導航:首頁 > 化學知識 > 半導體液態化學品有哪些特性

半導體液態化學品有哪些特性

發布時間:2022-08-16 12:42:14

① 能做半導體的元素有什麼有什麼化學性質謝謝

在元素周期表中金屬和非金屬的分界處,可以找到半導體材料,如硅、鍺、鎵等
另外還有半導體的特性:
半導體是導電能力介於導體和絕緣體之間的物質。它的重要特性表現在以下幾個方面:

(1)熱敏性 半導體材料的電阻率與溫度有密切的關系。溫度升高,半導體的電阻率會明顯變小。例如純鍺(Ge),溫度每升高10度,其電阻率就會減少到原來的一半。

(2)光電特性 很多半導體材料對光十分敏感,無光照時,不易導電;受到光照時,就變的容易導電了。例如,常用的硫化鎘半導體光敏電阻,在無光照時電阻高達幾十兆歐,受到光照時電阻會減小到幾十千歐。半導體受光照後電阻明顯變小的現象稱為「光導電」。利用光導電特性製作的光電器件還有光電二極體和光電三極體等。

近年來廣泛使用著一種半導體發光器件--發光二極體,它通過電流時能夠發光,把電能直接轉成光能。目前已製作出發黃,綠,紅,藍幾色的發光二極體,以及發出不可見光紅外線的發光二極體。

另一種常見的光電轉換器件是硅光電池,它可以把光能直接轉換成電能,是一種方便的而清潔的能源。

(3)攙雜特性 純凈的半導體材料電阻率很高,但摻入極微量的「雜質」元素後,其導電能力會發生極為顯著的變化。例如,純硅的電阻率為214×1000歐姆/厘米,若摻入百萬分之一的硼元素,電阻率就會減小到0.4歐姆/厘米。因此,人們可以給半導體摻入微量的某種特定的雜質元素,精確控制它的導電能力,用以製作各種各樣的半導體器件。

② 半導體有哪些性質

導電性能介於導體與絕緣體(insulator)之間的材料,叫做半導體(semiconctor).
物質存在的形式多種多樣,固體、液體、氣體、等離子體等等。我們通常把導電性和導電導熱性差或不好的材料,如金剛石、人工晶體、琥珀、陶瓷等等,稱為絕緣體。而把導電、導熱都比較好的金屬如金、銀、銅、鐵、錫、鋁等稱為導體。可以簡單的把介於導體和絕緣體之間的材料稱為半導體。與金屬和絕緣體相比,半導體材料的發現是最晚的,直到20世紀30年代,當材料的提純技術改進以後,半導體的存在才真正被學術界認可。

半導體的發現實際上可以追溯到很久以前,

1833年,英國巴拉迪最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。不久,

1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。

在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。

1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。

半導體的這四個效應,(jianxia霍爾效應的余績——四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。

半導體於室溫時電導率約在10ˉ10~10000/ω·cm之間,純凈的半導體溫度升高時電導率按指數上升。半導體材料有很多種,按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括ⅲ-ⅴ 族化合物(砷化鎵、磷化鎵等)、ⅱ-ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由ⅲ-ⅴ族化合物和ⅱ-ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的有機物半導體等。

本徵半導體(intrinsic semiconctor) 沒有摻雜且無晶格缺陷的純凈半導體稱為本徵半導體。在絕對零度溫度下,半導體的價帶(valence band)是滿帶(見能帶理論),受到光電注入或熱激發後,價帶中的部分電子會越過禁帶(forbidden band/band gap)進入能量較高的空帶,空帶中存在電子後成為導帶(conction band),價帶中缺少一個電子後形成一個帶正電的空位,稱為空穴(hole),導帶中的電子和價帶中的空穴合稱為電子 - 空穴對。上述產生的電子和空穴均能自由移動,成為自由載流子(free carrier),它們在外電場作用下產生定向運動而形成宏觀電流,分別稱為電子導電和空穴導電。這種由於電子-空穴對的產生而形成的混合型導電稱為本徵導電。導帶中的電子會落入空穴,使電子-空穴對消失,稱為復合(recombination)。復合時產生的能量以電磁輻射(發射光子photon)或晶格熱振動(發射聲子phonon)的形式釋放。在一定溫度下,電子 - 空穴對的產生和復合同時存在並達到動態平衡,此時本徵半導體具有一定的載流子濃度,從而具有一定的電導率。加熱或光照會使半導體發生熱激發或光激發,從而產生更多的電子 - 空穴對,這時載流子濃度增加,電導率增加。半導體熱敏電阻和光敏電阻等半導體器件就是根據此原理製成的。常溫下本徵半導體的電導率較小,載流子濃度對溫度變化敏感,所以很難對半導體特性進行控制,因此實際應用不多。

