導航:首頁 > 化學知識 > 鈉有多少類型化學鍵

鈉有多少類型化學鍵

發布時間:2022-02-08 00:10:55

Ⅰ 什麼是化學鍵又要怎麼計算出物質中有多少化學鍵

化學鍵(chemical bond)是指分子或晶體內相鄰原子(或離子)間強烈的相互吸引作用。
例如,在水分子中2個氫原子和1個氧原子通過化學鍵結合成水分子 。化學鍵有3種極限類型 ,即離子鍵、共價鍵和金屬鍵。離子鍵是由異性電荷產生的吸引作用,例如氯和鈉以離子鍵結合成NaCl。共價鍵是兩個或幾個原子通過共有電子產生的吸引作用,典型的共價鍵是兩個原子借吸引一對成鍵電子而形成的。例如,兩個氫核同時吸引一對電子,形成穩定的氫分子。金屬鍵則是使金屬原子結合在一起的相互作用,可以看成是高度離域的共價鍵。定位於兩個原子之間的化學鍵稱為定域鍵。由多個原子共有電子形成的多中心鍵稱為離域鍵。除此以外,還有過渡類型的化學鍵:鍵電子偏向一方的共價鍵稱為極性鍵,由一方提供成鍵電子的化學鍵稱為配位鍵。極性鍵的兩端極限是離子鍵和非極性鍵,離域鍵的兩端極限是定域鍵和金屬鍵。
1、離子鍵是右正負離子之間通過靜電引力吸引而形成的,正負離子為球形或者近似球形,電荷球形對稱分布,那麼離子鍵就可以在各個方向上發生靜電作用,因此是沒有方向性的。
2、一個離子可以同時與多個帶相反電荷的離子互相吸引成鍵,雖然在離子晶體中,一個離子只能與幾個帶相反電荷的離子直接作用(如NaCl中Na+可以與6個Cl-直接作用),但是這是由於空間因素造成的。在距離較遠的地方,同樣有比較弱的作用存在,因此是沒有飽和性的。
化學鍵的概念是在總結長期實踐經驗的基礎上建立和發展起來的,用來概括觀察到的大量化學事實,特別是用來說明原子為何以一定的比例結合成具有確定幾何形狀的、相對穩定和相對獨立的、性質與其組成原子完全不同的分子。開始時,人們在相互結合的兩個原子之間畫一根短線作為化學鍵的符號 ;電子發現以後 ,1916年G.N.路易斯提出通過填滿電子穩定殼層形成離子和離子鍵或者通過兩個原子共有一對電子形成共價鍵的概念,建立化學鍵的電子理論。
量子理論建立以後,1927年 W.H.海特勒和F.W.倫敦通過氫分子的量子力學處理,說明了氫分子穩定存在的原因 ,原則上闡明了化學鍵的本質。通過以後許多人 ,物別是L.C.鮑林和R.S.馬利肯的工作,化學鍵的理論解釋已日趨完善。
1、共價鍵的形成是成鍵電子的原子軌道發生重疊,並且要使共價鍵穩定,必須重疊部分最大。由於除了s軌道之外,其他軌道都有一定伸展方向,因此成鍵時除了s-s的σ鍵(如H2)在任何方向都能最大重疊外,其他軌道所成的鍵都只有沿著一定方向才能達到最大重疊。
2、舊理論:共價鍵形成的條件是原子中必須有成單電子,自旋方向必須相反,由於一個原子的一個成單電子只能與另一個成單電子配對,因此共價鍵有飽和性。如原子與Cl原子形成HCl分子後,不能再與另外一個Cl形成HCl2了。
3、新理論:共價鍵形成時,成鍵電子所在的原子軌道發生重疊並分裂,成鍵電子填入能量較低的軌道即成鍵軌道。如果還有其他的原子參與成鍵的話,其所提供的電子將會填入能量較高的反鍵軌道,形成的分子也將不穩定。 像HCL這樣的共用電子對形成分子的化合物叫做共價化合物

