1. 如何判斷化學鍵的強弱
看鍵能,鍵長.鍵能大,鍵長短的化學鍵比較強.
共價鍵強弱判斷:成鍵原子半徑越小,共價鍵越強,斷開鍵需要的能量越高.
離子鍵的強弱比較:和離子半徑成反比,離子半徑越大,離子鍵越弱;和離子電荷數成正比,離子所帶電荷數越大,離子鍵越強.
2. 幫我總結一下化學鍵的強度的概念
化學鍵的強度是描述共價鍵的牢固程度的,兩原子對共用電子對的作用,作用越強越牢固,常用鍵能(形成或破壞1mol共價鍵所放出或吸收的能量)的大小來衡量化學鍵的強度,鍵能越大,鍵越牢固,共價鍵的強度越大.
3. 四種化學鍵的強弱排序
原子晶體的共價鍵>離子鍵>金屬鍵。
化學鍵(chemical bond)是純凈物分子內或晶體內相鄰兩個或多個原子(或離子)間強烈的相互作用力的統稱。使離子相結合或原子相結合的作用力通稱為化學鍵。
離子鍵、共價鍵、金屬鍵各自有不同的成因,離子鍵是通過原子間電子轉移,形成正負離子,由靜電作用形成的。
共價鍵的成因較為復雜,路易斯理論認為,共價鍵是通過原子間共用一對或多對電子形成的,其他的解釋還有價鍵理論,價層電子互斥理論。
分子軌道理論和雜化軌道理論等。金屬鍵是一種改性的共價鍵,它是由多個原子共用一些自由流動的電子形成的。
化學(chemistry)是自然科學的一種,主要在分子、原子層面,研究物質的組成、性質、結構與變化規律,創造新物質(實質是自然界中原來不存在的分子)。
不同於研究尺度更小的粒子物理學與核物理學,化學研究的原子 ~ 分子 ~ 離子(團)的物質結構和化學鍵、分子間作用力等相互作用。
其所在的尺度是微觀世界中最接近宏觀的,因而它們的自然規律也與人類生存的宏觀世界中物質和材料的物理、化學性質最為息息相關。
作為溝通微觀與宏觀物質世界的重要橋梁,化學則是人類認識和改造物質世界的主要方法和手段之一。
以上資料供參考網路-化學化學鍵
4. 化學鍵強弱
可以從鍵能 鍵長角度分析
1、若晶形不同,則原子晶體大於離子晶體大於分子晶體(金屬晶體熔沸點差別大,有特別高的如鎢,也有特別低的如汞,故和三者的比較不能有固定的規律,一般要具體分析)。
2、若晶形相同,則比較晶體內部離子間相互作用的強弱,相互作用越強,熔沸點就越高。
(1)離子晶體看離子鍵的強弱,一般離子半徑越大、所帶電荷數越多,離子鍵越強,熔沸點越高。
(2)原子晶體看共價鍵的強弱,一般非金屬性越強、半徑越小,共價鍵越強,熔沸點越高。如金剛石比晶體硅的熔沸點高,是因為C比Si元素非金屬性強,原子半徑小,所以碳碳共價鍵比硅硅共價鍵強。
(3)分子晶體看分子間作用力的強弱,對組成和結構相似的物質(一般為同族元素的單質、化合物或同系物),相對分子質量越大,分子間作用力越強,熔沸點越高。
(4)金屬晶體看金屬鍵的強弱,金屬離子半徑小,所帶電荷數多,金屬鍵就強,熔沸點就高。
對於周期表中同族元素單質的熔沸點比較,同樣根據以上規律,如鹵素、氧族元素、氮族元素的單質是分子晶體,從上到下相對分子質量增大,分子間作用力增強,熔沸點升高;鹼金屬都是金屬晶體,從上到下離子半徑增大,金屬鍵減弱,熔沸點降低。
至於隨氧化性或還原性強弱的變化就是隨金屬性和非金屬性的變化,即鹵素、氧族元素、氮族元素的單質從上到下氧化性減弱,熔沸點升高;鹼金屬從上到下還原性增強,熔沸點降低。
5. 怎麼計算化學式的鍵能
鍵能是表徵化學鍵強度的物理量,可以用鍵斷裂時所需的能量大小來衡量。
在101.3kPa和298.15K下,將1mol氣態分子AB斷裂成理想氣態原子所吸收的能量叫做AB的離解能(KJ·mol-1),常用符號D(A-B)表示。
即:AB(g)→A(g)+ B(g)
對於雙原子分子,鍵能E(A—B)等於鍵的解離能D(A—B),可直接熱化學測量中得到。例如:
Cl2(g)→2Cl(g) ΔHm,298.15(Cl2)=E(Cl2)=D(Cl2)=247kJ.mol-1