雜質半導體(extrinsic semiconctor) 半導體中的雜質對電導率的影響非常大,本徵半導體經過摻雜就形成雜質半導體,一般可分為n型半導體和p型半導體。半導體中摻入微量雜質時,雜質原子附近的周期勢場受到干擾並形成附加的束縛狀態,在禁帶中產生附加的雜質能級。能提供電子載流子的雜質稱為施主(donor)雜質,相應能級稱為施主能級,位於禁帶上方靠近導帶底附近。例如四價元素鍺或硅晶體中摻入五價元素磷、砷、銻等雜質原子時,雜質原子作為晶格的一分子,其五個價電子中有四個與周圍的鍺(或硅)原子形成共價鍵,多餘的一個電子被束縛於雜質原子附近,產生類氫淺能級-施主能級。施主能級上的電子躍遷到導帶所需能量比從價帶激發到導帶所需能量小得多,很易激發到導帶成為電子載流子,因此對於摻入施主雜質的半導體,導電載流子主要是被激發到導帶中的電子,屬電子導電型,稱為n型半導體。由於半導體中總是存在本徵激發的電子空穴對,所以在n型半導體中電子是多數載流子,空穴是少數載流子。相應地,能提供空穴載流子的雜質稱為受主(acceptor)雜質,相應能級稱為受主能級,位於禁帶下方靠近價帶頂附近。例如在鍺或硅晶體中摻入微量三價元素硼、鋁、鎵等雜質原子時,雜質原子與周圍四個鍺(或硅)原子形成共價結合時尚缺少一個電子,因而存在一個空位,與此空位相應的能量狀態就是受主能級。由於受主能級靠近價帶頂,價帶中的電子很容易激發到受主能級上填補這個空位,使受主雜質原子成為負電中心。同時價帶中由於電離出一個電子而留下一個空位,形成自由的空穴載流子,這一過程所需電離能比本徵半導體情形下產生電子空穴對要小得多。因此這時空穴是多數載流子,雜質半導體主要靠空穴導電,即空穴導電型,稱為p型半導體。在p型半導體中空穴是多數載流子,電子是少數載流子。在半導體器件的各種效應中,少數載流子常扮演重要角色。

③ 半導體晶體的概念,性質和特點是什麼

半導體、絕緣體和導體由禁帶寬度劃分,即導帶與價帶之間的相對位置決定。

1 導體的導帶和價帶基本重合,禁帶寬度為0,電子由價帶進入導帶基本無需額外能量,因此內部存在大量自由電子,具有低電阻率。

2 半導體導帶和價帶距離適中,即禁帶寬度適中,因此價帶中的電子在常見能量級別的激勵下,例如光、熱和電壓,即可進入導帶,導致半導體電阻率變化。

3 絕緣體與半導體類同,但禁帶寬度很寬,需要大量能量才能導電,例如高於5000V的高壓電,因此電阻率很高。光和熱通常無法導致絕緣體導電,絕緣體一般耐熱性不高,能導致電子躍遷到導帶的溫度下,大部分碳基絕緣體已經碳化,其餘絕緣體已經熔化或氣化。

④ 硅有什麼特性和用途

1、高純的單晶硅是重要的半導體材料。在單晶硅中摻入微量的一些元素,可以形成p型硅半導體;

2、單晶硅慘入一些元素做成太陽能電池,將輻射能轉變為電能。在開發能源方面是一種很有前途的材料;

3、可以做成二極體、三極體、晶閘管和各種集成電路(包括計算機內的晶元基板和CPU);

4、金屬陶瓷、宇宙航行的重要材料;

5、硅可以做成光導纖維,用於通信領域;

6、性能優異的硅有機化合物。例如有機硅塑料是極好的防水塗布材料。在地下鐵道四壁噴塗有機硅,可以一勞永逸地解決滲水問題。在古文物、雕塑的外表,塗一層薄薄的有機硅塑料,可以防止青苔滋生,抵擋風吹雨淋和風化。天安門廣場上的人民英雄紀念碑,便是經過有機硅塑料處理表面的,因此永遠潔白、清新。

