,但它不是酯,因為COO後面接的是H,不是R(烴基)。

Ⅱ 根據結構式怎麼判斷醛基和酯基

醛基

醛基一個氧 C和O為雙鍵; 酯基2個氧 C和O為一個單鍵 一個雙鍵

Ⅲ 鑒別羧基,烴基,酯基,醛基,的化學方法

羧基:與鹼反應,有弱酸性,可與羥基發生酯化反應,與活潑金屬發生置換反應
羥基:與羧基發生酯化反應,醇溶液加熱發生消去反應,與活潑金屬(如Na)置換

酚羥基:有弱酸性,易發生氧化還原反應,與三氯化鐵發生紫色顏色反應
酯基:與水、強鹼(NaOH)、強酸(H2SO4)發生水解反應
醛基:氧化還原反應,銀鏡反應

Ⅳ 有機物中的酯是什麼東西如何判斷它是不是酯呢 就是酯化反應生成的酯,酯的定義是什麼如何判斷

酯是酸和醇反應生成的一種有機物,有機化學中有專門的酯類.具體是酸中的羧基上羥基和醇中的羥基上的氫結合生成水,餘下的結合生成酯.簡記為「酸失羥基,醇失氫」.判斷是不是酯,要確認有沒有酯基(-coo-),與c相連的o,是碳氧雙鍵.

Ⅳ 高中化學,酯基在哪


答案在圖中

Ⅵ 有機物中的酯是什麼東西如何判斷它是不是酯呢

酸(羧酸或無機含氧酸)與醇起反應生成的一類有機化合物叫做酯。有機化合物的一類,低級的酯是有香氣的揮發性液體,高級的酯是蠟狀固體或很稠的液體。幾種高級的酯是脂肪的主要成分。 分子通式為R-COO-R'(R可以是烴基,也可以是氫原子,R'不能為氫原子,否則就是羧基) 酯的官能團是-COO-,飽和一元酯的通式為CnH2nO2(n≥2,n為正整數)。 酯的基本結構可以寫成: O ║ C—O—R′ ∣ R 編輯本段物理性質 酯類都難溶於水,易溶於乙醇和乙醚等有機溶劑,密度一般比水小。低級酯是具有芳香氣味的液體。 低分子量酯是無色、易揮發的芳香液體,高級飽和脂肪酸單酯常為無色無味的固體,高級脂肪酸與高級脂肪醇形成的酯為蠟狀固體。酯的熔點和沸點要比相應的羧酸低。酯一般不溶於水,能溶於各種有機溶劑。低分子量的酯是許多有機化合物的溶劑,也是清漆的溶劑。 編輯本段酯的命名 酯是根據形成它的酸和醇(酚)來命名的,例如乙酸乙酯CH3COOC2H5、乙酸苯酯CH3COOC6H5、苯甲酸甲酯C6H5COOCH3等。 編輯本段化學性質 在有酸或有鹼存在的條件下,酯能發生水解反應生成相應的酸或醇。 酸性條件下酯的水解不完全,鹼性條件下酯的水解趨於完全。原因是因為鹼能中和水解產生產生的羧酸,使反應完全進行到底。 酯是中性物質。低級一元酸酯在水中能緩慢水解成羧酸和醇。酯的水解比醯氯、酸酐困難,須用酸或鹼催化。許多天然的脂肪、油或蠟經水解可製得相應的羧酸,油脂鹼性水解生成的高級脂肪酸鈉就是肥皂,酯的醇解反應是酯中的烷氧基被另一醇的烷氧基所置換的反應,反應須在酸或鹼催化下進行,此反應常用於從一類酯轉變成另一類酯。酯可被催化還原成兩分子醇,應用最廣的催化劑是銅鉻氧化物,反應在高溫高壓下進行,分子中如含有碳碳雙鍵,可同時被還原。此反應廣泛用於油脂的氫化。酯與格氏試劑反應,可合成具有兩個相同取代基的三級醇。 編輯本段形成 酯主要由羧酸與醇直接反應製得(酯化反應): 酯化反應RCOOH+R′OH---→RCOOR′+H2O這一反應在室溫下進行時速率很慢,在酸的催化下可大大加速。其反應原理可以用口訣「酸脫羥基,醇脫氫」來方便記憶。酯化反應是一平衡反應,為了提高酯的產率,常用共沸蒸餾或加脫水劑把反應生成的水去掉,也可在反應時加過量的酸或醇,使反應向產物方向移動。酯還可用醯鹵或酸酐與醇反應,或由羧酸鹽與鹵代烴反應製得。 低分子量的酯可用作溶劑,分子量較大的酯是良好的增塑劑。甲基丙烯酸甲酯是製造有機玻璃(聚甲基丙烯酸甲酯)的單體。聚酯樹脂主要用於纖維和油漆工業,也可製成壓塑粉。許多帶有支鏈的醇形成的酯是優良的潤滑油。酯還可用於香料、香精、化妝品、肥皂和葯品等工業。

