『壹』 什麼是化學鍵的方向性和飽和性
這個問題主要體現在離子鍵與共價鍵的區別
1、離子鍵是右正負離子之間通過靜電引力吸引而形成的,正負離子為球形或者近似球形,電荷球形對稱分布,那麼離子鍵就可以在各個方向上發生靜電作用,因此是沒有方向性的。
2、一個離子可以同時與多個帶相反電荷的離子互相吸引成鍵,雖然在離子晶體中,一個離子只能與幾個帶相反電荷的離子直接作用(如NaCl中Na+可以與6個Cl-直接作用),但是這是由於空間因素造成的。在距離較遠的地方,同樣有比較弱的作用存在,因此是沒有飽和性的。
1、共價鍵的形成是成鍵電子的原子軌道發生重疊,並且要使共價鍵穩定,必須重疊部分最大。由於除了s軌道之外,其他軌道都有一定伸展方向,因此成鍵時除了s-s的σ鍵(如H2)在任何方向都能最大重疊外,其他軌道所成的鍵都只有沿著一定方向才能達到最大重疊。
2、舊理論:共價鍵形成的條件是原子中必須有成單電子,自旋方向必須相反,由於一個原子的一個成單電子只能與另一個成單電子配對,因此共價鍵有飽和性。如原子與Cl原子形成HCl分子後,不能再與另外一個Cl形成HCl2了。
新理論:
共價鍵形成時,成鍵電子所在的原子軌道發生重疊並分裂,成鍵電子填入能量較低的軌道即成鍵軌道。如果還有其他的原子參與成鍵的話,其所提供的電子將會填入能量較高的反鍵軌道,形成的分子也將不穩定。
『貳』 關於化學鍵與氫鍵,什麼叫方向性與飽和性
共價鍵和氫鍵具有方向性和飽和性,離子鍵沒有方向性和飽和性。例如,水分子中,一個氧原子最外層有6個電子,只能與兩個氫原子形成普通的共價鍵,這稱為飽和性。兩個氧氫鍵鍵角為104.5度,稱為共價鍵具有方向性。
『叄』 化學鍵的方向性
化學鍵中的共價鍵有方向性和飽和性,離子鍵和金屬件是沒有方向性和飽和性的.
共價鍵是電子雲相互重疊而形成的,電子雲在重疊時必須採取合適的取向(方向)才能最大程度的重疊達到穩定狀態.
『肆』 怎麼看化學鍵具有方向性和飽和性。。。速度必給採納
離子鍵和金屬鍵都沒有方向性和飽和性,共價鍵和配位鍵都有方向性和飽和性。
共價鍵的飽和性和方向性:
飽和性
在共價鍵的形成過程中,因為每個原子所能提供的未成對電子數是一定的,一個原子的一個未成對電子與其他原子的未成對電子配對後,就不能再與其它電子配對,即,每個原子能形成的共價鍵總數是一定的,這就是共價鍵的飽和性。
共價鍵的飽和性決定了各種原子形成分子時相互結合的數量關系 ,是定比定律(law of definite proportion)的內在原因之一。
方向性
除s軌道是球形的以外,其它原子軌道都有其固定的延展方向,所以共價鍵在形成時,軌道重疊也有固定的方向,共價鍵也有它的方向性,共價鍵的方向決定著分子的構形。
影響共價鍵的方向性的因素為軌道伸展方向。
配位鍵,又稱配位共價鍵,或簡稱配鍵,是一種特殊的共價鍵。當共價鍵中共用的電子對是由其中一原子獨自供應,另一原子提供空軌道時,就形成配位鍵。配位鍵形成後,就與一般共價鍵無異。成鍵的兩原子間共享的兩個電子不是由兩原子各提供一個,而是來自一個原子。例如氨和三氟化硼可以形成配位化合物:圖片式中→表示配位鍵。在N和B之間的一對電子來自N原子上的孤對電子。
『伍』 共價鍵的方向性
共價鍵的形成是成鍵原子的電子雲發生重疊,如果電子雲重疊程度越多,兩核間電子雲密度越大,形成的共價鍵就越牢固,因此共價鍵的形成將盡可能地沿著電子雲密度最大的方向進行.除s軌道的電子雲是球形對稱,相互重疊時無方向性外,其餘的p、d、f軌道的電子雲在空間都具有一定的伸展方向,故成鍵時都有方向性.