硅的特性

晶體硅為鋼灰色,無定形硅為黑色,密度2.4克/立方厘米,熔點1420℃,沸點2355℃,晶體硅屬於原子晶體,硬而有光澤,有半導體性質。

硅的化學性質比較活潑,在高溫下能與氧氣等多種元素化合,不溶於水、硝酸和鹽酸,溶於氫氟酸和鹼液,用於造制合金如硅鐵、硅鋼等,單晶硅是一種重要的半導體材料,用於製造大功率晶體管、整流器、太陽能電池等。硅在自然界分布極廣,地殼中約含27.6%,

結晶型的硅是暗黑藍色的,很脆,是典型的半導體。化學性質非常穩定。在常溫下,除氟化氫以外,很難與其他物質發生反應。

⑤ 半導體陶瓷的物理化學性質有哪些

半導體陶瓷都用在電子行業上,很少考慮化學性質,它的物理性質肯定具有半導體的特性,電導率一般在10-6~105S/m,受外界條件(溫度、光照、電場、氣氛和溫度等)的變化而發生顯著的變化,因此可以將外界環境的物理量變化轉變為電信號,製成各種用途的敏感元件。
因此半導體陶瓷按用途分為熱敏陶瓷,光敏陶瓷,氣敏陶瓷,濕敏陶瓷等等,而他們各自具有自己獨特的物理性質

⑥ 半導體的特性

1、熱敏特性

半導體的電阻率隨溫度變化會發生明顯地改變。例如純鍺,濕度每升高10度,它的電阻率就要減小到原來的1/2。溫度的細微變化,能從半導體電阻率的明顯變化上反映出來。利用半導體的熱敏特性,可以製作感溫元件——熱敏電阻,用於溫度測量和控制系統中。值得注意的是,各種半導體器件都因存在著熱敏特性,在環境溫度變化時影響其工作的穩定性。

2、光敏特性

半導體的電阻率對光的變化十分敏感。有光照時、電阻率很小;無光照時,電阻率很大。例如,常用的硫化鎘光敏電阻,在沒有光照時,電阻高達幾十兆歐姆,受到光照時.電阻一下子降到幾十千歐姆,電阻值改變了上千倍。利用半導體的光敏特性,製作出多種類型的光電器件,如光電二極體、光電三極體及硅光電池等.廣泛應用在自動控制和無線電技術中。

3、摻雜特性

在純凈的半導體中,摻人極微量的雜質元素,就會使它的電阻率發生極大的變化。例如.在純硅中摻人。百萬分之—的硼元素,其電阻率就會從214000Ω·cm一下於減小到0.4Ω·cm.也就是硅的導電能為提高了50多萬倍。人們正是通過摻入某些特定的雜質元素,人為地精確地控制半導體的導電能力,製造成不同類型的半導體器件。可以毫不誇張地說,幾乎所有的半導體器件,都是用摻有特定雜質的半導體材料製成的。

(6)半導體液態化學品有哪些特性擴展閱讀:

半導體的用途

1、集成電路

它是半導體技術發展中最活躍的一個領域,已發展到大規模集成的階段。在幾平方毫米的矽片上能製作幾萬只晶體管,可在一片矽片上製成一台微信息處理器,或完成其它較復雜的電路功能。集成電路的發展方向是實現更高的集成度和微功耗,並使信息處理速度達到微微秒級。

2、微波器件

半導體微波器件包括接收、控制和發射器件等。毫米波段以下的接收器件已廣泛使用。在厘米波段,發射器件的功率已達到數瓦,人們正在通過研製新器件、發展新技術來獲得更大的輸出功率。

3、光電子器件

半導體發光、攝象器件和激光器件的發展使光電子器件成為一個重要的領域。它們的應用范圍主要是:光通信、數碼顯示、圖象接收、光集成等。

⑦ 半導體材料有哪些 解析半導體材料的種類和應用

半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。很多人一直有疑問,半導體材料有哪些?半導體材料有哪些實際運用?今天小編精心搜集整理了相關資料,來專門解答大家關於半導體材料的疑問,下面一起來看一下吧!




一、半導體材料有哪些?