Ⅱ 過氧化鈉的化學鍵類型

過氧化鈉可視為過氧根和鈉結合的離子化合物,含有過氧根和兩個鈉離子之間的離子鍵;但過氧根中還含有兩個氧原子彼此間的非極性共價鍵。

Ⅲ 氯化鈉中含有的化學鍵類型是什麼

氯化鈉是離子化合物,而且是以簡單的1比1配比形成,所以氯化鈉裡面只含離子鍵~

Ⅳ 氧化鈉,過氧化鈉都有什麼化學鍵

Na₂O中只有離子鍵,過氧化鈉屬於離子化合物,具有離子鍵和非極性共價鍵。

離子鍵通過兩個或多個原子或化學集團失去或獲得電子而成為離子後形成。帶相反電荷的離子之間存在靜電作用,當兩個帶相反電荷的離子靠近時, 表現為相互吸引,而電子和電子、原子核與原子核之間又存在著靜電排斥作用,當靜電吸引與靜電排斥作用達到平衡時,便形成離子鍵。

同種原子吸引共用電子對的能力相等,成鍵電子對勻稱地分布在兩核之間,不偏向任何一個原子,成鍵的原子都不顯電性。分子中電荷的分布是對稱的,整個分子的正電荷重心與負電荷重心重合,這種分子叫做非極性分子,這種鍵叫做非極性共價鍵。

氫氧化鈉和金屬鈉的混合物加熱也可以制備不純凈的氧化鈉。將粒狀NaOH和小塊金屬鈉混合(金屬鈉應稍過量),放入鎳坩堝。

鎳坩堝放置於封好底部的硬質玻璃管中,管上部與真空泵和長管壓力計聯接。混合物在300~320℃開始反應,生成的氫氣被真空泵抽出。真空度保持在399.96~533.288Pa(30~40mmHg柱),殘留的鈉被減壓蒸出。生成物為白色粉末,其中Na₂O只含96%。

(4)鈉有多少類型化學鍵擴展閱讀

過氧化鈉的用途:可用於制過氧化氫,過程如下。

①用磷酸或磷酸二氫鈉將過氧化鈉水溶液中和至PH:9.0~9.7,使 生成磷酸氫鈉和過氧化氫的水溶液。

②使所說的磷酸氫鈉和過氧化氫水溶液冷卻到+5~-5℃,從而使絕 大部分磷酸氫鈉以十水磷酸氫鈉水合物形式析出。

③在離心分離器中對含有磷酸氫鈉水合物和過氧化氫水溶液混合物進行分離,從而使磷酸氫鈉水合物結晶從含少量磷酸氫鈉的過氧化氫水溶液中分離出來。

④將所說的含少量磷酸氫鈉的過氧化氫水溶液在蒸發器中蒸發,得到含過氧化氫和水的蒸汽,而含過氧化氫的磷酸氫鈉濃鹽溶液從底部流出並返回中和槽。

⑤將所說 的含過氧化氫和水的蒸汽在分餾塔中進行減壓分餾,得到約30%過氧化氫。

Ⅳ 氮化鈉以什麼化學鍵形成

首先明確是疊氮化鈉還是氮化鈉

如果是氮化鈉就是明顯的離子鍵,氮元素呈不太穩定的離子態(參照氮化鎂)

疊氮化鈉中鈉與疊氮根是是離子鍵連接,疊氮根里的3個氮原子是共價鍵連接。

Ⅵ 化學鍵有幾種類型

一、離子鍵

帶相反電荷離子之間的互相作用叫做離子鍵(Ionic Bond),成鍵的本質是陰陽離子間的靜電作用。兩個原子間的電負性相差極大時,一般是金屬與非金屬。例如氯和鈉以離子鍵結合成氯化鈉。電負性大的氯會從電負性小的鈉搶走一個電子,以符合八隅體。

之後氯會以-1價的方式存在,而鈉則以+1價的方式存在,兩者再以庫侖靜電力因正負相吸而結合在一起,因此也有人說離子鍵是金屬與非金屬結合用的鍵結方式。而離子鍵可以延伸,所以並無分子結構。

離子鍵亦有強弱之分。其強弱影響該離子化合物的熔點、沸點和溶解性等性質。離子鍵越強,其熔點越高。離子半徑越小或所帶電荷越多,陰、陽離子間的作用就越強。例如鈉離子的微粒半徑比鉀離子的微粒半徑小,則氯化鈉NaCl中的離子鍵較氯化鉀KCl中的離子鍵強,所以氯化鈉的熔點比氯化鉀的高。