Ⅶ 如何鑒別酯基

你說的應該是基酯吧
MFE乙烯基酯樹脂的性能及其在防腐蝕領域的應用研究 華東理工大學 周潤培 侯銳鋼 王曉東 雷 浩 劉坐鎮 一. 前言 乙烯基酯指的是分子二端含有乙烯基團,中間骨架為環氧樹脂的那一類不飽和聚酯。它們是由不飽和有機一元羧酸(最常用的為丙烯酸和甲基丙烯酸)和環氧樹脂進行開環酯化反應而得,故也可稱為不飽和酸環氧酯 (1)。乙烯基酯是個外來詞,其含義並不確切,比較確切的名稱應該是環氧乙烯基酯。前蘇聯文獻將這類化合物稱為環氧丙烯酸酯、環氧甲基丙烯酸酯等。我國早期的文獻曾將這類化合物稱為甲基丙烯酸環氧酯、丙烯酸環氧酯等,或統稱為不飽和酸環氧酯。 乙烯基酯樹脂的開發研究起始於上世紀六十年代。1964年美國Shell化學公司首先開發了一種商品名為Epicryl的雙酚A型環氧乙烯基酯樹脂,以後美國Dow化學公司相繼開發了多種牌號為Derakane的同類產品。日本隨後也開發了一系列商品名為Ripoxy的乙烯基酯樹脂(2)。我國對這類樹脂的開發研究起始於上世紀七十年代初期,華東理工大學(原名華東化工學院)、四川晨光化工研究院、上海樹脂廠和天津合成材料研究所等單位最早報道了這方面的工作並進行了應用研究。乙烯基酯樹脂的應用領域是多方面的,其中最廣泛也是最重要的是在防腐蝕領域。華東理工大學是國內耐腐蝕乙烯基酯樹脂最早的研究單位之一,也是在防腐蝕工程中應用 乙烯基酯樹脂最早的單位。早在1975年,由上海化工學院(即現在華東理工大學)研製的甲基丙烯酸環氧酯樹脂(ME型乙烯基酯樹脂)就已成功地應用於當時新建的上海石化總廠維尼綸廠的醛化浴(內含30%H2SO4和甲醛)防腐蝕工程(3)。 1980年和1981年第一個商品名為MFE-2的乙烯基酯樹脂相繼在我校協作廠和自辦企業正式投產。二十多年來的開發和應用研究使華東理工大學華昌聚合物有限公司已成為國內主要的環氧乙烯基酯樹脂科研生產基地,擁有系列化的MFE乙烯基酯樹脂品牌,積累了豐富的工程應用和施工經驗。環氧乙烯基酯樹脂從面世以來已有近四十年的歷史,期間出現了無數品牌商品、專利和文獻。據筆者所知,目前國內外研究和生產的乙烯基酯樹脂大致可分為以下幾類: 由甲基丙烯酸(M)和雙酚A環氧樹脂(E)為主要原料的ME型乙烯基酯;由丙烯酸(A)和雙酚A環氧樹脂為主要原料的AE型乙烯基酯;由甲基丙烯酸和酚醛多環氧樹脂(F)為主要原料的MF型;丙烯酸和酚醛多環氧樹脂為主要原料的AF型;由甲基丙烯酸、富馬酸(F)和雙酚A環氧樹脂為主要原料的MFE型以及由甲基丙烯酸和含溴雙酚A環氧樹脂為主要原料的MEX型等(表1)。此外尚有許多異氰酸酯、橡膠等改性劑改性的乙烯基酯樹脂。即使是同樣原料組成的乙烯基酯樹脂,由於原料配比不同、生產工藝不同和固化條件不同等因素,其固化產品(澆鑄體)也會具有不同的物理和化學性能。 表1 耐腐蝕環氧乙烯基酯樹脂的分類(按化學組成) 乙烯基酯類型 主要原料 特點 不飽和酸 環氧樹脂 ME 甲基丙烯酸(M) E型環氧 通用型 AE 丙烯酸(A) E型環氧 韌性 MF 甲基丙烯酸(M) F型環氧 耐高溫 MFE 甲基丙烯酸(M)、富馬酸(F) E型環氧 通用型 AF 丙烯酸(A) F型環氧 韌性、耐高溫 AFE 丙烯酸(A)、 富馬酸(F) E型環氧 韌性 MEX 甲基丙烯酸(M) EX型環氧 阻燃 從乙烯基酯的發展史來看,ME型乙烯基酯是較早開發成功的商品樹脂,一些廠商把這類樹脂稱之為標准型乙烯基酯樹脂,但卻不見其典型配方。事實上ME型乙烯基酯樹脂也是多品種的,筆者早期也集中在這一類型乙烯基酯樹脂的合成和性能研究(4),究竟怎樣配方的ME型樹脂是標准?目前尚無公認的典型配方。在不飽和聚酯樹脂大家庭里公認的標准樹脂是聚鄰苯二甲酸/反丁烯二酸丙二醇酯,其典型配方為鄰苯二甲酸酐: 順丁烯二酸酐:丙二醇=1:1:2.15(摩爾比)。標准樹脂並不等於最好的樹脂,當年最好的樹脂並不等於永遠是最好的,這已為不飽和聚酯樹脂的發展史所證實。 