常用的半導體材料分為元素半導體和化合物半導體。元素半導體是由單一元素製成的半導體材料。主要有硅、鍺、硒等,以硅、鍺應用最廣。化合物半導體分為二元系、三元系、多元系和有機化合物半導體。二元系化合物半導體有Ⅲ-Ⅴ族(如砷化鎵、磷化鎵、磷化銦等)、Ⅱ-Ⅵ族(如硫化鎘、硒化鎘、碲化鋅、硫化鋅等)、Ⅳ-Ⅵ族(如硫化鉛、硒化鉛等)、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半導體主要為三元和多元固溶體,如鎵鋁砷固溶體、鎵鍺砷磷固溶體等。有機化合物半導體有萘、蒽、聚丙烯腈等,還處於研究階段。


此外,還有非晶態和液態半導體材料,這類半導體與晶態半導體的最大區別是不具有嚴格周期性排列的晶體結構。制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。




二、半導體材料主要種類


半導體材料可按化學組成來分,再將結構與性能比較特殊的非晶態與液態半導體單獨列為一類。按照這樣分類方法可將半導體材料分為元素半導體、無機化合物半導體、有機化合物半導體和非晶態與液態半導體。

1、元素半導體:在元素周期表的ⅢA族至ⅦA族分布著11種具有半導性半導體材料的元素,下表的黑框中即這11種元素半導體,其中C表示金剛石。C、P、Se具有絕緣體與半導體兩種形態;B、Si、Ge、Te具有半導性;Sn、As、Sb具有半導體與金屬兩種形態。


2、無機化合物半導體:分二元系、三元系、四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有閃鋅礦的結構。


3、有機化合物半導體:已知的有機半導體有幾十種,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它們作為半導體尚未得到應用。


4、非晶態與液態半導體:這類半導體與晶態半導體的最大區別是不具有嚴格周期性排列的晶體結構。




三、半導體材料實際運用


制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。


半導體材料所有的半導體材料都需要對原料進行提純,要求的純度在6個「9」以上,最高達11個「9」以上。提純的方法分兩大類,一類是不改變材料的化學組成進行提純,稱為物理提純;另一類是把元素先變成化合物進行提純,再將提純後的化合物還原成元素,稱為化學提純。物理提純的方法有真空蒸發、區域精製、拉晶提純等,使用最多的是區域精製。化學提純的主要方法有電解、絡合、萃取、精餾等,使用最多的是精餾。由於每一種方法都有一定的局限性,因此常使用幾種提純方法相結合的工藝流程以獲得合格的材料。


絕大多數半導體器件是在單晶片或以單晶片為襯底的外延片上作出的。成批量的半導體單晶都是用熔體生長法製成的。直拉法應用最廣,80%的硅單晶、大部分鍺單晶和銻化銦單晶是用此法生產的,其中硅單晶的最大直徑已達300毫米。在熔體中通入磁場的直拉法稱為磁控拉晶法,用此法已生產出高均勻性硅單晶。在坩堝熔體表面加入液體覆蓋劑稱液封直拉法,用此法拉制砷化鎵、磷化鎵、磷化銦等分解壓較大的單晶。懸浮區熔法的熔體不與容器接觸,用此法生長高純硅單晶。水平區熔法用以生產鍺單晶。水平定向結晶法主要用於制備砷化鎵單晶,而垂直定向結晶法用於制備碲化鎘、砷化鎵。用各種方法生產的體單晶再經過晶體定向、滾磨、作參考面、切片、磨片、倒角、拋光、腐蝕、清洗、檢測、封裝等全部或部分工序以提供相應的晶片。




以上就是小編今天給大家分享的半導體材料的有關信息,主要分析了半導體材料的種類和應用等問題,希望大家看後會有幫助!想要了解更多相關信息的話,大家就請繼續關注土巴兔學裝修吧!

⑧ 危險化學品具有哪些特性性質

危險化學品的特性
1、燃燒性
爆炸品、壓縮氣體和液化氣體中的可燃性氣體、易燃液體、易燃固體、自燃物品、遇濕易燃物品、有機過氧化物等,在條件具備時均可能發生燃燒。
2、爆炸性
爆炸品、壓縮氣體和液化氣體、易燃液體、易燃固體、自燃物品、遇濕易燃物品、氧化劑和有機過氧化物等危險化學品均可能由於其化學活性或易燃性引發爆炸事故。
3、毒害性
許多危險化學品可通過一種或多種途徑進入人體和動物體內,當其在人體累積到一定量時,便會擾亂或破壞肌體的正常生理功能,引起暫時性或持久性的病理改變,甚至危及生命。
4、腐蝕性
強酸、強鹼等物質能對人體組織、金屬等物品造成損壞,接觸人的皮膚、眼睛或肺部、食道等時,會引起表皮組織壞死而造成灼傷。內部器官被灼傷後可引起炎症,甚至會造成死亡。
5、放射性
放射性危險化學品通過放出的射線可阻礙和傷害人體細胞活動機能並導致細胞死亡。

