導航:首頁 > 化學知識 > 原子和分子之間哪個化學鍵最強

原子和分子之間哪個化學鍵最強

發布時間:2022-07-31 20:29:53

1. 化學鍵是說原子間的強作用力,但離子鍵也是化學鍵,但卻只是離子間的作用力,why

化學鍵主要有三種基本類型,即離子鍵、共價鍵和金屬鍵。

一、離子鍵

離子鍵是由電子轉移(失去電子者為陽離子,獲得電子者為陰離子)形成的。即正離子和負離子之間由於靜電引力所形成的化學鍵。離子既可以是單離子,如Na+、CL-;也可以由原子團形成;如SO4 2-,NO3-等。

離子鍵的作用力強,無飽和性,無方向性。離子鍵形成的礦物總是以離子晶體的形式存在。

二、共價鍵

共價鍵的形成是相鄰兩個原子之間自旋方向相反的電子相互配對,此時原子軌道相互重疊,兩核間的電子雲密度相對地增大,從而增加對兩核的引力。共價鍵的作用力很強,有飽和性與方向性。因為只有自旋方向相反的電子才能配對成鍵,所以共價鍵有飽和性;另外,原子軌道互相重疊時,必須滿足對稱條件和最大重疊條件,所以共價鍵有方向性。共價鍵又可分為三種:

(1)非極性共價鍵 形成共價鍵的電子雲正好位於鍵合的兩個原子正中間,如金剛石的C—C鍵。

(2)極性共價鍵 形成共價鍵的電子雲偏於對電子引力較大的一個原子,如Pb—S 鍵,電子雲偏於S一側,可表示為Pb→S。

(3)配價鍵 共享的電子對只有一個原子單獨提供。如Zn—S鍵,共享的電子對由鋅提供,Z:+ ¨..S:=Z n→S

共價鍵可以形成兩類晶體,即原子晶體共價鍵與分子晶體。原子晶體的晶格結點上排列著原子。原子之間有共價鍵聯系著。在分子晶體的晶格結點上排列著分子(極性分子或非極性分子),在分子之間有分子間力作用著,在某些晶體中還存在著氫鍵。關於分子鍵精闢氫鍵後面要講到。

三、金屬鍵

由於金屬晶體中存在著自由電子,整個金屬晶體的原子(或離子)與自由電子形成化學鍵。這種鍵可以看成由多個原子共用這些自由電子所組成,所以有人把它叫做改性的共價鍵。對於這種鍵還有一種形象化的說法:「好象把金屬原子沉浸在自由電子的海洋中」。金屬鍵沒有方向性與飽和性。

和離子晶體、原子晶體一樣,金屬晶體中沒獨立存在的原子或分子;金屬單質的化學式(也叫分子式)通常用化學符號來表示。

上述三種化學鍵是指分子或晶體內部原子或離子間的強烈作用力。但它沒有包括所有其他可能的作用力。比如,氯氣,氨氣和二氧化碳氣在一定的條件下都可以液化或凝固成液氯、液氨和乾冰(二氧化碳的晶體)。說明在分子之間還有一種作用力存在著,這種作用力叫做分子間力(范德華力),有的叫分子鍵。分子間力的分子的極性有關。分子有極性分子和非極性分子,其根據是分子中的正負電荷中心是否重合,重合者為非極性分子,不重合者為極性分子。

分子間力包括三種作用力,即色散力、誘導力和取向力。(1)當非極性分子相互靠近時,由於電子的不斷運動和原子核的不斷振動,要使每一瞬間正、負電荷中心都重合是不可能的,在某一瞬間總會有一個偶極存在,這種偶極叫做瞬時偶極。由於同極相斥,異極相吸,瞬時偶極之間產生的分子間力叫做色散力。任何分子(不論極性或非極性)互相靠近時,都存在色散力。(2)當極性分子和非極性分子靠近時,除了存在色散力作用外,由於非極性分子受極性分子電場的影響產生誘導偶極,這種誘導偶極和極性分子的固有偶極之間所產生的吸引力叫做誘導力。同時誘導偶極又作用於極性分子,使其偶極長度增加。從而進一步加強了它們間的吸引。(3)當極性分子相互靠近時,色散力也起著作用。此外,由於它們之間固有偶極之間的同極相斥,異極相吸,兩個分子在空間就按異極相鄰的狀態取向,由於固有偶極之間的取向而引起的分子間力叫做取向力。由於取向力的存在,使極性分子更加靠近,在相鄰分子的固有偶極作用下,使每個分子的正、負電荷中心更加分開,產生了誘導偶極,因此極性分子之間還存在著誘導力。總之,在非極性分子之間只存在著色散力,在極性分子和非極性分子之間存在著色散務和誘導力,在極性分子之間存在著色散力、誘導力和取向力。色散力、誘導力和取向力的總和叫做分子間力。分子間力沒有方向性與飽和性,鍵力較弱。