在多原子分子中斷裂氣態分子中的某一個鍵所需的能量叫做分子中這個鍵的離解能。例如:
NH3(g)= NH2(g)+ H(g) D1= 435kJ·mol-1
NH2(g)= NH(g)+ H(g) D2= 397kJ·mol-1
NH(g)= N(g)+ H(g) D3= 339kJ·mol-1
NH3分子中雖然有三個等價的N-H鍵,但先後拆開它們所需的能量是不同的。
所謂鍵能(Bond Energy)通常是指在101.3KPa和298K下將1mol氣態分子拆開成氣態原子時,每個鍵所需能量的平均值,鍵能用E表示。
顯然對雙原子分子來說,鍵能等於離解能。
例如,298.15K時,H的鍵能E(H-H)=D(H-H)=436kJ·mol-1;而對於多原子分子來說,鍵能和離解能是不同的。例如NH分子中N-H鍵的鍵能應是三個N-H鍵離解能的平均值:
E(N-H)=(D1+D2+D3)/3=1171/3=391kJ·mol-1
一般來說鍵能越大,化學鍵越牢固。雙鍵的鍵能比單鍵的鍵能大得多,但不等於單鍵鍵能的兩倍;同樣三鍵鍵能也不是單鍵鍵能的三倍。
(5)化學鍵強度多少擴展閱讀:
標志化學鍵強度:
鍵能是化學鍵形成時放出的能量或化學鍵斷裂時吸收的能量,可用來標志化學鍵的強度。
它的數值是這樣確定的:對於能夠用定域鍵結構滿意地描述的分子,所有各鍵的鍵能之和等於這一分子的原子化能。
鍵能是從定域鍵的相對獨立性中抽象出來的一個概念,它的定義中隱含著不同分子中同一類型化學鍵的鍵能相同的假定。
實驗證明,這個假定在一定范圍內近似成立。例如,假定C─C和C─H鍵的鍵能分別是346和411千焦/摩,則算出來的飽和烴的原子化能只有2%的偏差。
常用的另一個量度化學鍵強度的物理量是鍵離解能,它是使指定的一個化學鍵斷裂時需要的能量。由於產物的幾何構型和電子狀態在逐步改變時伴隨有能量變化,除雙原子分子外,鍵離解能不同於鍵能。
例如,依次斷開CH4的四個C─H鍵的鍵離解能分別是425、470、415、335kJ.mol-1,它們的平均值才等於C─H鍵的鍵能(411kJ.mol-1)。
參考資料來源:網路-鍵能
6. 如何判斷化學鍵的強弱化學鍵有多種類,不同的化學鍵的
共價鍵的強弱用鍵焓來描述,鍵焓數值越大,共價鍵越牢固。
離子鍵的強弱用晶格能來描述,晶格能越大離子鍵強度越大。
金屬鍵的強弱用原子化焓(升華焓)來描述,升華焓越大金屬鍵越強。
7. 金屬鍵 離子鍵 共價鍵 強弱排序(從強到弱)
原子晶體的共價鍵>離子鍵>金屬鍵。
如共價鍵如果屬於金剛石,其一般是最強的;離子鍵屬於離子化合物,比較強;金屬一般熔沸點不是特別高。
但是,如離子化合物取氯化鈉、金屬鍵取金屬鎢。明顯金屬鎢的金屬鍵強於氯化鈉的離子鍵(通過熔沸點比較即可)。
分子間作用力存在於分子間,一般較弱。故分子晶體一般熔沸點較低,氣體和液體較多。
(7)化學鍵強度多少擴展閱讀:
金屬鍵由於電子的自由運動,金屬鍵沒有固定的方向,因而是非極性鍵。金屬鍵有金屬的很多特性。
例如:一般金屬的熔點、沸點隨金屬鍵的強度而升高。其強弱通常與金屬離子半徑成逆相關,與金屬內部自由電子密度成正相關(便可粗略看成與原子外圍電子數成正相關)。
在共價鍵的形成過程中,因為每個原子所能提供的未成對電子數是一定的,一個原子的一個未成對電子與其他原子的未成對電子配對後,就不能再與其它電子配對,即,每個原子能形成的共價鍵總數是一定的,這就是共價鍵的飽和性。
帶相反電荷的離子之間存在靜電作用,當兩個帶相反電荷的離子靠近時, 表現為相互吸引,而電子和電子、原子核與原子核之間又存在著靜電排斥作用,當靜電吸引與靜電排斥作用達到平衡時,便形成離子鍵。因此,離子鍵是指陰離子,陽離子間通過靜電作用形成的化學鍵。
8. 化學鍵強弱對比
可以從鍵能
鍵長角度分析