二、共價鍵

原子間通過共用電子形成的化學鍵,叫做共價鍵。

共價鍵的形成是成鍵電子的原子軌道發生重疊,並且要使共價鍵穩定,必須重疊部分最大。由於除了s軌道之外,其他軌道都有一定伸展方向,因此成鍵時除了s-s的σ鍵(如H2)在任何方向都能最大重疊外,其他軌道所成的鍵都只有沿著一定方向才能達到最大重疊。

三、金屬鍵

化學鍵的一種,主要在金屬中存在。由自由電子及排列成晶格狀的金屬離子之間的靜電吸引力組合而成。由於電子的自由運動,金屬鍵沒有固定的方向,因而是非極性鍵。金屬鍵有金屬的很多特性。

例如一般金屬的熔點、沸點隨金屬鍵的強度而升高。其強弱通常與金屬離子半徑成逆相關,與金屬內部自由電子密度成正相關(便可粗略看成與原子外圍電子數成正相關)。

化學鍵理論

在「純」離子鍵合的(不切實際的)限制中,電子完美地定位在鍵合中的兩個原子之一上。經典物理學可以理解這種鍵。原子之間的力以各向同性的連續靜電勢為特徵。它們的大小與電荷差異成簡單的比例。

價鍵 (VB) 理論或分子軌道 (MO) 理論可以更好地理解共價鍵。可以使用氧化數、形式電荷和電負性等概念來理解所涉及原子的特性。鍵內的電子密度不分配給單個原子,而是在原子之間離域。在價鍵理論中,鍵合被概念化為由兩個原子通過原子軌道重疊定位和共享的電子對建立。

軌道雜化和共振的概念增強電子對鍵的這個基本概念。在分子軌道理論中,鍵合被視為離域並分布在延伸到整個分子並適應其對稱特性的軌道中,通常通過考慮原子軌道的線性組合(LCAO)。價鍵理論通過空間局部化在化學上更加直觀,使注意力集中在分子發生化學變化的部分。

相比之下,從量子力學的角度來看,分子軌道更「自然」,軌道能量具有物理意義,並且與光電子能譜的實驗電離能直接相關.因此,價鍵理論和分子軌道理論通常被視為相互競爭但互補的框架,可以提供對化學系統的不同見解。

作為電子結構理論的方法,MO 和 VB 方法都可以給出任何所需精度水平的近似值,至少在原則上是這樣。但是,在較低級別,近似值不同,一種方法可能比另一種方法更適合涉及特定系統或屬性的計算。

與純離子鍵中球對稱的庫侖力不同,共價鍵通常是定向的和各向異性的。這些通常根據它們相對於分子平面的對稱性分類為sigma 鍵和pi 鍵。在一般情況下,原子形成介於離子鍵和共價鍵之間的鍵,這取決於所涉及原子的相對電負性。這種類型的鍵稱為極性共價鍵。