總之,科學在發展,技術在進步,今後會有更多新的品種加入到乙烯基酯樹脂的行列中,老的品種也會不斷改進提升品質。 二. 分子結構及性能 1. 環氧乙烯基酯的分子結構 (1) ME和AE型環氧乙烯基酯分子的化學結構如下: (2) MFE和AFE型環氧乙烯基酯分子的化學結構如下: 由此可見,ME型和MFE型乙烯基酯的分子結構非常相近,只是由於擴鏈劑富馬酸的存在使MFE型乙烯基酯的分子量比ME型的擴大了幾乎1倍。華昌公司生產的MFE型乙烯基酯樹脂的紅外光譜與Dow化學公司生產的Derakane- 411樹脂的紅外光譜相雷同也證明了這一點(見圖1)。一些作者指責MFE乙烯基酯不是真正意義上的乙烯基酯,我們不明白真正的乙烯基酯該是怎樣的分子結構?紅外光譜不能鑒別是否是乙烯基酯,難道真的只有用一些人發明的「凝膠前是否發生自發性冒泡」來分辨真假乙烯基酯嗎? 2. 分子結構與耐化學腐蝕性 高分子物理學告訴我們:高分子化合物無論是線型的還是網狀的,其分子結構都是多層次的,一次結構為分子的化學結構;二次結構為分子的形態結構;三次(或稱高次)結構為分子的聚集態結構。本文不準備對此作詳細的闡說,只想指出分子的化學組成既不能代替分子的化學結構,更不等同於分子結構,因此單憑化學組成不能決定高分子化合物的性能。舉例來說,同樣化學組成的聚丙烯,無規聚丙烯的力學性能很差,不能作為材料使用,只有用定向聚合法得到的聚丙烯才是有用的工程材料。 環氧乙烯基酯由於化學結構的特點:酯基密度小且都處於可交聯雙鍵的鄰近,因此與疏水的苯乙烯發生共聚交聯反應生成網狀結構後具有高度的水解穩定性。影響環氧乙烯基酯樹脂水解穩定性的因素有:酯基密度、酯基相鄰基團的空間保護作用和交聯劑苯乙烯的含量(5)。 (1) 酯基密度 環氧乙烯基酯和不飽和聚酯一樣,可水解的基團為其分子結構中含有的酯基(—C=O—O—),因此酯基相對含量(以酯基密度mol/100g表示)的多少將直接影響它們的水解穩定性。 最簡單的環氧乙烯基酯為甲基丙烯酸與雙酚A環氧樹脂按摩爾比2:1反應而得,其分子化學結構的示意式為: M—E—M 式中:M代表甲基丙烯酸 E代表E型環氧樹脂 如果E取平均分子量為392的E-51,則上述分子結構的環氧乙烯基酯的平均分子量為564。由於分子中平均含有二個酯基,故其平均酯基當量為282,即平均每282g環氧乙烯基酯中含有1摩爾酯基,或換算成平均酯基密度為0.355mol/100g。 目前我國市場上最常見的環氧乙烯基酯為反丁烯二酸改性的甲基丙烯酸環氧酯,其分子結構示意式為: M—E—F—E—M 式中F代表反丁烯二酸,M和E的含義同上。 如果參與反應的環氧樹脂也為E-51,則該MFE型環氧乙烯基酯的平均分子量為1072,由於該分子結構中含有四個酯基,故該環氧乙烯基酯的平均酯基當量為268,換算成平均酯基密度為0.373mol/100g,比上述最簡單的ME型環氧乙烯基酯的酯基密度高出5%。 以此類推可以計算出由D-33與反丁烯二酸按摩爾比1:1合成的雙酚A型不飽和聚酯的平均酯基密度為0.472mol/100g,由丙二醇、順酐、苯酐按摩爾比2:1:1合成的鄰苯型191樹脂的平均酯基密度為1.105mol/100g。 由上述計算結果可見,MFE型環氧乙烯基酯樹脂的酯基密度約為鄰苯型191聚酯的1/3,但實驗事實表明(6),MFE型環氧乙烯基酯樹脂的水解穩定性優於鄰苯型191樹脂的遠遠超過3倍,這就告訴我們分子結構中的酯基密度不是影響水解穩定性的唯一因素,也不是主要因素。 (2) 酯基相鄰基團的空間保護作用 有機化學告訴我們:酯基在酸或鹼催化下可發生下列水解反應: ① 酸式水解: ② 鹼式水解: 酯基的相鄰基團R和R』都對酯基的水解速度產生影響,其中尤以R的影響更為明顯。 