共價鍵的方向性,決定分子中各原子的空間排布.原子排布對稱與否,對於確定分子的極性有重要作用.我給你找找電子雲圖昂
『陸』 化學鍵的方向性與飽和性是什麼意思
不是所有化學鍵都具有方向性和飽和性的。
1,共價鍵具有飽和性和方向性
要形成穩定的共價鍵,必須盡可能使電子雲重疊程度大一些,我們知道,除了s電子以外,其它電子雲都是有空間
取向的,在成鍵時,要盡可能沿著電子雲密度最大的方向發生重疊.例如H2O中,氫原子的1s電子雲沿著氧原子的2Px、2Py電子雲的空間伸展方向的重
疊,才能達到電子雲重疊程度最大,形成穩定的共價鍵,因此共價鍵具有方向性。
元素的原子形成共價鍵時,當一個原子的所有未成對電子和另一些原子中自旋方向相反的未成對電子配對成鍵後,就不再跟其它原子的未成對電子配對成鍵.例如H2O分子中,O原子有兩個未成對電子,它只能跟兩個H原子的未成對電子配對,因此,共價鍵具有飽和性。
2,氫鍵不同於范德華引力,它具有飽和性和方向性.
由於氫原子特別小而原子A和B比較大,所以A—H中的氫原子只能和一個B原子結合形成氫鍵.同時由於負離子之間的相互排斥,另一個電負性大的原子B′就難於再接近氫原子.這就是氫鍵的飽和性。
氫鍵具有方向性則是由於電偶極矩A—H與原子B的相互作用,只有當A—H---B在同一條直線上時最強,同時原子B一般含有未共用電子對,在可能范圍內氫鍵的方向和未共用電子對的對稱軸一致,這樣可使原子B中負電荷分布最多的部分最接近氫原子,這樣形成的氫鍵最穩定。
『柒』 怎麼判斷化學鍵的極性強弱
根據元素的氧化/還原性強弱,即易得/失電子的程度。判斷化學鍵兩端的兩個原子的電負性(下表)相差越大,極性越強(相差足夠大的時候就變成離子鍵了)。
鍵的極性是由於成鍵原子的電負性不同而引起的。當成鍵原子的電負性相同或相近時,核間的電子雲密集區域在兩核的中間位置附近,兩個原子核正電荷所形成的正電荷重心和成鍵電子對的負電荷重心幾乎重合。
離子鍵、共價鍵、金屬鍵各自有不同的成因,離子鍵是通過原子間電子轉移,形成正負離子,由靜電作用形成的。共價鍵的成因較為復雜,路易斯理論認為,共價鍵是通過原子間共用一對或多對電子形成的,其他的解釋還有價鍵理論,價層電子互斥理論,分子軌道理論和雜化軌道理論等。
(7)物質的化學鍵的方向性怎麼看擴展閱讀:
在一個水分子中2個氫原子和1個氧原子就是通過化學鍵結合成水分子。由於原子核帶正電,電子帶負電,所以我們可以說,所有的化學鍵都是由兩個或多個原子核對電子同時吸引的結果所形成。
化學鍵在本質上是電性的,原子在形成分子時,外層電子發生了重新分布(轉移、共用、偏移等),從而產生了正、負電性間的強烈作用力。但這種電性作用的方式和程度有所不同,所以又可將化學鍵分為離子鍵、共價鍵和金屬鍵等。
離子鍵是原子得失電子後生成的陰陽離子之間靠靜電作用而形成的化學鍵。離子鍵的本質是靜電作用。由於靜電引力沒有方向性,陰陽離子之間的作用可在任何方向上,離子鍵沒有方向性。
只要條件允許,陽離子周圍可以盡可能多的吸引陰離子,反之亦然,離子鍵沒有飽和性。不同的陰離子和陽離子的半徑、電性不同,所形成的晶體空間點陣並不相同。