以上內容參考:網路-化學鍵

Ⅶ 鈉中有化學鍵嗎

單質鈉中有金屬鍵

Ⅷ 化合物NaOH中含有那些化學鍵類型

離子鍵和共價鍵,Na+與OH-形成離子鍵;OH-中的O與H形成共價鍵,但NaOH是離子化合物

Ⅸ 化學鍵的具體類型有哪些具體具體

化學鍵的具體類型有離子鍵、共價鍵、金屬鍵。

離子鍵(ionic bond)
帶相反電荷離子之間的互相作用叫做離子鍵,成鍵的本質是 陰陽離子間的靜電作用。兩個原子間的電負性相差極大時,一般是金屬與非金屬。例如氯和鈉以離子鍵結合成氯化鈉。電負性大的氯會從電負性小的鈉搶走一個電子,以符合八隅體。之後氯會以-1價的方式存在,而鈉則以+1價的方式存在,兩者再以庫侖靜電力因正負相吸而結合在一起,因此也有人說離子鍵是金屬與非金屬結合用的鍵結方式。而離子鍵可以延伸,所以並無分子結構。
離子鍵亦有強弱之分。其強弱影響該離子化合物的熔點、沸點和溶解性等性質。離子鍵越強,其熔點越高。離子半徑越小或所帶電荷越多,陰、陽離子間的作用就越強。例如鈉離子的微粒半徑比鉀離子的微粒半徑小,則氯化鈉NaCl中的離子鍵較氯化鉀KCl中的離子鍵強,所以氯化鈉的熔點比氯化鉀的高。
化學鍵在本質上是電性的,原子在形成分子時,外層電子發生了重新分布(轉移、共用、偏移等),從而產生了正、負電性間的強烈作用力。但這種電性作用的方式和程度有所不同,所以又可將化學鍵分為離子鍵、共價鍵和金屬鍵等。離子鍵是原子得失電子後生成的陰陽離子之間靠靜電作用而形成的化學鍵。離子鍵的本質是靜電作用。由於靜電引力沒有方向性,陰陽離子之間的作用可在任何方向上,離子鍵沒有方向性。只有條件允許,陽離子周圍可以盡可能多的吸引陰離子,反之亦然,離子鍵沒有飽和性。不同的陰離子和陽離子的半徑、電性不同,所形成的晶體空間點陣並不相同。

共價鍵(covalent bond)
1.共價鍵是原子間通過共用電子對(電子雲重疊)而形成的相互作用。形成重疊電子雲的電子在所有成鍵的原子周圍運動。一個原子有幾個未成對電子,便可以和幾個自旋方向相反的電子配對成鍵,共價鍵飽和性的產生是由於電子雲重疊(電子配對)時仍然遵循泡利不相容原理。電子雲重疊只能在一定的方向上發生重疊,而不能隨意發生重疊。共價鍵方向性的產生是由於形成共價鍵時,電子雲重疊的區域越大,形成的共價鍵越穩定,所以,形成共價鍵時總是沿著電子雲重疊程度最大的方向形成(這就是最大重疊原理)。共價鍵有飽和性和方向性。
2.原子通過共用電子對形成共價鍵後,體系總能量降低。
共價鍵的形成是成鍵電子的原子軌道發生重疊,並且要使共價鍵穩定,必須重疊部分最大。由於除了s軌道之外,其他軌道都有一定伸展方向,因此成鍵時除了s-s的σ鍵(如H2)在任何方向都能最大重疊外,其他軌道所成的鍵都只有沿著一定方向才能達到最大重疊。 共價鍵的分類

金屬鍵
1.概述:化學鍵的一種,主要在金屬中存在。由自由電子及排列成晶格狀的金屬離子之間的靜電吸引力組合而成。由於電子的自由運動,金屬鍵沒有固定的方向,因而是非極性鍵。金屬鍵有金屬的很多特性。例如一般金屬的熔點、沸點隨金屬鍵的強度而升高。其強弱通常與金屬離子半徑成逆相關,與金屬內部自由電子密度成正相關(便可粗略看成與原子外圍電子數成正相關)。
2.改性共價鍵理論:在金屬晶體中,自由電子作穿梭運動,它不專屬於某個金屬離子而為整個金屬晶體所共有。這些自由電子與全部金屬離子相互作用,從而形成某種結合,這種作用稱為金屬鍵。由於金屬只有少數價電子能用於成鍵,金屬在形成晶體時,傾向於構成極為緊密的結構,使每個原子都有盡可能多的相鄰原子(金屬晶體一般都具有高配位數和緊密堆積結構),這樣,電子能級可以得到盡可能多的重疊,從而形成金屬鍵。上述假設模型叫做金屬的自由電子模型,稱為改性共價鍵理論。這一理論是1900年德魯德(drude)等人為解釋金屬的導電、導熱性能所提出的一種假設。這種理論先後經過洛倫茨(Lorentz,1904)和佐默費爾德(Sommerfeld,1928)等人的改進和發展,對金屬的許多重要性質都給予了一定的解釋。但是,由於金屬的自由電子模型過於簡單化,不能解釋金屬晶體為什麼有結合力,也不能解釋金屬晶體為什麼有導體、絕緣體和半導體之分。隨著科學和生產的發展,主要是量子理論的發展,建立了能帶理論。

閱讀全文

與鈉有多少類型化學鍵相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1691
西安瑞禧生物科技有限公司怎麼樣 瀏覽:947
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1641
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050