據報道(7),乙酸乙酯在20℃水中的鹼式水解速率常數k0=4.8l/mol?min,而與其同系的相差一個次甲基的丙酸乙酯在20℃水中的鹼式水解速率常數k1=2.3l/mol?min,後者的水解速率常數約為前者的1/2。以此結果延伸到甲基丙烯酸環氧酯(ME型)與丙烯酸環氧酯(AE型)的水解穩定性對比上,無疑前者的水解穩定性要優於後者,但必須指出的是,無論ME型抑或AE型環氧乙烯基酯,它們在固化前的水解穩定性都是很差的,玻璃鋼行業的同仁都有這樣一個共識,只有當樹脂(環氧乙烯基酯樹脂也不例外)充分交聯固化後,它們的優秀性能(包括物理性能、耐化學品性能)才顯現出來。 因此筆者認為:環氧乙烯基酯分子結構中酯基相鄰的可交聯雙鍵,在苯乙烯參與下固化形成三維交聯網路,它對酯基形成的空間保護作用才是環氧乙烯基酯樹脂獲得高的水解穩定性的最主要原因(6)。如圖2所示:固化後受空間網路大分子保護的基團。 (3) 交聯劑苯乙烯的含量 與不飽和聚酯一樣,環氧乙烯基酯最常用交聯劑和稀釋劑仍是苯乙烯,它的含量通常占環氧乙烯基酯樹脂總量的40%左右。由於苯乙烯及其聚合物對水解作用的惰性,因此它的存在和含量最直接的作用是降低了環氧乙烯基酯樹脂中的酯基密度。此外,當它以聚苯乙烯鏈段的形式參與環氧乙烯基酯樹脂固化交聯成三維網路後,對樹脂澆鑄體的耐熱性、力學性能和耐水解穩定性都起到重要作用。 總之,環氧乙烯基酯樹脂固化網路的水解穩定性不能單純以組成網路的環氧乙烯基酯的化學組成來判斷,必須同時考慮到由苯乙烯鏈段參與的固化網路的分子結構對耐水性的影響。 再來回顧一下歷史,由最初開發成功的商品樹脂,即以甲基丙烯酸與E型環氧樹脂按摩爾比2:1合成的ME型環氧乙烯基酯樹脂,至今已有三十餘年。三十多年來商品樹脂品種不斷增加,各種改性樹脂相繼出現。反丁烯二酸改性的MFE型環氧乙烯基酯樹脂和以丙烯酸代替甲基丙烯酸合成的AE型環氧乙烯基酯樹脂3200#早在上世紀八十年代初期我國已開始商品化生產(8)。AE型環氧乙烯基酯樹脂雖然在化學結構上缺少α-甲基對相鄰酯基的空間保護作用,但只要苯乙烯用量得當,形成的網路結構合理,同樣可以具有,甚至超過某些ME型環氧乙烯基酯樹脂所具有的高度的水解穩定性,這一點已為多年來應用實踐所證實。 華昌聚合物有限公司近期推出的高韌性、低收縮型MFE-5乙烯基酯樹脂屬AE型乙烯基酯樹脂,但它卻具有極佳的水解穩定性。試驗結果表明,MFE-5乙烯基酯樹脂澆鑄體在80~100℃下浸泡於10%NaOH中歷時2個月,其外觀不變、透明度不變,僅輕微失重(9)。說明該樹脂具有優良的耐鹼性。 3. 分子結構與物理力學性能 乙烯基酯經固化交聯後形成三維網狀結構,影響網狀結構韌性的因素為交聯密度和交聯點間分子鏈段的柔韌性。 交聯密度與樹脂分子的雙鍵密度由直接關系,以ME型乙烯基酯樹脂分子的雙鍵密度為例,如果仍以參與分子組成的環氧樹脂為E-51計算,由於每一分子中含有二個雙鍵,即平均每564gME乙烯基酯含有2摩爾雙鍵,故其分子的平均雙鍵密度為0.355mol/100g。MFE型乙烯基酯樹脂的每一分子含有三個雙鍵,即平均每1072gMFE乙烯基酯含有3摩爾雙鍵,可計算出其分子的平均雙鍵密度為0.280mol/100g,比ME型乙烯基酯分子的平均雙鍵密度降低了27%。由此可見MFE型乙烯基酯分子固化後形成三維網狀結構並非如某些人所說的存在高交聯密度,相反比ME型乙烯基酯交聯密度低。 影響乙烯基酯樹脂固化網路韌性的另一個重要因素為網路交聯點間分子鏈段的柔韌性。眾所周知丙烯酸及其酯在化工行業中被稱為軟單體,而甲基丙烯酸及其酯則被稱為硬單體。這是由於丙烯酸酯聚合後主鏈可自由旋轉,而甲基丙烯酸酯聚合後由於α-甲基的空間位阻,使分子主鏈的內旋轉受到阻滯。 由此可見,AE型乙烯基酯樹脂的澆鑄體一般地較ME型乙烯基酯樹脂具有更好的韌性,但也非絕對如此。與上節討論水解穩定性時一樣,畢竟乙烯基酯樹脂的固化網路只是乙烯基酯分子的化學結構,不能完全決定乙烯基酯樹脂澆鑄體的物性。