1、若晶形不同,則原子晶體大於離子晶體大於分子晶體(金屬晶體熔沸點差別大,有特別高的如鎢,也有特別低的如汞,故和三者的比較不能有固定的規律,一般要具體分析)。
2、若晶形相同,則比較晶體內部離子間相互作用的強弱,相互作用越強,熔沸點就越高。
(1)離子晶體看離子鍵的強弱,一般離子半徑越大、所帶電荷數越多,離子鍵越強,熔沸點越高。
(2)原子晶體看共價鍵的強弱,一般非金屬性越強、半徑越小,共價鍵越強,熔沸點越高。如金剛石比晶體硅的熔沸點高,是因為C比Si元素非金屬性強,原子半徑小,所以碳碳共價鍵比硅硅共價鍵強。
(3)分子晶體看分子間作用力的強弱,對組成和結構相似的物質(一般為同族元素的單質、化合物或同系物),相對分子質量越大,分子間作用力越強,熔沸點越高。
(4)金屬晶體看金屬鍵的強弱,金屬離子半徑小,所帶電荷數多,金屬鍵就強,熔沸點就高。
對於周期表中同族元素單質的熔沸點比較,同樣根據以上規律,如鹵素、氧族元素、氮族元素的單質是分子晶體,從上到下相對分子質量增大,分子間作用力增強,熔沸點升高;鹼金屬都是金屬晶體,從上到下離子半徑增大,金屬鍵減弱,熔沸點降低。
至於隨氧化性或還原性強弱的變化就是隨金屬性和非金屬性的變化,即鹵素、氧族元素、氮族元素的單質從上到下氧化性減弱,熔沸點升高;鹼金屬從上到下還原性增強,熔沸點降低。
9. 共價鍵強弱如何判定
對於由相同的A和B兩個原子組成的化學鍵:鍵長值小,鍵強;鍵的數目多,鍵長值小。
在原子晶體中,原子半徑越小,鍵長越短,鍵能越大。由大量的鍵長值可以推引出成鍵原子的原子半徑;反之,利用原子半徑的加和值可得這種化學鍵的典型鍵長。若再考慮兩個原子電負性差異的大小予以適當校正,和實際測定值會符合得很好。
對於共價鍵鍵長的比較,大致可以參考以下方法:共價鍵強度越大,則鍵長越小;與同一原子相結合形成共價鍵的原子電負性與該原子相差越大,鍵長越小;(例如鹵素與碳原子間形成的價鍵)同時,鍵長也與該原子形成的其他化學鍵類型及強度有關。
(9)化學鍵強度多少擴展閱讀
主要特點:
1、飽和性
在共價鍵的形成過程中,因為每個原子所能提供的未成對電子數是一定的,一個原子的一個未成對電子與其他原子的未成對電子配對後,就不能再與其它電子配對,即,每個原子能形成的共價鍵總數是一定的,這就是共價鍵的飽和性。
共價鍵的飽和性決定了各種原子形成分子時相互結合的數量關系,是定比定律(law of definite proportion)的內在原因之一。
2、方向性
除s軌道是球形的以外,其它原子軌道都有其固定的延展方向,所以共價鍵在形成時,軌道重疊也有固定的方向,共價鍵也有它的方向性,共價鍵的方向決定著分子的構形。
10. 如何比較化學鍵鍵長的大小
共價鍵強度越大,則鍵長越小;與同一原子相結合形成共價鍵的原子電負性與該原子相差越大,鍵長越小;同時,鍵長也與該原子形成的其他化學鍵類型及強度有關。
對於由相同的A和B兩個原子組成的化學鍵:鍵長值小,鍵強;鍵的數目多,鍵長值小。
在原子晶體中,原子半徑越小,鍵長越短,鍵能越大。
可以用光譜、衍射等物理方法測定鍵長;量子化學中還可以由從頭計演算法或自洽場半經驗法計算鍵長。
(10)化學鍵強度多少擴展閱讀:
影響鍵長的因素:
原子半徑、原子核間距離、孤對電子之間的排斥力、反饋鍵等,在實際的分子中,由於受共軛效應、空間阻礙效應和相鄰基團電負性的影響,同一種化學鍵鍵長還有一定差異。
共價鍵的分類:
1、按共用電子對的數目分,有單鍵(Cl—Cl)、雙鍵(C=C)、三鍵(N≡N,C≡C)等。
2、按共用電子對是否偏移分類,有極性鍵(H—Cl)和非極性鍵(Cl—Cl)。
3、 按提供電子對的方式分類,有正常的共價鍵和配位鍵(共用電子對由一方提供,另一方提供空軌道。如銨根離子中的N—H鍵中有一個屬於配位鍵)。
4、按電子雲重疊方式分,有σ鍵(電子雲沿鍵軸方向,以「頭碰頭」方式成鍵。如C—C。)和π鍵(電子雲沿鍵軸兩側方向,以「肩並肩」方向成鍵。