⑨ 半導體材料的特性

半導體材料的特性:

半導體材料是室溫下導電性介於導電材料和絕緣材料之間的一類功能材料。靠電子和空穴兩種載流子實現導電,室溫時電阻率一般在10-5~107歐·米之間。通常電阻率隨溫度升高而增大;若摻入活性雜質或用光、射線輻照,可使其電阻率有幾個數量級的變化。

此外,半導體材料的導電性對外界條件(如熱、光、電、磁等因素)的變化非常敏感,據此可以製造各種敏感元件,用於信息轉換。

半導體材料的特性參數有禁帶寬度、電阻率、載流子遷移率、非平衡載流子壽命和位錯密度。禁帶寬度由半導體的電子態、原子組態決定,反映組成這種材料的原子中價電子從束縛狀態激發到自由狀態所需的能量。電阻率、載流子遷移率反映材料的導電能力。

非平衡載流子壽命反映半導體材料在外界作用(如光或電場)下內部載流子由非平衡狀態向平衡狀態過渡的弛豫特性。位錯是晶體中最常見的一類缺陷。位錯密度用來衡量半導體單晶材料晶格完整性的程度,對於非晶態半導體材料,則沒有這一參數。

半導體材料的特性參數不僅能反映半導體材料與其他非半導體材料之間的差別,更重要的是能反映各種半導體材料之間甚至同一種材料在不同情況下,其特性的量值差別。

(9)半導體液態化學品有哪些特性擴展閱讀:

材料工藝

半導體材料特性參數的大小與存在於材料中的雜質原子和晶體缺陷有很大關系。例如電阻率因雜質原子的類型和數量的不同而可能作大范圍的變化,而載流子遷移率和非平衡載流子壽命

一般隨雜質原子和晶體缺陷的增加而減小。另一方面,半導體材料的各種半導體性質又離不開各種雜質原子的作用。而對於晶體缺陷,除了在一般情況下要盡可能減少和消除外,有的情況下也希望控制在一定的水平,甚至當已經存在缺陷時可以經過適當的處理而加以利用。

為了要達到對半導體材料的雜質原子和晶體缺陷這種既要限制又要利用的目的,需要發展一套制備合乎要求的半導體材料的方法,即所謂半導體材料工藝。這些工藝大致可概括為提純、單晶制備和雜質與缺陷控制。

半導體材料的提純「主要是除去材料中的雜質。提純方法可分化學法和物理法。化學提純是把材料製成某種中間化合物以便系統地除去某些雜質,最後再把材料(元素)從某種容易分解的化合物中分離出來。物理提純常用的是區域熔煉技術,即將半導體材料鑄成錠條,從錠條的一端開始形成一定長度的熔化區域。

利用雜質在凝固過程中的分凝現象,當此熔區從一端至另一端重復移動多次後,雜質富集於錠條的兩端。去掉兩端的材料,剩下的即為具有較高純度的材料(見區熔法晶體生長)。此外還有真空蒸發、真空蒸餾等物理方法。鍺、硅是能夠得到的純度最高的半導體材料,其主要雜質原子所佔比例可以小於百億分之一。

閱讀全文

與半導體液態化學品有哪些特性相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:744
乙酸乙酯化學式怎麼算 瀏覽:1409
沈陽初中的數學是什麼版本的 瀏覽:1360
華為手機家人共享如何查看地理位置 瀏覽:1051
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:891
數學c什麼意思是什麼意思是什麼 瀏覽:1418
中考初中地理如何補 瀏覽:1309
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:707
數學奧數卡怎麼辦 瀏覽:1398
如何回答地理是什麼 瀏覽:1032
win7如何刪除電腦文件瀏覽歷史 瀏覽:1061
大學物理實驗干什麼用的到 瀏覽:1491
二年級上冊數學框框怎麼填 瀏覽:1710
西安瑞禧生物科技有限公司怎麼樣 瀏覽:993
武大的分析化學怎麼樣 瀏覽:1253
ige電化學發光偏高怎麼辦 瀏覽:1342
學而思初中英語和語文怎麼樣 瀏覽:1662
下列哪個水飛薊素化學結構 瀏覽:1428
化學理學哪些專業好 瀏覽:1491
數學中的棱的意思是什麼 瀏覽:1068