Ⅷ 酯基和羧基如何區分

你畫的那個官能團是酯基和碳碳雙鍵
如果有-coo,就是酯或者酸,-cooh為羧酸,-coo後面加碳鏈的是酯基
羰基就是碳氧雙鍵,比上兩個要少一個o,考得比較少
醛基好判斷,-cho,只能在端位。
羥基,就是-oh,注意掛在c鏈上叫醇羥基,掛在苯環上叫酚羥基
酚羥基不易發生酯化
差不多了。就這些,重要的是他們的性質

Ⅸ 怎麼區分醛基 羰基 酯基 羧基。。。

你畫的那個官能團是酯基和碳碳雙鍵
如果有-COO,就是酯或者酸,-COOH為羧酸,-COO後面加碳鏈的是酯基
羰基就是碳氧雙鍵,比上兩個要少一個O,考得比較少
醛基好判斷,-CHO,只能在端位。
羥基,就是-OH,注意掛在C鏈上叫醇羥基,掛在苯環上叫酚羥基
酚羥基不易發生酯化
差不多了。就這些,重要的是他們的性質

Ⅹ 如何判斷酯基由醇羥基和羧基構成還是酚羥基和羧基構成

如何判斷酯基由醇羥基和羧基構成還是酚羥基和羧基構成
羥基,又稱氫氧基。是由一個氧原子和一個氫原子相連組成的一價原子團,結構式為 C-OH 羧基,是有機化學中的基本酸基,所有的有機酸都可以叫羧酸,由一個碳原子、兩個氧原子和一個氫原子組成,化學式-COOH。如醋酸(CH3COOH)、檸檬酸都含有羧基,這些羧基與烴基直接連接的化合物,叫作羧酸。 羰基中的一個價鍵跟氫原子相連而組成的一價原子團,叫做醛基。醛、糖醛、葡萄糖等分子中都含有醛基。醛類分子中的醛基性質活潑,容易發生縮合、親核加成反應。醛基能還原成羥甲基(—CH2OH)或氧化成羧基(—COOH)。

閱讀全文

與化學脂基怎麼判斷相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1400
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070