此外,還有氫鍵。氫鍵的形成是由於氫原子和電負性較大的X原子(如F、O、N原子)以共價鍵結合後,共用電子對強烈地偏向X原子,使氫核幾乎「裸露」出來。這種「裸露」的氫核由於體積很小,又不帶內層電子,不易被其他原子的電子雲所排斥,所以它還能吸引另一個電負性較大的Y原子(如F、O、N原子)中的獨對電子雲而形成氫鍵。

X—H Y

點線表示氫鍵。X、Y可以是同種元素也可以是不同種元素。

除了HF、H2O、NH3等三種氫化物能夠形成氫鍵之外,在無機含氧酸、羥酸、醇、胺以及和生命有關的蛋白質等許多類物質都存在氫鍵。在一些礦物晶格中,如高嶺土等也局部存在氫鍵。化學鍵主要有三種基本類型,即離子鍵、共價鍵和金屬鍵。

一、離子鍵

離子鍵是由電子轉移(失去電子者為陽離子,獲得電子者為陰離子)形成的。即正離子和負離子之間由於靜電引力所形成的化學鍵。離子既可以是單離子,如Na+、CL-;也可以由原子團形成;如SO4 2-,NO3-等。

離子鍵的作用力強,無飽和性,無方向性。離子鍵形成的礦物總是以離子晶體的形式存在。

二、共價鍵

共價鍵的形成是相鄰兩個原子之間自旋方向相反的電子相互配對,此時原子軌道相互重疊,兩核間的電子雲密度相對地增大,從而增加對兩核的引力。共價鍵的作用力很強,有飽和性與方向性。因為只有自旋方向相反的電子才能配對成鍵,所以共價鍵有飽和性;另外,原子軌道互相重疊時,必須滿足對稱條件和最大重疊條件,所以共價鍵有方向性。共價鍵又可分為三種:

(1)非極性共價鍵 形成共價鍵的電子雲正好位於鍵合的兩個原子正中間,如金剛石的C—C鍵。

(2)極性共價鍵 形成共價鍵的電子雲偏於對電子引力較大的一個原子,如Pb—S 鍵,電子雲偏於S一側,可表示為Pb→S。

(3)配價鍵 共享的電子對只有一個原子單獨提供。如Zn—S鍵,共享的電子對由鋅提供,Z:+ ¨..S:=Z n→S

共價鍵可以形成兩類晶體,即原子晶體共價鍵與分子晶體。原子晶體的晶格結點上排列著原子。原子之間有共價鍵聯系著。在分子晶體的晶格結點上排列著分子(極性分子或非極性分子),在分子之間有分子間力作用著,在某些晶體中還存在著氫鍵。關於分子鍵精闢氫鍵後面要講到。

三、金屬鍵

由於金屬晶體中存在著自由電子,整個金屬晶體的原子(或離子)與自由電子形成化學鍵。這種鍵可以看成由多個原子共用這些自由電子所組成,所以有人把它叫做改性的共價鍵。對於這種鍵還有一種形象化的說法:「好象把金屬原子沉浸在自由電子的海洋中」。金屬鍵沒有方向性與飽和性。

和離子晶體、原子晶體一樣,金屬晶體中沒獨立存在的原子或分子;金屬單質的化學式(也叫分子式)通常用化學符號來表示。

上述三種化學鍵是指分子或晶體內部原子或離子間的強烈作用力。但它沒有包括所有其他可能的作用力。比如,氯氣,氨氣和二氧化碳氣在一定的條件下都可以液化或凝固成液氯、液氨和乾冰(二氧化碳的晶體)。說明在分子之間還有一種作用力存在著,這種作用力叫做分子間力(范德華力),有的叫分子鍵。分子間力的分子的極性有關。分子有極性分子和非極性分子,其根據是分子中的正負電荷中心是否重合,重合者為非極性分子,不重合者為極性分子。

分子間力包括三種作用力,即色散力、誘導力和取向力。(1)當非極性分子相互靠近時,由於電子的不斷運動和原子核的不斷振動,要使每一瞬間正、負電荷中心都重合是不可能的,在某一瞬間總會有一個偶極存在,這種偶極叫做瞬時偶極。由於同極相斥,異極相吸,瞬時偶極之間產生的分子間力叫做色散力。任何分子(不論極性或非極性)互相靠近時,都存在色散力。(2)當極性分子和非極性分子靠近時,除了存在色散力作用外,由於非極性分子受極性分子電場的影響產生誘導偶極,這種誘導偶極和極性分子的固有偶極之間所產生的吸引力叫做誘導力。同時誘導偶極又作用於極性分子,使其偶極長度增加。從而進一步加強了它們間的吸引。(3)當極性分子相互靠近時,色散力也起著作用。此外,由於它們之間固有偶極之間的同極相斥,異極相吸,兩個分子在空間就按異極相鄰的狀態取向,由於固有偶極之間的取向而引起的分子間力叫做取向力。由於取向力的存在,使極性分子更加靠近,在相鄰分子的固有偶極作用下,使每個分子的正、負電荷中心更加分開,產生了誘導偶極,因此極性分子之間還存在著誘導力。總之,在非極性分子之間只存在著色散力,在極性分子和非極性分子之間存在著色散務和誘導力,在極性分子之間存在著色散力、誘導力和取向力。色散力、誘導力和取向力的總和叫做分子間力。分子間力沒有方向性與飽和性,鍵力較弱。

此外,還有氫鍵。氫鍵的形成是由於氫原子和電負性較大的X原子(如F、O、N原子)以共價鍵結合後,共用電子對強烈地偏向X原子,使氫核幾乎「裸露」出來。這種「裸露」的氫核由於體積很小,又不帶內層電子,不易被其他原子的電子雲所排斥,所以它還能吸引另一個電負性較大的Y原子(如F、O、N原子)中的獨對電子雲而形成氫鍵。

X—H Y

點線表示氫鍵。X、Y可以是同種元素也可以是不同種元素。

除了HF、H2O、NH3等三種氫化物能夠形成氫鍵之外,在無機含氧酸、羥酸、醇、胺以及和生命有關的蛋白質等許多類物質都存在氫鍵。在一些礦物晶格中,如高嶺土等也局部存在氫鍵。

2. 化學鍵間作用力大小比較

以下只是經驗規則,不是普適的原理:

鍵長的比較關鍵是要看:
成鍵原子/離子的范德華半徑、共價性/離子性、鍵級大小

鍵級大小相同的前提下——
成鍵原子間的電負性越接近,鍵的共價性越強,這時就要著重比較成鍵原子的范德華半徑之和。
成鍵原子間的電負性相差越大,鍵的離子性越強,,這時就要著重比較成鍵離子的離子半徑之和。

而離子半徑和原子半徑可在專門的數據表中查到
一般情況下還可依靠元素周期律的半徑變化規律來推斷

最後大∏鍵的形成導致的是鍵長平均化,也就是原來短的變長,原來長的變短

3. 化學鍵健強的排序,比如,共價鍵,離子鍵,金屬鍵,分子間作用力

這個不好比較,沒有必然的結論,比如離子晶體通常比金屬晶體(金屬塊)堅硬,熔點高,可以說離子鍵強度大於金屬鍵,但是共價鍵就沒什麼好比較的了,共價化合物比如二氧化碳,晶體間以范德華力聯系,像金剛石,等又極度堅硬,石墨級軟.所以只能具體情況具體看待了,還有,沒有純的共價鍵也沒有純粹的離子鍵,所以.所謂的化學鍵就是表示微觀粒子間相互作用力大小的一種方法,這是本是不存在的東西.
比較的話只能對比相同性質的化學鍵,看鍵能,鍵長.鍵能大,鍵長短的化學鍵比較強.比如:
共價鍵強弱判斷:成鍵原子半徑越小,共價鍵越強,斷開鍵需要的能量越高.
離子鍵的強弱比較:和離子半徑成反比,離子半徑越大,離子鍵越弱;和離子電荷數成正比,離子所帶電荷數越大,離子鍵越強.

4. 分子間的氫鍵與共價鍵,離子鍵相比誰更強誰更穩定

分子間的氫鍵最差,它屬於弱作用
至於強作用:共價鍵,離子鍵沒有可比性,因為成鍵的原子不同

5. 金屬鍵 離子鍵 共價鍵 強弱排序(從強到弱)

原子晶體的共價鍵>離子鍵>金屬鍵。

如共價鍵如果屬於金剛石,其一般是最強的;離子鍵屬於離子化合物,比較強;金屬一般熔沸點不是特別高。

但是,如離子化合物取氯化鈉、金屬鍵取金屬鎢。明顯金屬鎢的金屬鍵強於氯化鈉的離子鍵(通過熔沸點比較即可)。

分子間作用力存在於分子間,一般較弱。故分子晶體一般熔沸點較低,氣體和液體較多。

(5)原子和分子之間哪個化學鍵最強擴展閱讀:

金屬鍵由於電子的自由運動,金屬鍵沒有固定的方向,因而是非極性鍵。金屬鍵有金屬的很多特性。

例如:一般金屬的熔點、沸點隨金屬鍵的強度而升高。其強弱通常與金屬離子半徑成逆相關,與金屬內部自由電子密度成正相關(便可粗略看成與原子外圍電子數成正相關)。

在共價鍵的形成過程中,因為每個原子所能提供的未成對電子數是一定的,一個原子的一個未成對電子與其他原子的未成對電子配對後,就不能再與其它電子配對,即,每個原子能形成的共價鍵總數是一定的,這就是共價鍵的飽和性。

帶相反電荷的離子之間存在靜電作用,當兩個帶相反電荷的離子靠近時, 表現為相互吸引,而電子和電子、原子核與原子核之間又存在著靜電排斥作用,當靜電吸引與靜電排斥作用達到平衡時,便形成離子鍵。因此,離子鍵是指陰離子,陽離子間通過靜電作用形成的化學鍵。

6. 氫鍵,二硫鍵,離子鍵哪個最強書上說氫鍵是最強的

當然是離子鍵了,離子鍵是化學鍵肯定比氫鍵強,氫鍵又比分子間作用力強……
化學鍵原子原子團組成分子時的作用力,而分子是很不容易被打開的……氫鍵只是分子之間的相互結合…… 這么說你能理解不?

7. 四種化學鍵的強弱排序

原子晶體的共價鍵>離子鍵>金屬鍵。

化學鍵(chemical bond)是純凈物分子內或晶體內相鄰兩個或多個原子(或離子)間強烈的相互作用力的統稱。使離子相結合或原子相結合的作用力通稱為化學鍵。

離子鍵、共價鍵、金屬鍵各自有不同的成因,離子鍵是通過原子間電子轉移,形成正負離子,由靜電作用形成的。

共價鍵的成因較為復雜,路易斯理論認為,共價鍵是通過原子間共用一對或多對電子形成的,其他的解釋還有價鍵理論,價層電子互斥理論。

分子軌道理論和雜化軌道理論等。金屬鍵是一種改性的共價鍵,它是由多個原子共用一些自由流動的電子形成的。

化學(chemistry)是自然科學的一種,主要在分子、原子層面,研究物質的組成、性質、結構與變化規律,創造新物質(實質是自然界中原來不存在的分子)。

不同於研究尺度更小的粒子物理學與核物理學,化學研究的原子 ~ 分子 ~ 離子(團)的物質結構和化學鍵、分子間作用力等相互作用。

其所在的尺度是微觀世界中最接近宏觀的,因而它們的自然規律也與人類生存的宏觀世界中物質和材料的物理、化學性質最為息息相關。

作為溝通微觀與宏觀物質世界的重要橋梁,化學則是人類認識和改造物質世界的主要方法和手段之一。

以上資料供參考網路-化學化學鍵

8. 化學鍵強弱對比

可以從鍵能
鍵長角度分析
1、若晶形不同,則原子晶體大於離子晶體大於分子晶體(金屬晶體熔沸點差別大,有特別高的如鎢,也有特別低的如汞,故和三者的比較不能有固定的規律,一般要具體分析)。
2、若晶形相同,則比較晶體內部離子間相互作用的強弱,相互作用越強,熔沸點就越高。
(1)離子晶體看離子鍵的強弱,一般離子半徑越大、所帶電荷數越多,離子鍵越強,熔沸點越高。
(2)原子晶體看共價鍵的強弱,一般非金屬性越強、半徑越小,共價鍵越強,熔沸點越高。如金剛石比晶體硅的熔沸點高,是因為C比Si元素非金屬性強,原子半徑小,所以碳碳共價鍵比硅硅共價鍵強。
(3)分子晶體看分子間作用力的強弱,對組成和結構相似的物質(一般為同族元素的單質、化合物或同系物),相對分子質量越大,分子間作用力越強,熔沸點越高。
(4)金屬晶體看金屬鍵的強弱,金屬離子半徑小,所帶電荷數多,金屬鍵就強,熔沸點就高。
對於周期表中同族元素單質的熔沸點比較,同樣根據以上規律,如鹵素、氧族元素、氮族元素的單質是分子晶體,從上到下相對分子質量增大,分子間作用力增強,熔沸點升高;鹼金屬都是金屬晶體,從上到下離子半徑增大,金屬鍵減弱,熔沸點降低。
至於隨氧化性或還原性強弱的變化就是隨金屬性和非金屬性的變化,即鹵素、氧族元素、氮族元素的單質從上到下氧化性減弱,熔沸點升高;鹼金屬從上到下還原性增強,熔沸點降低。

閱讀全文

與原子和分子之間哪個化學鍵最強相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069